Improving Wildfire Resilience in the Mediterranean Central-South Regions of Chile
Abstract
1. Introduction
The Problem of Wildfires in the Central-South Regions of Chile
2. Materials and Methods
2.1. Study Area
2.2. Questionnaire Design
2.3. Wildfire Statistics and Management in Fire-Prone Mediterranean Regions
3. Results
3.1. Questionnaire Results
3.2. Wildfire Statistics and Management Budgets in Fire-Prone Mediterranean Regions
4. Discussion
4.1. Expert Perception of Wildfires in the Central-South Regions of Chile
4.2. Is It Really Necessary to Invest More in Wildfire Prevention in Chile?
4.3. Preventive Measures to Improve Wildfire Resilience in Mediterranean Regions
4.3.1. Fuel Management
4.3.2. Governance and Community Participation in Fire Management
4.3.3. Territorial Management, Landscape Planning and Socioeconomic Evaluation
4.3.4. Educational and Training Tools to Increase Public Awareness and Prevent Wildfires
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Burton, C.; Lampe, S.; Kelley, D.I.; Thiery, W.; Hantson, S.; Christidis, N.; Gudmundsson, L.; Forrest, M.; Burke, E.; Chang, J.; et al. Global burned area increasingly explained by climate change. Nat. Clim. Change 2024, 14, 1186–1192. [Google Scholar] [CrossRef]
- Duane, A.; Castellnou, M.; Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 2021, 165, 43. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H. Fire effects on soils: The human dimension. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150171. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Kemp, K.B.; Higuera, P.E.; Harvey, B.J.; Rother, M.T.; Donato, D.C.; Morgan, P.; Veblen, T.T. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 2018, 21, 243–252. [Google Scholar] [CrossRef]
- Robinne, F.N.; Hallema, D.W.; Bladon, K.D.; Flannigan, M.D.; Boisramé, G.; Bréthaut, C.M.; Doerr, S.H.; Baldassarre, G.D.; Gallagher, L.A.; Hohner, A.K.; et al. Scientists’ warning on extreme wildfire risks to water supply. Hydrol. Process. 2021, 35, e14086. [Google Scholar] [CrossRef]
- Forzieri, G.; Bianchi, A.; e Silva, F.B.; Herrera, M.A.M.; Leblois, A.; LaValle, C.; Aerts, J.C.J.H.; Feyen, L. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Change 2018, 48, 97–107. [Google Scholar] [CrossRef]
- De la Barrera, F.; Barraza, F.; Favier, P.; Ruiz, V.; Quense, J. Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosystems. Sci. Total Environ. 2018, 637, 1526–1536. [Google Scholar] [CrossRef]
- Vilar, L.; Martín, M.; Martinez, J. Empleo de técnicas de regresión logística para la obtención de modelos de riesgo humano de incendio forestal a escala regional. Bol. Asoc. Geogr. Esp. 2008, 47, 5–29. [Google Scholar]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.C.; Catry, F.X.; Armesto, J.; Bond, W.J.; González, M.E.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Xanthopoulos, G. A wildfire risk management concept based on a social-ecological approach in the European Union: Fire Smart Territory. Int. J. Disaster Risk Reduct. 2016, 18, 138–153. [Google Scholar] [CrossRef]
- Vince, S.W.; Duryea, M.L.; Macie, E.A.; Hermansen, A. Forests at the Wildland-Urban Interface: Conservation and Management; CRC Press: Boca Ratón, FL, USA, 2004; 312p. [Google Scholar]
- Pais, S.; Aquilué, N.; Campos, J.; Sil, Â.; Marcos, B.; Martínez-Freiría, F.; Domínguez, J.; Brotons, L.; Honrado, J.P.; Regos, A. Mountain farmland protection and fire-smart management jointly reduce fire hazard and enhance biodiversity and carbon sequestration. Ecosyst. Serv. 2020, 44, 101143. [Google Scholar] [CrossRef]
