Effects of a 6-Month Minimal-Equipment Exercise Program on the Physical Fitness Profile of Portuguese Firefighter Recruits
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Physical Fitness
2.4. Exercise Protocol
2.5. Statistical Analysis
3. Results
3.1. Anthropometric Changes
3.2. Fitness Changes
3.3. Relative Changes
3.4. Post Hoc Comparisons
- −
- In anthropometric variables there is a statistically significant difference between the first and the second time points, as well between the first and the third time points of assessment, except in the body weight. The mean of body density and fat-free mass increases from the first to the third time point, while the mean of body fat (%) and body fat (kg) decreases from the first to the third time point.
- −
- In fitness variables, with the exception of the 50 m speed run, all the observed statistically significant differences between the first and the second time points are due to the best mean performance of the second time point. Between the first and time points, with the exception of the elastic index and right and left handgrip, the statistically significant differences are due to the best mean performance of the third time point. Between the second and third time points, the Cooper test, bench press, pull-ups, sit-ups, and handgrip revealed a higher and statistically significant mean on the second time point, while for the 50 m speed run, standing long jump, average power, and minimal power, the third time point had the best mean performance.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RPM | Revolutions per minute |
| CMJ | Countermovement jump |
| NCAA | National Collegiate Athletic Association |
| MDC | Minimal detectable change |
| MCID | Minimally clinically important difference |
References
- Direção-Geral da Saúde (DGS). Promoção de um Estilo de Vida Saudável nos Bombeiros Portugueses; Direção-Geral da Saúde (DGS): Lisbon, Portugal, 2018.
- Ras, J.; Kengne, A.; Smith, D.; Soteriades, E.; November, R.; Leach, L. Effects of Cardiovascular Disease Risk Factors, Musculoskeletal Health, and Physical Fitness on Occupational Performance in Firefighters-A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 11946. [Google Scholar] [CrossRef]
- Carvalho, C.; Maia, A. Exposição adversa, psicopatologia e queixas de saúde em bombeiros portugueses. In Proceedings of the I Congresso Luso-Brasileiro de Psicologia da Saúde, Experiências e Intervenções, Faro, Portugal, 5–7 February 2009; pp. 1047–1067. [Google Scholar]
- Chizewski, A.; Box, A.; Kesler, R.; Petruzzello, S. Fitness Fights Fires: Exploring the Relationship between Physical Fitness and Firefighter Ability. Int. J. Environ. Res. Public Health 2021, 18, 11733. [Google Scholar] [CrossRef]
- Rhea, M.; Alvar, B.; Gray, R. Physical fitness and job performance of firefighters. J. Strength Cond. Res. 2004, 18, 348–352. [Google Scholar]
- Michaelides, M.; Parpa, K.; Thompson, J.; Brown, B. Predicting performance on a firefighter’s ability test from fitness parameters. Res. Q. Exerc. Sport 2008, 79, 468–475. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2018. [Google Scholar]
- Chizewski, A.; Petruzzello, S.J. Personality Fuels the Fire: Predicting Firefighter Physical Readiness. Fire 2024, 7, 465. [Google Scholar] [CrossRef]
- Harriss, D.; Jones, C.; MacSween, A. Ethical Standards in Sport and Exercise Science Research: 2022 Update. Int. J. Sports Med. 2022, 43, 1065–1070. [Google Scholar] [CrossRef]
- Lohman, T.; Roche, A.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Castañeda-Babarro, A. The Wingate Anaerobic Test, a Narrative Review of the Protocol Variables That Affect the Results Obtained. Appl. Sci. 2021, 11, 7417. [Google Scholar] [CrossRef]
- Cooper, K. A means of assessing maximal oxygen intake. Correlation between field and treadmill testing. JAMA 1968, 203, 201–204. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; Centers for Disease Control and Prevention. Muscle Strength Procedures Manual; CDC: Atlanta, GA, USA, 2013. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/public/2013/manuals/Muscle_Strength_2013.pdf (accessed on 15 December 2025).
