Wind and Slope Influence on Wildland Fire Spread, a Numerical Study
Abstract
1. Introduction
2. Model Characteristics and Plantation Setup
3. Numerical Model
4. Results and Analysis
4.1. Simulation of 5 m Douglas
4.2. Simulation of 66 Douglas Fir Trees (2 m)
4.3. Simulation of 66 Douglas Fir Trees (5 m)
4.4. New Model Proposal
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morandini, F.; Silvani, X. Experimental investigation of the physical mechanisms governing the spread of wildfires. Int. J. Wildland Fire 2010, 19, 570–582. [Google Scholar] [CrossRef]
- Silvani, X.; Morandini, F.; Muzy, J.-F. Wildfire spread experiments: Fluctuations in thermal measurements. Int. Commun. Heat Mass Transf. 2009, 36, 887–892. [Google Scholar] [CrossRef]
- Mueller, E.V.; Skowronski, N.; Thomas, J.C.; Clark, K.; Gallagher, M.R.; Hadden, R.; Mell, W.; Simeoni, A. Local measurements of wildland fire dynamics in a field-scale experiment. Combust. Flame 2018, 194, 452–463. [Google Scholar] [CrossRef]
- Balbi, J.H.; Morandini, F.; Silvani, X.; Filippi, J.B.; Rinieri, F. A physical model for wildland fires. Combust. Flame 2009, 156, 2217–2230. [Google Scholar] [CrossRef]
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P. A physics-based approach to modelling grassland fires. Int. J. Wildland Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Morvan, D.; Meradji, S.; Accary, G. Physical modelling of fire spread in grasslands. Fire Saf. J. 2009, 44, 50–61. [Google Scholar] [CrossRef]
- Dupuy, J.-L.; Morvan, D. Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model. Int. J. Wildland Fire 2005, 14, 141–151. [Google Scholar] [CrossRef]
- Linn, R.; Winterkamp, J.; Edminster, C.; Colman, J.J.; Smith, W.S. Coupled influences of topography and wind on wildland fire behaviour. Int. J. Wildland Fire 2007, 16, 183–195. [Google Scholar] [CrossRef]
- Mell, W.; Maranghides, A.; McDermott, R.; Manzello, S.L. Numerical simulation and experiments of burning douglas fir trees. Combust. Flame 2009, 156, 2023–2041. [Google Scholar] [CrossRef]
- Goetz, G.O. A Statistical Investigation of How Slope Affects a Wildfire’s Rate of Spread. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2021. [Google Scholar]
- Sharples, J.J. Review of formal methodologies for wind–slope correction of wildfire rate of spread. Int. J. Wildland Fire 2008, 17, 179–193. [Google Scholar] [CrossRef]
- McArthur, A.G. Weather and Grassland Fire Behaviour; Forestry Timber Bureau Australia: Camperdown, NSW, Australia, 1966. [Google Scholar]
- McAlpine, R.S.L.; Bruce, D.; Taylor, E. Fire spread across a slope. In Proceedings of the 11th Conference on Fire and Forest Meteorology, Missoula, MT, USA, 16–19 April 1991; Society of American Foresters: Bethesda, MD, USA, 1991; pp. 218–255. [Google Scholar]
- Pagni, P.J.; Peterson, T.G. Flame spread through porous fuels. Symp. (Int.) Combust. 1973, 14, 1099–1107. [Google Scholar] [CrossRef]
- Valero Pérez, M.M.; Pastor Ferrer, E.; Mata, C.; Rios Rubiras, O.; Planas Cuchi, E.; Parsons, R. Computing wildfire behaviour metrics from CFD simulation data. In Proceedings of the 6th International Fire Behavior and Fuels Conference, Marseilles, France, 29 April–3 May 2019; pp. 1–6. [Google Scholar]
- Pimont, F.; Dupuy, J.-L.; Linn, R.R. Coupled slope and wind effects on fire spread with influences of fire size: A numerical study using FIRETEC. Int. J. Wildland Fire 2012, 21, 828–842. [Google Scholar] [CrossRef]
- Linn, R.R.; Winterkamp, J.L.; Weise, D.R.; Edminster, C. A numerical study of slope and fuel structure effects on coupled wildfire behaviour. Int. J. Wildland Fire 2010, 19, 179–201. [Google Scholar] [CrossRef]
- Simpson, C.C.; Sharples, J.J.; Evans, J.P.; McCabe, M.F. Large eddy simulation of atypical wildland fire spread on leeward slopes. Int. J. Wildland Fire 2013, 22, 599–614. [Google Scholar] [CrossRef]
- Moinuddin, K.A.; Sutherland, D. Modelling of tree fires and fires transitioning from the forest floor to the canopy with a physics-based model. Math. Comput. Simul. 2020, 175, 81–95. [Google Scholar] [CrossRef]
- Kim, D.-W.; Chung, W.; Lee, B. Exploring tree crown spacing and slope interaction effects on fire behavior with a physics-based fire model. For. Sci. Technol. 2016, 12, 167–175. [Google Scholar] [CrossRef]
- Miloua, H. Numerical prediction of the fire spread in vegetative fuels using NISTWFDS Model. Int. J. Eng. Res. Afr. 2016, 20, 177–192. [Google Scholar] [CrossRef]
- McGrattan, K.; Hostikka, S.; Floyd, J.; Baum, H.; Rehm, R.; Mell, W.; McDermott, R. Fire Dynamics Simulator (Version 5) Technical Reference Guide; NIST Special Publication 1018-5; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010.