- Resco de Dios, V. Plant-Fire Interactions Applying Ecophysiology to Wildfire Management; Springer: Cham, Switzerland, 2020; 220p. [Google Scholar]
- Regos, A.; Pais, S.; Campos, J.C.; Lecina-Diaz, J. Nature-based solutions to wildfires in rural landscapes of Southern Europe: Let’s be fire-smart! Int. J. Wildland Fire 2023, 32, 942–950. [Google Scholar] [CrossRef]
- González, M.; Sapiains, R.; Gómez-González, S.; Garreaud, R.; Miranda, A.; Galleguillos, M.; Jacques, M.; Pauchard, A.; Hoyos, J.; Cordero, L.; et al. Incendios Forestales en Chile: Causas, Impactos y Resiliencia; Centro de Ciencia del Clima y la Resiliencia (CR)2, Universidad de Concepción y Universidad Austral de Chile: Valdivia, Chile, 2020. [Google Scholar]
- Wu, C.; Venevsky, S.; Sitch, S.; Mercado, L.M.; Huntingford, C.; Staver, A.C. Historical and future global burned area with changing climate and human demography. One Earth 2021, 4, 517–530. [Google Scholar] [CrossRef]
- Taccaliti, F.; Marzano, R.; Bell, T.L.; Lingua, E. Wildland-Urban interface: Definition and physical fire risk mitigation measures, a systematic review. Fire 2023, 6, 343. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I.; Fried, J.S.; Holcomb, S.S.; McKeefry, J.F. The Wildland-Urban Interface in the United States. Ecol. Appl. 2005, 15, 799–805. [Google Scholar] [CrossRef]
- Platt, R.V. The wildland–urban interface: Evaluating the definition effect. J. For. 2010, 108, 9–15. [Google Scholar] [CrossRef]
- Alavalapati, J.R.; Carter, D.R.; Newman, D.H. Wildland–urban interface: Challenges and opportunities. For. Policy Econ. 2005, 7, 705–708. [Google Scholar] [CrossRef]
- Chas-Amil, M.L.; Touza, J.; García-Martínez, E. Forest fires in the wildland–urban interface: A spatial analysis of forest fragmentation and human impacts. Appl. Geogr. 2013, 43, 127–137. [Google Scholar] [CrossRef]
- Ganteaume, A.; Barbero, R.; Jappiot, M.; Maillé, E. Understanding future changes to fires in southern Europe and their impacts on the wildland-urban interface. J. Saf. Sci. Resil. 2021, 2, 20–29. [Google Scholar] [CrossRef]
- Madrigal, J.; Guijarro, M.; Hernando, C. La inflamabilidad de combustibles vegetales en la interfaz urbano-forestal: Propuestas para mejorar los índices de riesgo en el Noroeste peninsular. In Retos en el Manejo de Combustibles en Masas Forestales y en la Interfaz Urbano-Forestal; Fernández, C., Vega, J.A., Eds.; Andavira Editora: Santiago de Compostela, Spain, 2020; pp. 75–89. [Google Scholar]
- Detweiler, A.J.; Fitzgerald, S.A. Fire-Resistant Plants for Home Landscapes: Selecting Plants That May Reduce Your Risk from Wildfire; Oregon State University Extension Service: Condon, OR, USA, 2006; 44p. [Google Scholar]
- McWethy, D.B.; Pauchard, A.; García, R.A.; Holz, A.; González, M.E.; Veblen, T.T.; Stahl, J.; Currey, B. Landscape drivers of recent fire activity (2001–2017) in south-central Chile. PLoS ONE 2018, 13, e0201195. [Google Scholar] [CrossRef]
- Duarte, E.; Rubilar, R.; Matus, F.; Garrido-Ruiz, C.; Merino, C.; Smith-Ramirez, C.; Aburto, F.; Rojas, C.; Stehr, A.; Dörner, J.; et al. Drought and wildfire trends in native forests of south-central Chile in the 21st century. Fire 2024, 7, 230. [Google Scholar] [CrossRef]
- CONAF. Ocurrencia y Daño Histórico Nacional de Incendios Forestales Temporadas 1977–2022. Available online: https://www.conaf.cl/centro-documental/ (accessed on 6 February 2023).
- CONAF. Superficie Nacional Afectada por Total Incendios Forestales por Región Hasta Temporada 2021–2022. Available online: https://www.conaf.cl/centro-documental/ (accessed on 6 February 2023).
