Sensitivity to the Representation of Wind for Wildfire Rate of Spread: Case Studies with the Community Fire Behavior Model
Abstract
:1. Introduction
2. Numerical Model and Wind Adjustment Factor
2.1. Numerical Simulations
2.2. Wind Adjustment Factor
2.2.1. Unsheltered Fuels
2.2.2. Sheltered Fuels
3. Case Selection and Observations
3.1. Fire Case Selection
3.2. Fire Perimeter Observation
3.3. CFBM Experimeents
3.4. Performance Metrics
4. Results
4.1. Fire Spread Simulations
4.2. Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFBM | Community Fire Behavior Model |
CSI | Critical Success Index |
HRRR | High-Resolution Rapid Refresh |
ICM | Improved Canopy Model |
NIFC | National Interagency Fire Center |
NWP | Numerical Weather Prediction |
POD | Probability of Detection |
SR | Success Ratio |
VIIRS | Visible Infrared Imaging Radiometer Suite |
WAF | Wind Adjustment Factors |
WRF | Weather Research and Forecasting |
References
- Clark, T.L.; Coen, J.; Latham, D. Description of a coupled atmosphere–fire model. Int. J. Wildland Fire 2004, 13, 49–63. [Google Scholar]
- Coen, J.L.; Cameron, M.; Michalakes, J.; Patton, E.G.; Riggan, P.J.; Yedinak, K.M. WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model. J. Appl. Meteorol. Climatol. 2013, 52, 16–38. [Google Scholar]
- Mandel, J.; Beezley, J.D.; Kochanski, A.K. Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev. 2011, 4, 591–610. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Kosović, B.; Jiménez, P.A.; Coen, J.L. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method. J. Adv. Model. Earth Syst. 2018, 10, 908–926. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Intermountain Forest & Range Experiment Station, Forest Service; U.S. Department of Agriculture: Ogden, UT, USA, 1972. [Google Scholar]
- Alexander, M.E.; Cruz, M.G. Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height. Int. J. Wildland Fire 2011, 21, 95–113. [Google Scholar]
- Finney, M.A.; Grumstrup, T.P. Effect of flame zone depth on the correlation of flame length with fireline intensity. Int. J. Wildland Fire 2023, 32, 1135–1147. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Muñoz-Esparza, D.; Kosović, B. A High Resolution Coupled Fire–Atmosphere Forecasting System to Minimize the Impacts of Wildland Fires: Applications to the Chimney Tops II Wildland Event. Atmosphere 2018, 9, 197. [Google Scholar] [CrossRef]
- Shamsaei, K.; Juliano, T.W.; Roberts, M.; Ebrahimian, H.; Kosovic, B.; Lareau, N.P.; Taciroglu, E. Coupled fire-atmosphere simulation of the 2018 Camp Fire using WRF-Fire. Int. J. Wildland Fire 2023, 32, 195–221. [Google Scholar] [CrossRef]
- Jimenez y Munoz, P.A.; Frediani, M.; Eghdami, M.; Rosen, D.; Kavulich, M.; Juliano, T.W. The Community Fire Behavior Model for coupled fire-atmosphere modeling: Implementation in the Unified Forecast System. Geosci. Model Dev. Discuss. 2024, 1–30. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Zhiquan, L.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4.3; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Byram, G.M. Combustion of forest fuels. In Forest Fire: Control and Use; Davis, K.P., Ed.; McGraw-Hill Book Company: New York, NY, USA, 1959; pp. 61–89. [Google Scholar]
- Hung, W.; Campbell, P.C.; Moon, Z.; Saylor, R.; Kochendorfer, J.; Lee, T.R.; Massman, W. Evaluation of an In-Canopy Wind and Wind Adjustment Factor Model for Wildfire Spread Applications Across Scales. J. Adv. Model. Earth Syst. 2024, 16, e2024MS004300. [Google Scholar] [CrossRef]