- McGrattan, K.; Hostikka, S.; McDermott, R.; Floyd, J.; Weinschenk, C.; Overholt, K. Fire Dynamics Simulator User’s Guide; NIST Special Publication 1019; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013; pp. 1–339.
- Hayajneh, S.M. Numerical Simulation of Fire Spread in Multi-Story Cross Laminated Timber Buildings. Master’s Thesis, Swinburne University of Technology, Melbourne, Australia, 2022. [Google Scholar]
- Hayajneh, S.M.; Naser, J. Fire Spread in Multi-Storey Timber Building, a CFD Study. Fluids 2023, 8, 140. [Google Scholar] [CrossRef]
- Morvan, D.; Dupuy, J.-L. Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation. Combust. Flame 2004, 138, 199–210. [Google Scholar] [CrossRef]
- Morvan, D.; Meradji, S.; Mell, W. Interaction between head fire and backfire in grasslands. Fire Saf. J. 2013, 58, 195–203. [Google Scholar] [CrossRef]
- Moinuddin, K.; Sutherland, D.; Mell, W. Simulation study of grass fire using a physics-based model: Striving towards numerical rigour and the effect of grass height on the rate of spread. Int. J. Wildland Fire 2018, 27, 800–814. [Google Scholar] [CrossRef]
- Nelson Jr, R.M. An effective wind speed for models of fire spread. Int. J. Wildland Fire 2002, 11, 153–161. [Google Scholar] [CrossRef]
Parameter | Value | Units | Description |
---|---|---|---|
Vegetation Component Mass Densities | |||
Foliage mass density | 1.2336 | kg/m3 | Crown foliage distributed throughout tree cone |
Small roundwood mass density | 0.3495 | kg/m3 | Small-diameter branches and twigs |
Medium roundwood mass density | 0.2467 | kg/m3 | Medium-diameter branches |
Large roundwood mass density | 0.2262 | kg/m3 | Large-diameter branches and trunk components |
Moisture Content | |||
Foliage moisture fraction | 0.26 | - | Mass fraction of water in foliage (26%) |
Roundwood moisture fraction | 0.26 | - | Mass fraction of water in all woody materials (26%) |
Surface vegetation moisture fraction | 0.063 | - | Mass fraction of water in surface vegetation (6.3%) |
Surface Area to Volume Ratios | |||
Foliage | 3940 | m2/m3 | High surface area characteristic of needles and leaves |
Small roundwood | 2667 | m2/m3 | Small-diameter woody fuels (≈0.5–1 cm) |
Medium roundwood | 888 | m2/m3 | Medium-diameter woody fuels (≈1–3 cm) |
Large roundwood | 500 | m2/m3 | Large-diameter woody fuels (≈3–5 cm) |
Surface vegetation | 9770 | m2/m3 | Ground-level fine fuels with high surface area |
Thermal Properties | |||
Heat of combustion | 17,425 | kJ/kg | Energy released during complete combustion |
Thermal conductivity (vegetation) | 2.0 | W/m·K | Heat transfer coefficient within vegetation material |
Thermal conductivity (char) | 0.052 | W/m·K | Heat transfer coefficient within char material |
Thermal conductivity (ash) | 0.1 | W/m·K | Heat transfer coefficient within ash residue |
Specific heat capacity | 1.1–2.0 | kJ/kg·K | Temperature-dependent: 1.1 at ambient temperature, increasing to 2.0 at 200–800 °C |
Density (vegetation) | 1000 | kg/m3 | Density of dry vegetation material |
Density (char) | 300 | kg/m3 | Density of char after pyrolysis |
Density (ash) | 67 | kg/m3 | Density of ash after char oxidation |
Heat of reaction (pyrolysis) | 418 | kJ/kg | Energy required for thermal degradation of vegetation |
Heat of reaction (char oxidation) | 25,000 | kJ/kg | Energy released during char combustion (exothermic) |
Pyrolysis Parameters | |||
Pre-exponential factor (vegetation) | 1040 | s−1 | Arrhenius equation parameter for pyrolysis rate |
Activation energy (vegetation) | 61,041 | J/mol | Energy barrier for pyrolysis reactions |
Pre-exponential factor (char) | 465 | s−1 | Arrhenius equation parameter for char oxidation |
Activation energy (char) | 68,000 | J/mol | Energy barrier for char oxidation reactions |
Mass fraction (char from vegetation) | 0.25 | - | Mass fraction of char produced during vegetation pyrolysis |
Mass fraction (ash from char) | 0.04 | - | Mass fraction of ash produced during char oxidation |
Drag coefficient | 2.8 | - | Air resistance coefficient through vegetation |
Surface vegetation mass per volume | 1.33 | kg/m3 | Density of ground-level vegetation layer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayajneh, S.M.; Naser, J. Wind and Slope Influence on Wildland Fire Spread, a Numerical Study. Fire 2025, 8, 217. https://doi.org/10.3390/fire8060217
Hayajneh SM, Naser J. Wind and Slope Influence on Wildland Fire Spread, a Numerical Study. Fire. 2025; 8(6):217. https://doi.org/10.3390/fire8060217
Chicago/Turabian StyleHayajneh, Suhaib M., and Jamal Naser. 2025. "Wind and Slope Influence on Wildland Fire Spread, a Numerical Study" Fire 8, no. 6: 217. https://doi.org/10.3390/fire8060217
APA StyleHayajneh, S. M., & Naser, J. (2025). Wind and Slope Influence on Wildland Fire Spread, a Numerical Study. Fire, 8(6), 217. https://doi.org/10.3390/fire8060217