- GEPRIF-CONAF. Resumen Ejecutivo Riesgo Incendios Forestales; Departamento de Desarrollo e Investigación Gerencia de Protección contra Incendios Forestales (GEPRIF), Corporación Nacional Forestal (CONAF): Santiago de Chile, Chile, 2021. [Google Scholar]
- Sarricolea, P.; Herrera, M.; Meseguer, O. Climatic regionalisation of continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Modugno, S.; Balzter, H.; Cole, B.; Borrelli, P. Mapping regional patterns of large forest fires in Wildland–Urban Interface areas in Europe. J. Environ. Manag. 2016, 172, 112–126. [Google Scholar] [CrossRef]
- Jaque Castillo, E.; Fernández, A.; Fuentes Robles, R.; Ojeda, C.G. Data-based wildfire risk model for Mediterranean ecosystems–case study of the Concepción metropolitan area in central Chile. Nat. Hazards Earth Syst. Sci. 2021, 21, 3663–3678. [Google Scholar] [CrossRef]
- Ramírez, P.; Badia, A. Cambios en Los Usos de Suelo, Vulnerabilidad del Territorio e Incendios Forestales. El caso de Estudio Las Máquinas, Región del Maule, Chile. Master’s Thesis, Territorial and Population Studies. Barcelona—Universidad Autónoma de Barcelona (UAB), Barcelona, Spain, 2019. Available online: https://ddd.uab.cat/record/232643 (accessed on 16 February 2023).
- Álvarez, V.; Poblete, P.; Soto, D.; Gysling, J.; Kahler, C.; Pardo, E.; Bañados, J.; Baeza, D. Anuario Forestal 2022; Boletín Estadístico 187; Instituto Forestal: Santiago, Chile, 2022; Available online: https://wef.infor.cl/index.php/publicaciones/boletines-estadisticos/anuario-forestal (accessed on 6 February 2023).
- OECD. Taming Wildfires in the Context of Climate Change; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Wright, R.; Stein, M. Snowball sampling. In The Encyclopedia of Social Measurement; Kempf-Leonard, K., Ed.; Elsevier: San Diego, CA, USA, 2005; pp. 495–500. [Google Scholar]
- Chilean Government. 5th Report of Gender Indicators in Companies in Chile 2023. 2024. Available online: https://www.economia.gob.cl/wp-content/uploads/2024/03/quinto-reporte-de-indicadores-de-genero-en-las-empresas-en-chile-2023.pdf (accessed on 12 March 2025).
- CORMA. 2nd Report on Female Labor Participation in the Forestry Industry 2023 in Chile; Corporación Chilena De La Madera (CORMA): Concepción, Chile, 2023; Available online: https://www.corma.cl/wp-content/uploads/2023/08/Segundo-Reporte-MasMujer_09-08-2023.pdf (accessed on 12 March 2025).
- Úbeda, X.; Sarricolea, P. Wildfires in Chile: A review. Glob. Planet. Change 2006, 146, 152–161. [Google Scholar] [CrossRef]
- Ortiz, C.; Fernández-Alonso, M.J.; Kitzler, B.; Díaz-Pinés, E.; Saiz, G.; Rubio, A.; Benito, M. Variations in soil aggregation, microbial community structure and soil organic matter cycling associated to long-term afforestation and woody encroachment in a Mediterranean alpine ecotone. Geoderma 2022, 405, 115450. [Google Scholar] [CrossRef]
- Anseeuw, W.; Baldinelli, G. Uneven Ground: Land Inequality at the Heart of Unequal Societies; International Land Coalition: Rome, Italy, 2020; 67p, ISBN 978-92-95105-54-6. [Google Scholar]
- OECD. Taming Wildfires in the Context of Climate Change: The Case of Greece; OECD Environment Policy Paper 43; OECD Publishing: Paris, France, 2024; Available online: https://www.oecd.org/en/publications/taming-wildfires-in-the-context-of-climate-change-the-case-of-greece_cfb797a7-en.html (accessed on 8 November 2024).