- Zagatto, A.M.; Beck, W.R.; Gobatto, C.A. Validity of the Running Anaerobic Sprint Test for Assessing Anaerobic Power and Predicting Short-Distance Performances. J. Strength Cond. Res. 2009, 23, 1820–1827. [Google Scholar] [CrossRef]
- Department of the Navy. MCO 6100.13A CH-1; Marine Corps Physical Fitness and Combat Fitness Tests; Headquarters, U.S. Marine Corps: Washington, DC, USA, 2019.
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and Factorial Validity of Squat and Countermovement Jump Tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar]
- Van Hooren, B.; Zolotarjova, J. The Difference Between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Application. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Adam, C.; Klissouras, V.; Ravazzolo, M.; Renson, R.; Tuxworth, W. EUROFIT: European test of physical fitness. In Handbook for the EUROFIT Tests of Physical Fitness; Committee for the Development of Sport: Rome, Italy, 1988. [Google Scholar]
- Mauchly, J. Significance test for sphericity of a normal-variate distribution. Ann. Math. Stat. 1940, 11, 204–209. [Google Scholar] [CrossRef]
- Greenhouse, S.; Geisser, S. On methods in the analysis of profile data. Psychometrika 1959, 24, 95–112. [Google Scholar] [CrossRef]
- Girden, E. ANOVA: Repeated Measures; SAGE: Newbury Park, CA, USA, 1992. [Google Scholar]
- Huynh, H.; Feldt, L. Estimation of the Box correction for degrees of freedom from sample data in randomised block and split-plot designs. J. Educ. Stat. 1976, 1, 69–82. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Michaelides, M.; Parpa, K.; Henry, L.J.; Thompson, G.; Brown, B. Assessment of physical fitness aspects and their relationship to firefighters’ job abilities. J. Strength Cond. Res. 2011, 25, 956–965. [Google Scholar] [CrossRef]
- Kales, S.N.; Soteriades, E.S.; Christophi, C.A.; Christiani, D.C. Emergency duties and deaths from heart disease among firefighters in the United States. N. Engl. J. Med. 2007, 356, 1207–1215. [Google Scholar] [CrossRef]
- Nazari, G.; Lu, S.; MacDermid, J. Quantifying physiological responses during simulated tasks among Canadian firefighters: A systematic review and meta-analysis. J. Mil. Veteran Fam. Health 2021, 7, 55–75. [Google Scholar] [CrossRef]
- National Fire Protection Association (NFPA). Fifth Needs Assessment of the U.S. Fire Service; National Fire Protection Association (NFPA): Quincy, MA, USA, 2020. [Google Scholar]
- Andrews, K.; Gallagher, S.; Herring, M. The effects of exercise interventions on health and fitness of firefighters: A meta-analysis. Scand. J. Med. Sci. Sports 2019, 29, 780–790. [Google Scholar] [CrossRef]
- Nelson, R.; Cheatham, J.; Gallagher, D.; Bigelman, K.; Thomas, D.M. Revisiting the United States Army body composition standards: A receiver operating characteristic analysis. Int. J. Obes. 2019, 43, 1508–1515. [Google Scholar] [CrossRef]
