Freeze Thickness Prediction of Fire Pipes in Low-Temperature Environment Based on CFD and Artificial Neural Network
Abstract
1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Basic Numerical Simulation Setup
2.3. Model Verification
2.4. Artificial Neural Network
3. Results and Discussion
3.1. Freezing Process and Temperature Distribution
3.1.1. Typical Condition
3.1.2. Freeze Thickness
3.2. The Establishment and Optimization of the ANN
3.2.1. Determination of the Neuron Number in the Hidden Layer
3.2.2. Selection of the Training Function
3.2.3. Selection of the Activation Function
3.3. Performance of the Selected ANN
3.4. Prediction of Freeze Thickness with the ANN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
ANN | Artificial Neural Network |
MSE | Mean Square Error |
ML | Machine Learning |
References
- Guo, T.-N.; Fu, Z.-M. The fire situation and progress in fire safety science and technology in China. Fire Saf. J. 2007, 42, 171–182. [Google Scholar] [CrossRef]
- Peng, T.; Ke, W. Urban fire emergency management based on big data intelligent processing system and Internet of Things. Optik 2023, 273, 170433. [Google Scholar] [CrossRef]
- Duan, L.; Hou, X. Review of automatic fire water monitor system. J. Phys. Conf. Ser. 2021, 1894, 012013. [Google Scholar] [CrossRef]
- Khan, F.; Ahmed, S.; Yang, M.; Hashemi, S.J.; Caines, S.; Rathnayaka, S.; Oldford, D. Safety challenges in harsh environments: Lessons learned. Process Saf. Prog. 2015, 34, 191–195. [Google Scholar] [CrossRef]
- Park, Y.-S.; Seong, H.-S.; Suh, J.-S. Numerical Analysis of Freezing Phenomena of Water around the Channel Tube of MF Evaporator. J. Korean Soc. Manuf. Process Eng. 2020, 19, 114–120. [Google Scholar] [CrossRef]
- Vishnoi, K. Piping layout for fire sprinkler system: An overview. Int. J. Eng. Appl. Sci. 2017, 4, 257513. [Google Scholar] [CrossRef]
- Park, Y.-S.; Suh, J.-S. Numerical Analysis of Freezing Phenomena of Water in a U-Type Tube. Korean Soc. Manuf. Process Eng. 2019, 18, 52–58. [Google Scholar] [CrossRef]
- Kim, B.-H.; Kwak, J.-J.; Seo, S.-M.; Kim, Y.-B.; Nam, J.-S.; Lim, S.-S. Freezing-Prediction System of Outdoor Horizontal Fire Pipe Using Metal Heater. Fire Sci. Eng. 2023, 37, 44–51. [Google Scholar] [CrossRef]
- Lee, C.; Suh, J.-S. Numerical Analysis on the Freezing Process of Internal Water Flow in a L-Shape Pipe. Korean Soc. Manuf. Process Eng. 2018, 17, 144–150. [Google Scholar] [CrossRef]
- Wang, W.; Kong, Y.; Wang, F.; Yang, L.; Niu, Y. Anti-freezing prediction model for different flow patterns of air-cooled heat exchanger. Int. J. Heat Mass Transf. 2020, 153, 119656. [Google Scholar] [CrossRef]
- Yang, M.; Yang, S.; Kim, W. Anti-freeze Application in Fire Extinguishing Facility Piping for a Warehouse Building. J. Korean Soc. Hazard Mitig. 2020, 20, 233–237. [Google Scholar] [CrossRef]
- Jeong, G.; Ahn, B.; Seong, Y.; Kim, K. Numerical Analysis of Phase Change and Natural Convection Phenomena During Pipe Freezing Process. In Proceedings of the ASME Pressure Vessels and Piping Conference, Vancouver, BC, Canada, 5–9 August 2002. [Google Scholar] [CrossRef]
- Mishra, K.B.; Wehrstedt, K.-D. Underground gas pipeline explosion and fire: CFD based assessment of foreseeability. J. Nat. Gas Sci. Eng. 2015, 24, 526–542. [Google Scholar] [CrossRef]