- Mauri, E.; Hernández Paredes, E.; Núñez Blanco, I.; García Feced, C. Key Recommendations on Wildfire Prevention in the Mediterranean; European Forest Institute: Joensuu, Finland, 2023. [Google Scholar]
- Agee, J.K.; Skinner, C.N. Basic principles of fuel reduction treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Omi, P.N. Theory and practice of wildland fuels management. Curr. For. Rep. 2015, 1, 100–117. [Google Scholar] [CrossRef]
- Stephens, S.L. Evaluation of the effects of silvicultural and fuels treatments on potential fire behavior in Sierra Nevada mixed-conifer forests. For. Ecol. Manag. 1998, 105, 21–35. [Google Scholar] [CrossRef]
- Madrigal, J.; Fernández-Migueláñez, I.; Hernando, C.; Guijarro, M.; Vega-Nieva, D.J.; Tolosana, E. Does forest biomass harvesting for energy reduce fire hazard in the Mediterranean basin? A case study in the Caroig Massif (Eastern Spain). Eur. J. For. Res. 2016, 136, 13–26. [Google Scholar] [CrossRef]
- Sarricolea, P.; Serrano-Notivoli, R.; Fuentealba, M.; Hernández-Mora, M.; De la Barrera, F.; Smith, P.; Meseguer-Ruiz, Ó. Recent wildfires in Central Chile: Detecting links between burned areas and population exposure in the wildland urban interface. Sci. Total Environ. 2020, 706, 135894. [Google Scholar] [CrossRef]
- Espinoza-Monje, J.F.; Saiz, G.; Cifuentes, G.; Muñoz, R.; Valdebenito, F.; Ramírez, G.; Ariz, S.; Azócar, L. Management of invasive shrubs to mitigate wildfire through fuel pellet production in central Chile. Fuel 2023, 354, 129342. [Google Scholar] [CrossRef]
- Espinoza-Monje, J.F.; Garcés, H.O.; Díaz, J.; Adam, R.; Lazo, J.; Muñoz, R.; Coronado, M.; Saiz, G.; Azócar, L. Investigating the properties of shrub biomass pellets through additive and sawdust admixing. Renew. Energy 2024, 29, 120764. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire management impacts on invasive plants in the western United States. Conserv. Biol. 2006, 20, 375–384. [Google Scholar] [CrossRef]
- Lovreglio, R.; Meddour-Sahar, O.; Leone, V. Goat grazing as a wildfire prevention tool: A basic review. iForest Biogeosci. For. 2014, 7, 260. [Google Scholar] [CrossRef]
- Pareja, J.; Baraza, E.; Ibáñez, M.; Domenech, O.; Bartolomé, J. The role of feral goats in maintaining firebreaks by using attractants. Sustainability 2020, 12, 7144. [Google Scholar] [CrossRef]
- Ruiz, J. Environmental benefits of extensive livestock farming: Wildfire prevention and beyond. Opt. Méditerr. 2011, 100, 75–82. [Google Scholar]
- Thavaud, P.; Beylier, B.; Débit, S.; Dimanche, M.; Genevet, E.; Gouty, A.L. Entretien des Coupures de Combustible par le Pastoralisme: Guide Pratique; Réseau Coupure de Combustible: Avignon, France, 2009; 68p. (In French) [Google Scholar]
- Varela-Redondo, E.; Calatrava, J.; Ruiz-Mirazo, J.; Jiménez, R.; González Rebollar, J.L. El pastoreo en la prevención de incendios forestales: Análisis comparado de costes evitados frente a medios mecánicos de desbroce de la vegetación. Peq. Rumiantes 2008, 9, 12–20. [Google Scholar]
- Marino, E.; Hernando, C.; Planelles, R.; Madrigal, J.; Guijarro, M.; Sebastián, A. Forest fuel management for wildfire prevention in Spain: A quantitative SWOT analysis. Int. J. Wildland Fire 2014, 23, 373–384. [Google Scholar] [CrossRef]
- Curran, T.J.; Perry, G.L.; Wyse, S.V.; Alam, M.A. Managing fire and biodiversity in the wildland-urban interface: A role for green firebreaks. Fire 2018, 1, 3. [Google Scholar] [CrossRef]
- Murray, B.R.; Brown, C.; Murray, M.L.; Krix, D.W.; Martin, L.J.; Hawthorne, T.; Wallace, M.I.; Potvin, S.A.; Webb, J.K. An integrated approach to identify low-flammability plant species for green firebreaks. Fire 2020, 3, 9. [Google Scholar] [CrossRef]
- Bannister, J.R.; Vargas-Gaete, R.; Ovalle, J.F.; Acevedo, M.; Fuentes-Ramirez, A.; Donoso, P.J.; Promis, A.; Smith-Ramírez, C. Major bottlenecks for the restoration of natural forests in Chile. Restor. Ecol. 2018, 26, 1039–1044. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; Saiz, G.; García, R.A.; Pauchard, A.; Ferreira, A.; Merino, A. Post-fire ecological restoration in Latin American forest ecosystems: Insights and lessons from the last two decades. For. Ecol. Manag. 2022, 509, 120083. [Google Scholar] [CrossRef]
- Smith-Ramírez, C.; González, M.E.; Echeverría, C.; Lara, A. Estado actual de la restauración ecológica en Chile, perspectivas y desafíos: Current state of ecological restoration in Chile: Perspectives and challenges. An. Inst. Patagon. 2015, 43, 11–21. [Google Scholar] [CrossRef]
- Medi XXI GSA. Guía de Pirojardineria. Guía Práctica de Jardinería Adaptada a la Prevención de Incendios Forestales; Diputació de Girona: Girona, Spain, 2019; p. 319. [Google Scholar]
- ASEMFO. Piroplantaciones en la Interfaz Urbano Forestal de la Comunidad de Madrid. 2020. Available online: https://especiespirofilas.asemfo.org/ (accessed on 22 October 2023).
