Global Forest Fire Assessment Methods: A Comparative Analysis of Hazard, Susceptibility, and Vulnerability Approaches in Different Landscapes
Abstract
1. Introduction
- -
- Systematically analyze and compare forest fire risk assessment methodologies globally, distinguishing between hazard, susceptibility, and vulnerability approaches;
- -
- Identify critical gaps in risk assessments, particularly regarding organizational and social factors;
- -
- Evaluate integrated technologies and data usage patterns across different regional contexts;
- -
- Propose recommendations for comprehensive risk assessment frameworks that properly integrate hazard, vulnerability, and exposure components.
2. Materials and Methods
2.1. Search Strategy and Database Selection
- -
- Primary terms: forest fire risk OR “forest fire hazard” OR “forest fire vulnerability” OR “forest fire susceptibility” OR “wildfire risk assessment” OR “fire danger rating”
- -
- Secondary terms: AND (“methodology” OR “indicators” OR “framework” OR “assessment”)
- -
- Regional terms: AND (“Mediterranean” OR “America” OR “Asia” OR “Africa”)
2.2. Study Selection Process
2.3. Selection Criteria and Data Extraction Process
2.4. Comparative Analysis Process
2.5. Statistical Analysis
- Chi-Square tests (χ2) were applied to assess independence between regional distribution and methodological performance (significance level α = 0.05).
- Fisher’s exact test was used for small sample comparisons in methodology adoption across regions.
- Pearson correlation analysis examined relationships between indicator usage frequency and publication year.
- Mann–Whitney U tests compared indicator usage patterns between developed and developing regions.
- Kruskal–Wallis tests evaluated differences in methodology diversity across the four major regions.
- Bonferroni correction was applied for multiple comparisons to control Type I error rates.
2.6. Study Selection and Quality Assessment Process
3. Results
3.1. Temporal Distribution of Studies
3.2. Geographical Distribution of Studies
3.3. Global Assessment Methodologies Classification
3.3.1. Methodological Approaches
3.3.2. Method Diversity Analysis
Multi-Criteria Decision Analysis Methods
Machine Learning Algorithms
Statistical and Probabilistic (S&P) Methods
Optimization Algorithms
3.4. Forest Fire Assessment Indicators: Hazard, Exposure, and Vulnerability Components
3.4.1. Core Indicators
Topographic
Climatic
Abiotic
Biotic
Organizational
Socio-Economic
Remote Sensing Indices
3.4.2. Fire History Data
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Selected Eligible Studies by Year, References, and Count by Year
Years | Reference | Count of Years |
---|---|---|
2015 | [8,20,65,66,67] | 5 |
2016 | [10,12,14,22,68,69,70,71,72,73] | 10 |
2017 | [21,22,38,42,74,75,76,77,78,79,80,81] | 13 |
2018 | [2,11,19,37,39,41,54,82,83,84] | 11 |
2019 | [17,28,40,85,86,87,88,89,90,91,92,93] | 12 |
2020 | [6,13,15,18,23,27,29,35,43,94,95,96,97,98,99,100,101,102,103,104] | 21 |
2021 | [7,16,36,44,45,48,51,52,105,106,107,108,109,110,111,112] | 16 |
2022 | [1,24,33,34,47,57,64,113,114,115,116,117,118,119,120,121,122,123,124,125,126] | 20 |
2023 | [9,25,46,49,50,59,60,127,128,129,130,131,132,133] | 14 |
2024 | [5,55,56,58,61,62,63,134,135,136,137,138,139,140,141] | 15 |
2025 | [26,142,143,144,145,146,147,148] | 7 |
Total | 144 |
References
- Singh, S. Forest Fire Emissions: A Contribution to Global Climate Change. Front. For. Glob. Change 2022, 5, 925480. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.; Delogu, G.; Fernandes, P.; Ferreira, C.; McCaffrey, S.; McGee, T.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef]