- Park, Y.-S.; Seong, H.-S.; Suh, J.-S. An Analytical Study on the Heat Transfer Characteristics of MF Evaporation Tubes Attached with a Fin. J. Korean Soc. Manuf. Process Eng. 2021, 20, 48–56. [Google Scholar] [CrossRef]
- Bakas, I.; Kontoleon, K.J. Meta-Narrative Review of Artificial Intelligence Applications in Fire Engineering with Special Focus on Heat Transfer through Building Elements. Fire 2023, 6, 261. [Google Scholar] [CrossRef]
- Cho, H.; Seo, S.; Heo, C.; Kwak, J.; Kim, Y.; Park, J.; Lee, S.; Lim, S. Performance estimation of freeze protection system for outdoor fire piping by using AI algorithm. J. Mech. Sci. Technol. 2023, 37, 5093–5101. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Kim, T.; Park, S.J.; Kim, H.; Jung, I.D. Advanced thermal fluid leakage detection system with machine learning algorithm for pipe-in-pipe structure. Case Stud. Therm. Eng. 2023, 42, 102747. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, F.; Huang, G.; Zhang, J.; Li, C.; Ding, Y. Thermogravimetric experiments based prediction of biomass pyrolysis behavior: A comparison of typical machine learning regression models in Scikit-learn. Mar. Pollut. Bull. 2024, 202, 116361. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed]
- Hecht-Nielsen, R. III.3.—Theory of the Backpropagation Neural Network; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar] [CrossRef]
- Salakhi, M.; Eghtesad, A.; Afshin, H. Heat and mass transfer analysis and optimization of freeze desalination utilizing cold energy of LNG leaving a power generation cycle. Desalination 2022, 527, 115595. [Google Scholar] [CrossRef]
- Najafi Khaboshan, H.; Jaliliantabar, F.; Abdullah, A.A.; Panchal, S.; Azarinia, A. Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models. Appl. Therm. Eng. 2024, 247, 123080. [Google Scholar] [CrossRef]
- Luo, W. Study on Thermal Environment of Underground Tunnel Entrance Section and Electric Tracing Heat Preservation of Fire Pipe in Cold Region; Xi ’an University of Architecture and Technology: Xi’an, China, 2023. (In Chinese) [Google Scholar]
- Matsson, J.E. An Introduction to Ansys Fluent 2023; SDC Publications: Mission, KS, USA, 2023. [Google Scholar]
- Bonales, L.J.; Rodriguez, A.C.; Sanz, P.D. Thermal conductivity of ice prepared under different conditions. Int. J. Food Prop. 2017, 20, 610–619. [Google Scholar] [CrossRef]
- Voller, V.R.; Prakash, C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transf. 1987, 30, 1709–1719. [Google Scholar] [CrossRef]
- Lewis, J.S. Heat transfer predictions from mass transfer measurements around a single cylinder in cross flow. Int. J. Heat Mass Transf. 1971, 14, 325–329. [Google Scholar] [CrossRef]
- Shibani, A.A.; Özisik, M.N. Freezing of liquids in turbulent flow inside tubes. Can. J. Chem. Eng. 1977, 55, 672–677. [Google Scholar] [CrossRef]
- Zhong, W.; Wang, S.; Wu, T.; Gao, X.; Liang, T. Optimized Machine Learning Model for Fire Consequence Prediction. Fire 2024, 7, 114. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Velmurugan, C.; Subramanian, R.; Thirugnanam, S.; Anandavel, B. Experimental study and prediction using ANN on mass loss of hybrid composites. Ind. Lubr. Tribol. 2012, 64, 138–146. [Google Scholar]
- Installation Guide. In MATLAB® & Simulink®; R2018a; Mathworks: Natick, MA, USA, 1996.