- Fernandes, P.M.; Rossa, C.G.; Madrigal, J.; Rigolot, E.; Ascoli, D.; Hernando, C.; Guiomar, N.; Guijarro, M. Prescribed burning in the European Mediterranean Basin. In Global Application of Prescribed Fire; Weir, J.R., Scasta, J.D., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 230–248. [Google Scholar]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11 (Suppl. S1), 4–14. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2018, 613, 944–957. [Google Scholar] [CrossRef]
- CONAF. Documento de Trabajo N°451. Manual Medidas Prediales de Protección Contra Incendios Forestales; CONAF: Santiago de Chile, Chile, 2006. [Google Scholar]
- Kelly, E.C.; Charnley, S.; Pixley, J.T. Polycentric systems for wildfire governance in the Western United States. Land Use Policy 2019, 89, 104214. [Google Scholar] [CrossRef]
- González González, L.E. Gestión Territorial post 27-F en Chile: Implicancias sobre el Hábitat Residencial. Bitácora Urbano Territ. 2017, 27, 109–116. [Google Scholar] [CrossRef]
- Garay Moena, R.M.; Castillo Soto, M.; Tapia Zarricueta, R. Viviendas ubicadas en áreas de riesgo de incendios forestales de interfaz. Un análisis territorial y normativo desde Chile. ACE Archit. City Environ. 2021, 16, 1–23. [Google Scholar] [CrossRef]
- Moritz, M.A.; Hazard, R.; Johnston, K.; Mayes, M.; Mowery, M.; Oran, K.; Parkinson, A.-M.; Schmidt, D.A.; Wesolowski, G. Beyond a focus on fuel reduction in the WUI: The need for regional wildfire mitigation to address multiple risks. Front. For. Glob. Change 2022, 5, 848254. [Google Scholar] [CrossRef]
- Hirsch, K.; Kafka, V.; Tymstra, C.; McAlpine, R.; Hawkes, B.; Stegehuis, H.; Quintilio, S.; Gauthier, S.; Peck, K. Fire-smart forest management: A pragmatic approach to sustainable forest management in fire-dominated ecosystems. For. Chron. 2001, 77, 357–363. [Google Scholar] [CrossRef]
- Gonzalez-Mathiesen, C.; March, A. Establishing design principles for wildfire resilient urban planning. Plan. Pract. Res. 2018, 33, 97–119. [Google Scholar] [CrossRef]
- Gonzalez-Mathiesen, C.; March, A. Long-established rules and emergent challenges: Spatial planning and wildfires in Chile. Int. Plan. Stud. 2022, 28, 37–53. [Google Scholar] [CrossRef]
- MINVU—Ministerio de Vivienda y Urbanismo. Ordenanza General de Urbanismo y Construcciones, OGUC, Titulo 4: De la Arquitectura. Capítulo 3: De las Condiciones de Seguridad Contra Incendio; MINVU: Santiago de Chile, Chile, 2009. [Google Scholar]
- Garay, R.; Herrera, R.; Mejías, C. Project shelter, Part 2: Structural verification. Rev. Constr. 2019, 18, 68–86. [Google Scholar] [CrossRef]
- Programa de Reducción de Riesgos y Desastres, Unidad de Redes Transdisciplinarias, Vicerrectoría de Investigación y Desarrollo. Policy Brief “Propuestas para repensar las viviendas y el habitar Chile”. Universidad de Chile, Santiago de Chile, Chile. 2020. 13p. Available online: https://uchile.cl/publicaciones/169446/policy-brief---serie-domesticar-la-ciudad-n3 (accessed on 13 November 2024).