- Delforge, D.; Wathelet, V.; Below, R.; Sofia, C.L.; Tonnelier, M.; Van Loenhout, J.A.F.; Speybroeck, N. EM-DAT: The Emergency Events Database. Int. J. Disaster Risk Reduct. 2025, 124, 105509. [Google Scholar] [CrossRef]
- Jones, R.L.; Guha-Sapir, D.; Tubeuf, S. Human and Economic Impacts of Natural Disasters: Can We Trust the Global Data? Sci. Data 2022, 9, 572. [Google Scholar] [CrossRef]
- Özcan, Z.; Caglayan, İ.; Kabak, Ö. A Comprehensive Taxonomy for Forest Fire Risk Assessment: Bridging Methodological Gaps and Proposing Future Directions. Environ. Monit. Assess. 2024, 196, 825. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite Remote Sensing Contributions to Wildland Fire Science and Management. Curr. For. Rep. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Lecina-Diaz, J.; Martínez-Vilalta, J.; Alvarez, A.; Banqué, M.; Birkmann, J.; Feldmeyer, D.; Vayreda, J.; Retana, J. Characterizing Forest Vulnerability and Risk to Climate-change Hazards. Front. Ecol. Environ. 2021, 19, 126–133. [Google Scholar] [CrossRef]
- Gauthier, S.; Raulier, F.; Ouzennou, H.; Saucier, J.-P. Strategic Analysis of Forest Vulnerability to Risk Related to Fire: An Example from the Coniferous Boreal Forest of Quebec. Can. J. For. Res. 2015, 45, 553–565. [Google Scholar] [CrossRef]
- Ermitão, T.; Páscoa, P.; Trigo, I.; Alonso, C.; Gouveia, C. Mapping the Most Susceptible Regions to Fire in Portugal. Fire 2023, 6, 254. [Google Scholar] [CrossRef]
- Koutsias, N.; Allgöwer, B.; Kalabokidis, K.; Mallinis, G.; Balatsos, P.; Goldammer, J. Fire Occurrence Zoning from Local to Global Scale in the European Mediterranean Basin: Implications for Multi-Scale Fire Management and Policy. iForest—Biogeosci. For. 2016, 9, 195–204. [Google Scholar] [CrossRef]
- Oliveira, S.; Félix, F.; Nunes, A.; Lourenço, L.; Laneve, G.; Sebastián-López, A. Mapping Wildfire Vulnerability in Mediterranean Europe. Testing a Stepwise Approach for Operational Purposes. J. Environ. Manag. 2018, 206, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Holsinger, L.; Parks, S.A.; Miller, C. Weather, Fuels, and Topography Impede Wildland Fire Spread in Western US Landscapes. For. Ecol. Manag. 2016, 380, 59–69. [Google Scholar] [CrossRef]
- Johnston, L.M.; Wang, X.; Erni, S.; Taylor, S.W.; McFayden, C.B.; Oliver, J.A.; Stockdale, C.; Christianson, A.; Boulanger, Y.; Gauthier, S.; et al. Wildland Fire Risk Research in Canada. Environ. Rev. 2020, 28, 164–186. [Google Scholar] [CrossRef]
- Thompson, M.; Bowden, P.; Brough, A.; Scott, J.; Gilbertson-Day, J.; Taylor, A.; Anderson, J.; Haas, J. Application of Wildfire Risk Assessment Results to Wildfire Response Planning in the Southern Sierra Nevada, California, USA. Forests 2016, 7, 64. [Google Scholar] [CrossRef]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A Remote Sensing Approach to Mapping Fire Severity in South-Eastern Australia Using Sentinel 2 and Random Forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Malik, A.; Rao, M.R.; Puppala, N.; Koouri, P.; Thota, V.A.K.; Liu, Q.; Chiao, S.; Gao, J. Data-Driven Wildfire Risk Prediction in Northern California. Atmosphere 2021, 12, 109. [Google Scholar] [CrossRef]
- Kim, S.J.; Lim, C.-H.; Kim, G.S.; Lee, J.; Geiger, T.; Rahmati, O.; Son, Y.; Lee, W.-K. Multi-Temporal Analysis of Forest Fire Probability Using Socio-Economic and Environmental Variables. Remote Sens. 2019, 11, 86. [Google Scholar] [CrossRef]
- Ma, W.; Feng, Z.; Cheng, Z.; Chen, S.; Wang, F. Identifying Forest Fire Driving Factors and Related Impacts in China Using Random Forest Algorithm. Forests 2020, 11, 507. [Google Scholar] [CrossRef]