- Zhou, G.; He, J. Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes. Appl. Energy 2015, 138, 648–660. [Google Scholar] [CrossRef]
- Zhong, Y.; Ding, Y.; Jiang, G.; Lu, K.; Li, C. Comparison of Artificial Neural Networks and kinetic inverse modeling to predict biomass pyrolysis behavior. J. Anal. Appl. Pyrolysis 2023, 169, 105802. [Google Scholar] [CrossRef]
- Çepelioğullar, Ö.; Mutlu, İ.; Yaman, S.; Haykiri-Acma, H. A study to predict pyrolytic behaviors of refuse-derived fuel (RDF): Artificial neural network application. J. Anal. Appl. Pyrolysis 2016, 122, 84–94. [Google Scholar] [CrossRef]
- Karsoliya, S.; Azad, M.A.K. Approximating Number of Hidden layer neurons in Multiple Hidden Layer BPNN Architecture. Int. J. Eng. Trends Technol. 2012, 3, 714–717. [Google Scholar]
- Çepelioğullar, Ö.; Mutlu, İ.; Yaman, S.; Haykiri-Acma, H. Activation energy prediction of biomass wastes based on different neural network topologies. Fuel 2018, 220, 535–545. [Google Scholar] [CrossRef]
- Taheri, S.; Brodie, G.; Gupta, D. Optimised ANN and SVR models for online prediction of moisture content and temperature of lentil seeds in a microwave fluidised bed dryer. Comput. Electron. Agric. 2021, 182, 106003. [Google Scholar] [CrossRef]
- Rabin, M.R.I.; Hussain, A.; Alipour, M.A.; Hellendoorn, V.J. Memorization and generalization in neural code intelligence models. Inf. Softw. Technol. 2023, 153, 107066. [Google Scholar] [CrossRef]
Material | Density (kg/m3) | Heat Capacity (J/kg·K) | Thermal Conductivity (W/m·K) |
---|---|---|---|
Pipe (Steel) | 8030 | 502.48 | 16.27 |
Water (Liquid) | 998.2 | 4182 | 0.62 |
Ice (Solid) | 2.73 |
NO | Grid Size (mm × mm) | Number of Cells | Time-Strep (s) | ||
---|---|---|---|---|---|
50 | 100 | 200 | |||
I | 0.5 | 70,686 | 34,500 | 34,600 | 35,000 |
II | 1 | 17,671 | 34,950 | 35,000 | 35,000 |
III | 2 | 4418 | 34,900 | 35,300 | 35,800 |
Data | Temperature (°C) | Amount |
---|---|---|
Internal data | −5 | 632 |
−10 | 383 | |
−15 | 292 | |
−20 | 253 | |
−25 | 503 | |
−30 | 820 | |
−35 | 367 | |
−40 | 322 | |
−45 | 286 | |
−50 | 257 | |
Sum | 4115 | |
External data | −55 | 232 |
MSE (10−3) | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 31.93 | 38.44 | 20.84 | 2.31 | 2.83 | 2.10 | 3.73 | 2.72 | 5.06 | 2.69 |
2 | 20.30 | 26.72 | 56.08 | 11.02 | 8.17 | 12.42 | 1.19 | 5.24 | 2.25 | 2.44 |
3 | 38.32 | 41.23 | 16.53 | 34.99 | 9.60 | 14.90 | 7.43 | 3.46 | 1.81 | 4.19 |
Average | 30.19 | 35.46 | 31.15 | 16.11 | 6.87 | 9.81 | 4.12 | 3.80 | 3.04 | 3.11 |
MSE (10−3) | trainlm | traingd | traingda |
---|---|---|---|
1 | 5.20 | 21.56 | 9.30 |
2 | 2.10 | 22.35 | 7.24 |
3 | 7.70 | 22.12 | 11.45 |
Average | 5.00 | 22.01 | 9.33 |
MSE (10−3) | tansig–purelin | logsig–purelin |
---|---|---|
1 | 1.30 | 18.31 |
2 | 1.60 | 5.30 |
3 | 3.01 | 1.70 |
Average | 2.00 | 8.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Zhang, J.; Zhong, Y.; Guo, Y.; Ding, Y. Freeze Thickness Prediction of Fire Pipes in Low-Temperature Environment Based on CFD and Artificial Neural Network. Fire 2025, 8, 65. https://doi.org/10.3390/fire8020065
Huang Y, Zhang J, Zhong Y, Guo Y, Ding Y. Freeze Thickness Prediction of Fire Pipes in Low-Temperature Environment Based on CFD and Artificial Neural Network. Fire. 2025; 8(2):65. https://doi.org/10.3390/fire8020065
Chicago/Turabian StyleHuang, Yubiao, Jiaqing Zhang, Yu Zhong, Yi Guo, and Yanming Ding. 2025. "Freeze Thickness Prediction of Fire Pipes in Low-Temperature Environment Based on CFD and Artificial Neural Network" Fire 8, no. 2: 65. https://doi.org/10.3390/fire8020065
APA StyleHuang, Y., Zhang, J., Zhong, Y., Guo, Y., & Ding, Y. (2025). Freeze Thickness Prediction of Fire Pipes in Low-Temperature Environment Based on CFD and Artificial Neural Network. Fire, 8(2), 65. https://doi.org/10.3390/fire8020065