- Altamirano, A.; Salas, C.; Yaitul, V.; Smith-Ramirez, C.; Ávila, A. Influencia de la heterogeneidad del paisaje en la ocurrencia de incendios forestales en Chile Central. Rev. Geogr. Norte Gd. 2013, 55, 157–170. [Google Scholar] [CrossRef]
- Castillo, M.E.; Julio, G.H.; Garfias, R. Current wildfire risk status and forecast in Chile. In Wildfire Hazards, Risks and Disasters; Paton, D., Shroder, J.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 59–75. [Google Scholar]
- Dacre, H.F.; Crawford, B.R.; Charlton-Perez, A.J.; Lopez-Saldana, G.; Griffiths, G.H.; Veloso, J.V. Chilean wildfires: Probabilistic prediction, emergency response, and public communication. Bull. Am. Meteorol. Soc. 2018, 99, 2259–2274. [Google Scholar] [CrossRef]
- Rodríguez y Silva, F. El cambio global y el incendio urbano-forestal. Reflexiones para minorar la vulnerabilidad y la incertidumbre operacional. In Retos en el Manejo de Combustibles en Masas Forestales y en la Interfaz Urbano-Forestal; Fernández, C., Vega, J.A., Eds.; Andavira Editora: Santiago de Compostela, Spain, 2020; pp. 61–75. [Google Scholar]
- Aguirre, P.; León, J.; González-Mathiesen, C.; Román, R.; Penas, M.; Ogueda, A. Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile. Nat. Hazards Earth Syst. Sci. 2024, 24, 1521–1537. [Google Scholar] [CrossRef]
- Sapiains, R.; Ugarte, A.M.; Aldunce, P.; Marchant, G.; Romero, J.A.; Gonzalez, M.E.; Inostroza-Lazo, V. Local perceptions of fires risk and policy implications in the hills of Valparaiso, Chile. Sustainability 2020, 12, 4298. [Google Scholar] [CrossRef]
- Castillo, M. Aspectos técnicos a considerar en incendios de interfaz. análisis de caso aplicado a Chile. Territorium 2015, 22, 157–165. [Google Scholar] [CrossRef]
- Chas-Amil, M.L.; Nogueira-Moure, E.; Prestemon, J.P.; Touza, J. Spatial patterns of social vulnerability in relation to wildfire risk and wildland-urban interface presence. Landsc. Urban Plan. 2022, 228, 104577. [Google Scholar] [CrossRef]
- Sotelino Losada, A.; Santos Rego, M.A.; Lorenzo Moledo, M. Aprender y servir en la universidad: Una vía cívica al desarrollo educativo. Teor. Educ. 2016, 28, 225–242. [Google Scholar] [CrossRef]
- Gronlund, H.; Nortomaa, A.; Aramburuzabala, P.; McIlrath, L.; Opazo, H.; Altenburger, R.; Maas, S.; Mažeikiene, N.; Meijs, L.C.P.M.; Mikelic, N. Europe Engage. Developing a Culture of Civic Engagement Through Service-Learning Within Higher Education in Europe—Erasmus+ Programme of the European Union. Ref 2014-1-ES01-KA203-004798. 2014. Available online: https://ec.europa.eu/programmes/erasmus-plus/project-result-content/4676aec5-7f74-4a0c-bdff-cda07beb4892/guidelines-euengage-2.pdf (accessed on 13 November 2024).
- Cayuela, A.; Aramburuzabala, P.; Ballesteros, C. Research Report. A Review of Service-Learning in European Higher Education; EOSLHE, European Observatory of Service-Learning in Higher Education: Madrid, Spain, 2020; Available online: https://www.eoslhe.eu/ (accessed on 26 September 2024).