- Ahmed, M.; Rahaman, K.; Hassan, Q. Remote Sensing of Wildland Fire-Induced Risk Assessment at the Community Level. Sensors 2018, 18, 1570. [Google Scholar] [CrossRef]
- Yakubu, I.; Mireku-Gyimah, D.; Duker, A.A. Review of Methods for Modelling Forest Fire Risk and Hazard. Afr. J. Environ. Sci. Technol. 2015, 9, 155–165. [Google Scholar] [CrossRef]
- Matin, M.A.; Chitale, V.S.; Murthy, M.S.R.; Uddin, K.; Bajracharya, B.; Pradhan, S. Understanding Forest Fire Patterns and Risk in Nepal Using Remote Sensing, Geographic Information System and Historical Fire Data. Int. J. Wildland Fire 2017, 26, 276. [Google Scholar] [CrossRef]
- Ajin, R.; Loghin, A.-M.; Vinod, P.; Jacob, M. Forest Fire Risk Zone Mapping Using RS and GIS Techniques: A Study in Achankovil Forest Division, Kerala, India. J. Earth Environ. Health Sci. 2016, 2, 109. [Google Scholar] [CrossRef]
- Bentekhici, N.; Bellal, S.-A.; Zegrar, A. Contribution of Remote Sensing and GIS to Mapping the Fire Risk of Mediterranean Forest Case of the Forest Massif of Tlemcen (North-West Algeria). Nat. Hazards 2020, 104, 811–831. [Google Scholar] [CrossRef]
- Cilli, R.; Elia, M.; D’Este, M.; Giannico, V.; Amoroso, N.; Lombardi, A.; Pantaleo, E.; Monaco, A.; Sanesi, G.; Tangaro, S.; et al. Explainable Artificial Intelligence (XAI) Detects Wildfire Occurrence in the Mediterranean Countries of Southern Europe. Sci. Rep. 2022, 12, 16349. [Google Scholar] [CrossRef]
- Akıncı, H.A.; Akıncı, H. Machine Learning Based Forest Fire Susceptibility Assessment of Manavgat District (Antalya), Turkey. Earth Sci. Inform. 2023, 16, 397–414. [Google Scholar] [CrossRef]
- Brys, C.; La Red Martínez, D.L.; Marinelli, M. Machine Learning Methods for Wildfire Risk Assessment. Earth Sci. Inform. 2025, 18, 148. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Idrees, M.O.; Janizadeh, S.; Ahmadi, K.; Shabani, F. Forest Fire Susceptibility Prediction Based on Machine Learning Models with Resampling Algorithms on Remote Sensing Data. Remote Sens. 2020, 12, 3682. [Google Scholar] [CrossRef]
- Gigović, L.; Pourghasemi, H.R.; Drobnjak, S.; Bai, S. Testing a New Ensemble Model Based on SVM and Random Forest in Forest Fire Susceptibility Assessment and Its Mapping in Serbia’s Tara National Park. Forests 2019, 10, 408. [Google Scholar] [CrossRef]
- Pham, B.T.; Jaafari, A.; Avand, M.; Al-Ansari, N.; Dinh Du, T.; Yen, H.P.H.; Phong, T.V.; Nguyen, D.H.; Le, H.V.; Mafi-Gholami, D.; et al. Performance Evaluation of Machine Learning Methods for Forest Fire Modeling and Prediction. Symmetry 2020, 12, 1022. [Google Scholar] [CrossRef]
- Thompson, M.P.; Zimmerman, T.; Mindar, D.; Taber, M. Risk Terminology Primer: Basic Principles and a Glossary for the Wildland Fire Management Community; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ft. Collins, CO, USA, 2016; p. RMRS-GTR-349. [Google Scholar]
- Tedim, F.; Leone, V. The Dilemma of Wildfire Definition: What It Reveals and What It Implies. Front. For. Glob. Change 2020, 3, 553116. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 371, n71. [Google Scholar] [CrossRef] [PubMed]
- Fekir, Y.; Hamadouche, M.A.; Anteur, D. Integrated Approach for the Assessment of Forest Fire Risk and Burn Severity Mapping Using GIS, AHP Method, and Google Earth Engine in Western Algeria. Euro-Mediterr. J. Environ. Integr. 2022, 7, 531–544. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H.; Siddiqui, S.; Munir, I.; Sharifi, A.; Li, Q.; Lu, L. Spatio-Temporal Analysis of Forest Fire Events in the Margalla Hills, Islamabad, Pakistan Using Socio-Economic and Environmental Variable Data with Machine Learning Methods. J. For. Res. 2022, 33, 183–194. [Google Scholar] [CrossRef]