- Bode, E.; Mathias, K.; Stewart, D.; Moffatt, S.; Jack, K.; Smith, D. Cardiovascular Disease Risk Factors by BMI and Age in United States Firefighters. Obesity 2021, 29, 1186–1194. [Google Scholar] [CrossRef]
- Cramer, M.; Jay, O. Explained variance in the thermoregulatory responses to exercise: The independent roles of biophysical and fitness/fatness-related factors. J. Appl. Physiol. 2015, 119, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Sergi, T.; Bode, K.; Hildebrand, D.; Dawes, J.; Joyce, J. Relationship between Body Mass Index and Health and Occupational Performance among Law Enforcement Officers, Firefighters, and Military Personnel: A Systematic Review. Curr. Dev. Nutr. 2023, 7, 100020. [Google Scholar] [CrossRef]
- Wohlgemuth, K.J.; Conner, M.; Tinsley, G.; Palmer, T.; Mota, J. Strategies for Improving Firefighter Health On-Shift: A Review. J. Funct. Morphol. Kinesiol. 2024, 9, 105. [Google Scholar] [CrossRef]
- Mier, C.; Gibson, A. Evaluation of a treadmill test for predicting the aerobic capacity of firefighters. Occup. Med. 2004, 54, 373–378. [Google Scholar] [CrossRef]
- Storer, T.; Dolezal, B.; Abrazado, M.; Smith, D.; Batalin, M.; Tseng, C.; Cooper, C. Firefighter health and fitness assessment: A call to action. J. Strength Cond. Res. 2014, 28, 661–671. [Google Scholar] [CrossRef]
- Antolini, M.; Weston, Z.; Tiidus, P. Physical fitness characteristics of a front-line firefighter population. Acta Kinesiol. Univ. Tartu. 2015, 21, 61–74. [Google Scholar] [CrossRef]
- Beitia, P.; Stamatis, A.; Amasay, T.; Papadakis, Z. Predicting Firefighters’ Physical Ability Test Scores from Anaerobic Fitness Parameters & Mental Toughness Levels. Int. J. Environ. Res. Public Health 2022, 19, 15253. [Google Scholar] [CrossRef]
- Lindberg, A.; Oksa, J.; Antti, H.; Malm, C. Multivariate statistical assessment of predictors of firefighters’ muscular and aerobic work capacity. PLoS ONE 2015, 10, e0118945. [Google Scholar] [CrossRef]
- Coppin, E.; Heath, E.; Bressel, E.; Wagner, D. Wingate anaerobic test reference values for male power athletes. Int. J. Sports Physiol. Perform. 2012, 7, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Naharudin, M.; Yusof, A. Fatigue index and fatigue rate during an anaerobic performance under hypohydrations. PLoS ONE 2013, 8, e77290. [Google Scholar] [CrossRef] [PubMed]
- Maud, P.J.; Shultz, B. Norms for the Wingate anaerobic test with comparison to another similar test. Res. Q. Exerc. Sport. 1989, 60, 144–151. [Google Scholar] [CrossRef] [PubMed]
| Monday | Tuesday | Wednesday | Thursday | Friday |
|---|---|---|---|---|
| WARM-UP ROUTINE: Continuous running at HRmax 50–65%: 15 min Active Stretching: 7 min | ||||
| Continuous running | Free weights training All body | 12 × 200 m running | Calisthenics for upper limbs and core in the vertical rope, bar and espalier: 3 × 3 min | Technical running skills (e.g., steps, hops, multi-jumps, …) |