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; García-Romero, D.; Lorenzo Moledo, M.; Merino, A. When necessity meets opportunity: The role of service-learning projects to complement training, community engagement and knowledge transfer in restoration. Restor. Ecol. 2023, 31, e13933. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; Omil, B.; Sotelino, A.; García-Romero, D.; Otero-Urtaza, E.; Moledo, M.L.; Reyes, O.; Rodríguez, J.C.; Madrigal, J.; Moya, D.; et al. Service-learning to improve training, knowledge transfer, and awareness in forest fire management. Fire Ecol. 2024, 20, 19. [Google Scholar] [CrossRef]
- Bontá Aguilera, P.; Burgos Olivero, A.; Fara Belmar, C.; Joanette Valderrama, C.; Ramírez Alarcón, L.; Romero Jeldres, M.; Sepúlveda Maulen, J. Recopilación de Experiencias de Aprendizaje y Servicio. Actas de Seminario 2017–2018; Red Nacional de Aprendizaje Servicio (REASE): Santiago de Chile, Chile, 2020. [Google Scholar]
Actions or Methodologies Proposed by the Group of Experts | Relevance (%) |
---|---|
Fuel management: preventive silviculture, management, reduction and modification of fuels, mechanized firebreaks and fuel breaks, establishment of preventive firebreaks planned according to topography and available fuel. Controlled/prescribed burning to reduce combustible material. | 22 |
Education and awareness-raising: education and empowerment of communities for fire prevention, prevention education from early childhood, preventive talks in schools and communities, educational workshops on forest fires, mass educational actions, and community prevention programs. | 19 |
Governance and community participation: generate response capacity in the most at-risk communities, promote neighborhood groups to prevent and detect fires, community prevention network, community participation in planning and prevention. | 16 |
Planning and land-use planning: strategic land-use planning, requiring municipalities to comply with land-use planning and risk management instruments, use of wetlands and ravine areas as firebreaks, construction of firebreaks through sports fields or multi-pitches, reduction in tree densities in forestry plantations within WUIs. | 16 |
Coordination and cooperation: effective coordination and collaboration between different actors, joint work between municipalities, communities, private and CONAF, work with communities, neighborhood councils and municipalities, prevention network of public and private entities. | 16 |
Legislation and vigilance: stricter laws and higher penalties for those who cause fires, obligation by law to establish firebreaks according to the extension of the plantations, patrolling and vigilance to reduce or avoid intentionality. | 10 |
Other techniques and specific measures: application of chemical firebreaks, implementation of strategic water accumulators. | 1 |
Chile-National {Central-South Chile} | Spain | Portugal | Greece | California (USA) | |
---|---|---|---|---|---|
Total area (Mha) | 75.7 {9.9} | 50.6 | 9.1 | 13.0 | 42.4 |
Wildfire-prone area (Mha) 2 | 31.5 [{5.9}] | 28.8 | 5.4 | 6.8 | 12.5 |
Average area burned yearly (ha) 2006–2023 (California 2019–2023) | 116,395 {82,229} | 81,623 | 93,731 | 50,783 | 519,858 |
Wildfire-prone area affected yearly (%) | 0.4 [1.4] | 0.3 | 1.7 | 0.7 | 4.2 |
Annual public budget allocated to wildfire management ($) 1 | 157M/289M 2 | 936M | 483M | 297M | 3700M |
Fire suppression measures ($) | 150M/253M 2 (88% 2) | 77% 3 | 221M (46%) | 230M (77%) | 2950M (80%) |
Prevention measures ($) | 7M/36M 2 (12% 2) | 23% 3 | 262M (54%) | 67M (23%) | 750M (20%) |
GDP per capita ($ per capita) | 16,370 | 35,790 | 29,340 | 24,340 | 104,920 |
Investment in wildfire management in wildfire-prone areas ($ ha−1) | 9 | 33 | 89 | 44 | 296 |
Investment in wildfire management normalized using GDP per capita (respect to that of Chile) | 9 | 15 | 50 | 29 | 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veloso, F.; Souza-Alonso, P.; Saiz, G. Improving Wildfire Resilience in the Mediterranean Central-South Regions of Chile. Fire 2025, 8, 212. https://doi.org/10.3390/fire8060212
Veloso F, Souza-Alonso P, Saiz G. Improving Wildfire Resilience in the Mediterranean Central-South Regions of Chile. Fire. 2025; 8(6):212. https://doi.org/10.3390/fire8060212
Chicago/Turabian StyleVeloso, Fernando, Pablo Souza-Alonso, and Gustavo Saiz. 2025. "Improving Wildfire Resilience in the Mediterranean Central-South Regions of Chile" Fire 8, no. 6: 212. https://doi.org/10.3390/fire8060212
APA StyleVeloso, F., Souza-Alonso, P., & Saiz, G. (2025). Improving Wildfire Resilience in the Mediterranean Central-South Regions of Chile. Fire, 8(6), 212. https://doi.org/10.3390/fire8060212