- Kganyago, M.; Shikwambana, L. Assessment of the Characteristics of Recent Major Wildfires in the USA, Australia and Brazil in 2018–2019 Using Multi-Source Satellite Products. Remote Sens. 2020, 12, 1803. [Google Scholar] [CrossRef]
- Shekede, M.D.; Gwitira, I.; Mamvura, C. Spatial Modelling of Wildfire Hotspots and Their Key Drivers across Districts of Zimbabwe, Southern Africa. Geocarto Int. 2021, 36, 874–887. [Google Scholar] [CrossRef]
- Akbulak, C.; Tatlı, H.; Aygün, G.; Sağlam, B. Forest Fire Risk Analysis via Integration of GIS, RS and AHP: The Case of Çanakkale, Turkey. J. Hum. Sci. 2018, 15, 2127–2143. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Ghorbanzadeh, O. GIS-Based Interval Pairwise Comparison Matrices as a Novel Approach for Optimizing an Analytical Hierarchy Process and Multiple Criteria Weighting. GI_Forum 2017, 1, 27–35. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T. Wildfire Susceptibility Evaluation by Integrating an Analytical Network Process Approach into Gis-Based Analyses. In Proceedings of the ISERD International Conference, Chicago, IL, USA, 22 August 2018. [Google Scholar]
- Naderpour, M.; Rizeei, H.M.; Khakzad, N.; Pradhan, B. Forest Fire Induced Natech Risk Assessment: A Survey of Geospatial Technologies. Reliab. Eng. Syst. Saf. 2019, 191, 106558. [Google Scholar] [CrossRef]
- Paveglio, T.B.; Edgeley, C.M.; Stasiewicz, A.M. Assessing Influences on Social Vulnerability to Wildfire Using Surveys, Spatial Data and Wildfire Simulations. J. Environ. Manag. 2018, 213, 425–439. [Google Scholar] [CrossRef]
- Said, S.N.B.M.; Zahran, E.-S.M.M.; Shams, S. Forest Fire Risk Assessment Using Hotspot Analysis in GIS. Open Civ. Eng. J. 2017, 11, 786–801. [Google Scholar] [CrossRef]
- Van Hoang, T.; Chou, T.Y.; Fang, Y.M.; Nguyen, N.T.; Nguyen, Q.H.; Xuan Canh, P.; Ngo Bao Toan, D.; Nguyen, X.L.; Meadows, M.E. Mapping Forest Fire Risk and Development of Early Warning System for NW Vietnam Using AHP and MCA/GIS Methods. Appl. Sci. 2020, 10, 4348. [Google Scholar] [CrossRef]
- Aragoneses, E.; Chuvieco, E. Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire 2021, 4, 59. [Google Scholar] [CrossRef]
- Naderpour, M.; Rizeei, H.M.; Ramezani, F. Forest Fire Risk Prediction: A Spatial Deep Neural Network-Based Framework. Remote Sens. 2021, 13, 2513. [Google Scholar] [CrossRef]
- Shen, S.; Seneviratne, S.; Wanyan, X.; Kirley, M. FireRisk: A Remote Sensing Dataset for Fire Risk Assessment with Benchmarks Using Supervised and Self-Supervised Learning. In Proceedings of the 2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Port Macquarie, Australia, 28 November–1 December 2023; pp. 189–196. [Google Scholar]
- Maniatis, Y.; Doganis, A.; Chatzigeorgiadis, M. Fire Risk Probability Mapping Using Machine Learning Tools and Multi-Criteria Decision Analysis in the GIS Environment: A Case Study in the National Park Forest Dadia-Lefkimi-Soufli, Greece. Appl. Sci. 2022, 12, 2938. [Google Scholar] [CrossRef]
- Yang, S.; Lupascu, M.; Meel, K.S. Predicting Forest Fire Using Remote Sensing Data and Machine Learning. Proc. AAAI Conf. Artif. Intell. 2021, 35, 14983–14990. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Kastridis, A.; Stathaki, T.; Yuan, J.; Shi, M.; Grammalidis, N. Suburban Forest Fire Risk Assessment and Forest Surveillance Using 360-Degree Cameras and a Multiscale Deformable Transformer. Remote Sens. 2023, 15, 1995. [Google Scholar] [CrossRef]
- Hernández-López, D.; López-Rebollo, J.; Moreno, M.A.; Gonzalez-Aguilera, D. Automatic Processing for Identification of Forest Fire Risk Areas along High-Voltage Power Lines Using Coarse-to-Fine LiDAR Data. Forests 2023, 14, 662. [Google Scholar] [CrossRef]