| HRmax 60–75% | ~10–15 reps | maximum speed | 40–50 min | Sprint: 10 × 40 m |
| 60 min | 3 to 4 series | rest: 1 min | maximum speed | |
| rest: 2 min | ||||
| COOL DOWN AND PASSIVE STRETCHING: 7–10 min | ||||
| Time Effect | Moment 1 (M1) | Moment 2 (M2) | Moment 3 (M3) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Variables | F | p | η2p | Power | x̄ | s | x̄ | s | Δ(1) (%) | x̄ | s | Δ(2) (%) | Δ(3) (%) |
| Body weight (kg) | 2.763 ⊥ | 0.086 | 0.075 | 0.456 | 67.8 | 6.58 | 68.1 | 6.07 | 0.44 | 68.4 | 6.16 | 0.44 | 0.9 |
| Biceps SKF (mm) | 5.656 ╫ | 0.013 * | 0.143 | 0.734 | 3.3 | 0.77 | 3.2 | 0.74 | −3.03 | 3.2 | 0.73 | 0.00 | −3.0 |
| Triceps SKF (mm) | 9.095 ● | <0.001 * | 0.211 | 0.97 | 6.9 | 2.14 | 6.5 | 2.12 | −5.80 | 6.4 | 2 | −1.54 | −7.2 |
| Subscapular SKF (mm) | 11.907 ╫ | <0.001 * | 0.259 | 0.966 | 8.6 | 2.39 | 8.1 | 1.99 | −5.81 | 8.1 | 1.9 | 0.00 | −5.8 |
| Suprailiac SKF (mm) | 19.241 | <0.001 * | 0.361 | 0.999 | 8.6 | 3.18 | 6.7 | 2.2 | −22.09 | 7.2 | 2.19 | 7.46 | −16.3 |
| Abdominal SKF (mm) | 7.875 ╫ | 0.003 * | 0.188 | 0.872 | 10.7 | 4.11 | 9.8 | 3.67 | −8.41 | 9.3 | 3.15 | −5.10 | −13.1 |
| Thigh SKF (mm) | 6.607 ⊥ | 0.004 * | 0.163 | 0.863 | 9.9 | 3.31 | 9.1 | 3.04 | −8.08 | 9.2 | 2.83 | 1.10 | −7.1 |
| Calf SKF (mm) | 2.417 ⊥ | 0.110 | 0.066 | 0.417 | 6.5 | 2.79 | 6.7 | 2.71 | 3.08 | 6.1 | 2.23 | −8.96 | −6.2 |
| Body density (kg/m3) | 22.5 ⊥ | <0.001 * | 0.398 | 1.000 | 1.073 | 0.007 | 1.076 | 0.062 | 0.28 | 1.075 | 0.006 | −0.05 | 0.2 |
| Body fat (%) | 22.386 ⊥ | <0.001 * | 0.397 | 1.000 | 11.3 | 3.01 | 10 | 2.67 | −11.50 | 10.3 | 2.62 | 3.00 | −8.9 |
| Body fat (kg) | 16.663 ⊥ | <0.001 * | 0.329 | 0.997 | 7.8 | 2.51 | 6.9 | 2.15 | −11.54 | 7.1 | 2.15 | 2.90 | −9.0 |
| Fat-free mass (kg) | 27.339 ⊥ | <0.001 * | 0.446 | 1.000 | 60.1 | 5.14 | 61.2 | 5.13 | 1.83 | 61.3 | 5.07 | 0.16 | 2.0 |
| Squat jump (cm) | 27.016 ⊥ | <0.001 * | 0.443 | 1.000 | 33.64 | 4.7 | 37.07 | 4.46 | 10.20 | 38.2 | 4.18 | 3.05 | 13.6 |
| CMJ (cm) | 7.783 ● | 0.001 * | 0.186 | 0.942 | 37.93 | 4.74 | 39.52 | 4.91 | 4.19 | 40.48 | 5.17 | 2.43 | 6.7 |
| Elastic index (%) | 4.267 ⊥ | 0.030 * | 0.112 | 0.641 | 4.29 | 3.13 | 2.45 | 4.36 | −42.89 | 2.28 | 3.26 | −6.94 | −46.9 |
| 50 m speed run (sec) | 9.319 ⊥ | 0.001 * | 0.215 | 0.952 | 6.99 | 0.22 | 7.05 | 0.24 | 0.86 | 6.93 | 0.24 | −1.70 | −0.9 |
| Cooper test (m) | 54.763 ⊥ | <0.001 * | 0.617 | 1.000 | 2805 | 207.4 | 3054 | 161 | 8.88 | 3043 | 230 | −0.36 | 8.5 |
| Bench press (kg) | 123.721 ⊥ | <0.001 * | 0.784 | 1.000 | 9.8 | 7.3 | 14.43 | 7.95 | 47.24 | 18.46 | 8.05 | 27.93 | 88.4 |
| Pull-ups (n) | 37.087 ● | <0.001 * | 0.522 | 1.000 | 13.83 | 4.6 | 16.63 | 4.17 | 20.25 | 17.86 | 4.37 | 7.40 | 29.1 |
| Sit-ups (n) | 84.508 ╫ | <0.001 * | 0.713 | 1.000 | 19.23 | 6.98 | 25.57 | 8.12 | 32.97 | 34.77 | 12.8 | 35.98 | 80.8 |
| SLJ (m) | 24.72 ⊥ | <0.001 * | 0.428 | 1.000 | 2.29 | 0.16 | 2.23 | 0.19 | −2.62 | 2.43 | 0.16 | 8.97 | 6.1 |