- Mallia, D.V.; Kochanski, A.K.; Urbanski, S.P.; Mandel, J.; Farguell, A.; Krueger, S.K. Incorporating a Canopy Parameterization within a Coupled Fire-Atmosphere Model to Improve a Smoke Simulation for a Prescribed Burn. Atmosphere 2020, 11, 832. [Google Scholar] [CrossRef]
- Massman, W.J.; Forthofer, J.M.; Finney, M.A. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior. Can. J. For. Res. 2017, 47, 594–603. [Google Scholar] [CrossRef]
- Baughman, R.G.; Albini, F.A. Estimating Midflame Windspeeds. In Proceedings of the Sixth Conference on Fire and Forest Meteorology, Seattle, WA, USA, 22–24 April 1980; pp. 88–92. [Google Scholar]
- Finney, M.A. FARSITE, Fire Area Simulator--Model Development and Evaluation; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 1998. [Google Scholar]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Weygandt, S.S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; Olson, J.B.; James, E.P.; Dowell, D.C.; Grell, G.A.; et al. A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh. Mon. Weather. Rev. 2016, 144, 1669–1694. [Google Scholar] [CrossRef]
- Thompson, G.; Eidhammer, T. A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone. J. Atmos. Sci. 2014, 71, 3636–3658. [Google Scholar]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; Lemone, A.; Mitchell, E.; Ek, M.; Gayno, G.; Węgiel, W.; Cuenca, R. Implementation and Verification of the unified NOAH Land Surface Model in the WRF Model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004. [Google Scholar]
- Andrews, P.L. Modeling Wind Adjustment Factor and Midflame Wind Speed for Rothermel’s Surface Fire Spread Model. RMRS-GTR-266. 2012. Available online: https://www.fs.usda.gov/treesearch/pubs/39729 (accessed on 6 March 2024).
- Roebber, P.J. Visualizing Multiple Measures of Forecast Quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef]
Fire Name | Fuel Type | Area (Acres) | Ignition Point | Ignition Time * | Simulation Time * | Perimeter Time * |
---|---|---|---|---|---|---|
Boone Draw | Grass | 8598 | 40.654 N | 2018-09-13 17:45 | 2018-09-13 15:00 | BD1: 2018-09-13 18:49 |
108.566 W | 2018-09-16 03:00 | BD2: 2018-09-15 18:17 | ||||
Murphy | Grass | 685 | 40.513 N | 2018-09-01 01:43 | 2018-09-01 00:00 | M1: 2018-09-01 12:14 |
108.566 W | 2018-09-03 00:00 | M2: 2018-09-02 11:26 | ||||
Indian Valley | Understory | 6310 | 40.192 N | 2018-07-20 19:20 | 2018-07-20 18:00 | IV1: 2018-07-21 10:46 |
108.201 W | 2018-07-23 06:00 | IV2: 2018-07-22 12:03 | ||||
Hayden Pass | Understory | 16,574 | 38.292 N | 2016-07-08 23:53 | 2016-07-08 21:00 | HP1: 2016-07-12 02:29 |
105.833 W | 2016-07-12 21:00 | HP2: 2016-07-12 04:18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eghdami, M.; Muñoz, P.A.J.y.; DeCastro, A. Sensitivity to the Representation of Wind for Wildfire Rate of Spread: Case Studies with the Community Fire Behavior Model. Fire 2025, 8, 135. https://doi.org/10.3390/fire8040135
Eghdami M, Muñoz PAJy, DeCastro A. Sensitivity to the Representation of Wind for Wildfire Rate of Spread: Case Studies with the Community Fire Behavior Model. Fire. 2025; 8(4):135. https://doi.org/10.3390/fire8040135
Chicago/Turabian StyleEghdami, Masih, Pedro A. Jiménez y Muñoz, and Amy DeCastro. 2025. "Sensitivity to the Representation of Wind for Wildfire Rate of Spread: Case Studies with the Community Fire Behavior Model" Fire 8, no. 4: 135. https://doi.org/10.3390/fire8040135
APA StyleEghdami, M., Muñoz, P. A. J. y., & DeCastro, A. (2025). Sensitivity to the Representation of Wind for Wildfire Rate of Spread: Case Studies with the Community Fire Behavior Model. Fire, 8(4), 135. https://doi.org/10.3390/fire8040135