| Right handgrip (kg) | 4.803 ⊥ | 0.016 * | 0.124 | 0.726 | 51.5 | 4.82 | 52.7 | 4.65 | 2.33 | 50.9 | 5.65 | −3.42 | −1.2 |
| Left handgrip (kg) | 9.132 ● | <0.001 * | 0.212 | 0.971 | 52.7 | 5.28 | 53.1 | 5.53 | 0.76 | 50.9 | 5.52 | −4.14 | −3.4 |
| Maximal power (W) | 15.969 ● | <0.001 * | 0.32 | 0.999 | 10.18 | 0.82 | 10.69 | 0.64 | 5.01 | 10.83 | 0.65 | 1.31 | 6.4 |
| Average power (W) | 27.709 ● | <0.001 * | 0.449 | 1.000 | 7.62 | 0.51 | 7.98 | 0.47 | 4.72 | 8.17 | 0.44 | 2.38 | 7.2 |
| Minimal power W | 8.395 ● | 0.001 * | 0.198 | 0.957 | 5.61 | 0.58 | 5.79 | 0.54 | 3.21 | 6.01 | 0.6 | 3.80 | 7.1 |
| Fatigue index (%) | 0.964 ⊥ | 0.368 | 0.028 | 0.191 | 44.69 | 7.96 | 45.86 | 5.87 | 2.62 | 44.09 | 6.46 | −3.86 | −1.3 |
| VO2max (mL·kg−1·min−1) | 51.42 | 56.99 | 56.75 | ||||||||||
| Variables | (1) vs. (2) | (1) vs. (3) | (2) vs. (3) |
|---|---|---|---|
| Body weight | 0.610 | 0.214 | 0.416 |
| Body density | <0.001 * | <0.001 * | 0.439 |
| Body fat (%) | <0.001 * | <0.001 * | 0.447 |
| Body fat (kg) | <0.001 * | 0.004 * | 0.355 |
| Fat-free mass | <0.001 * | <0.001 * | 1.000 |
| Squat jump | <0.001 * | <0.001 * | 0.094 |
| Countermovement jump | 0.079 | 0.003 * | 0.285 |
| Elastic index | 0.177 | 0.036 * | 1.000 |
| Speed run 50 m | 0.048 * | 0.201 | <0.001 * |
| Cooper test | <0.001 * | <0.001 * | <0.001 * |
| Bench press | <0.001 * | <0.001 * | <0.001 * |
| Pull-ups | <0.001 * | <0.001 * | 0.025 * |
| Sit-ups | <0.001 * | <0.001 * | <0.001 * |
| Standing long jump | 0.330 | <0.001 * | <0.001 * |
| Right handgrip | 0.087 | 0.001 * | <0.001 * |
| Left handgrip | 1.000 | <0.001 * | 0.010 * |
| Maximal power | 0.002 * | <0.001 * | 0.598 |
| Average power | <0.001 * | <0.001 * | 0.026 * |
| Minimal power | 0.305 | 0.001 * | 0.048 * |
| Fatigue index | 1.000 | 1.000 | 0.193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rodrigues dos Santos, J.A.; Silva, D.J.L.d.; Pizarro, A.N. Effects of a 6-Month Minimal-Equipment Exercise Program on the Physical Fitness Profile of Portuguese Firefighter Recruits. Fire 2026, 9, 57. https://doi.org/10.3390/fire9020057
Rodrigues dos Santos JA, Silva DJLd, Pizarro AN. Effects of a 6-Month Minimal-Equipment Exercise Program on the Physical Fitness Profile of Portuguese Firefighter Recruits. Fire. 2026; 9(2):57. https://doi.org/10.3390/fire9020057
Chicago/Turabian StyleRodrigues dos Santos, José Augusto, Domingos José Lopes da Silva, and Andreia Nogueira Pizarro. 2026. "Effects of a 6-Month Minimal-Equipment Exercise Program on the Physical Fitness Profile of Portuguese Firefighter Recruits" Fire 9, no. 2: 57. https://doi.org/10.3390/fire9020057
APA StyleRodrigues dos Santos, J. A., Silva, D. J. L. d., & Pizarro, A. N. (2026). Effects of a 6-Month Minimal-Equipment Exercise Program on the Physical Fitness Profile of Portuguese Firefighter Recruits. Fire, 9(2), 57. https://doi.org/10.3390/fire9020057