- Ertugrul, M.; Varol, T.; Ozel, H.B.; Cetin, M.; Sevik, H. Influence of Climatic Factor of Changes in Forest Fire Danger and Fire Season Length in Turkey. Environ. Monit. Assess. 2021, 193, 28. [Google Scholar] [CrossRef]
- Ozenen Kavlak, M.; Cabuk, S.N.; Cetin, M. Development of Forest Fire Risk Map Using Geographical Information Systems and Remote Sensing Capabilities: Ören Case. Environ. Sci. Pollut. Res. 2021, 28, 33265–33291. [Google Scholar] [CrossRef]
- Javier, E.C. Mapping the Spatial Distribution of Forest Fire Danger Using GIS. Geogr. Inf. Syst. 1996, 10, 333–345. [Google Scholar] [CrossRef]
- Ngoc Thach, N.; Bao-Toan Ngo, D.; Xuan-Canh, P.; Hong-Thi, N.; Hang Thi, B.; Nhat-Duc, H.; Dieu, T.B. Spatial Pattern Assessment of Tropical Forest Fire Danger at Thuan Chau Area (Vietnam) Using GIS-Based Advanced Machine Learning Algorithms: A Comparative Study. Ecol. Inform. 2018, 46, 74–85. [Google Scholar] [CrossRef]
- Aibin, M.; Li, Y.; Sharma, R.; Ling, J.; Ye, J.; Lu, J.; Zhang, J.; Coria, L.; Huang, X.; Yang, Z.; et al. Advancing Forest Fire Risk Evaluation: An Integrated Framework for Visualizing Area-Specific Forest Fire Risks Using UAV Imagery, Object Detection and Color Mapping Techniques. Drones 2024, 8, 39. [Google Scholar] [CrossRef]
- Kigomo, J.; Kuria, M. Modelling Wildfire Risk Using GIS and Analytical Hierarchy Process (AHP) in Aberdare Afromontane Forest Ranges, Kenya. J. Geomat. 2024, 18, 93–102. [Google Scholar] [CrossRef]
- Gualdi, B.; Binet-Stéphan, E.; Bahabi, A.; Marchal, R.; Moncoulon, D. Modelling Fire Risk Exposure for France Using Machine Learning. Appl. Sci. 2022, 12, 1635. [Google Scholar] [CrossRef]
- Rubí, J.N.S.; Gondim, P.R.L. A Performance Comparison of Machine Learning Models for Wildfire Occurrence Risk Prediction in the Brazilian Federal District Region. Environ. Syst. Decis. 2024, 44, 351–368. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pouyan, S.; Bordbar, M.; Golkar, F.; Clague, J.J. Flood, Landslides, Forest Fire, and Earthquake Susceptibility Maps Using Machine Learning Techniques and Their Combination. Nat. Hazards 2023, 116, 3797–3816. [Google Scholar] [CrossRef]
- Yfantidou, A.; Zoka, M.; Stathopoulos, N.; Kokkalidou, M.; Girtsou, S.; Tsoutsos, M.-C.; Hadjimitsis, D.; Kontoes, C. Geoinformatics and Machine Learning for Comprehensive Fire Risk Assessment and Management in Peri-Urban Environments: A Building-Block-Level Approach. Appl. Sci. 2023, 13, 10261. [Google Scholar] [CrossRef]
- Küçükarslan, A.B.; Köksal, M.; Ekmekçi, İ. The Use of Geographic Information Systems and Multi-Criteria Decision-Making Methods in the Creation of Forest Fire Susceptibility Maps: A Literature Review. İnsan ve Sos. Bilim. Derg. 2024, 7, 259–285. [Google Scholar] [CrossRef]
- Makumbura, R.K.; Dissanayake, P.; Gunathilake, M.B.; Rathnayake, N.; Kantamaneni, K.; Rathnayake, U. Spatial Mapping and Analysis of Forest Fire Risk Areas in Sri Lanka—Understanding Environmental Significance. Case Stud. Chem. Environ. Eng. 2024, 9, 100680. [Google Scholar] [CrossRef]
- De Oliveira Aparecido, L.E.; Torsoni, G.B.; Dutra, A.F.; Lorençone, J.A.; Lima Leite, M.R.; Lorençone, P.A.; De Alcântara Neto, F.; Zuffo, A.M.; De Medeiros, R.L.S. Assessing Fire Risk and Safeguarding Brazil’s Biomes: A Multifactorial Approach. Theor. Appl. Climatol. 2024, 155, 8815–8824. [Google Scholar] [CrossRef]
- Delgado, R.C.; Wanderley, H.S.; Pereira, M.G.; Almeida, A.Q.D.; Carvalho, D.C.D.; Lindemann, D.D.S.; Zonta, E.; Menezes, S.J.M.D.C.D.; Santos, G.L.D.; Santana, R.O.D.; et al. Assessment of a New Fire Risk Index for the Atlantic Forest, Brazil. Forests 2022, 13, 1844. [Google Scholar] [CrossRef]
- Eskandari, S.; Chuvieco, E. Fire Danger Assessment in Iran Based on Geospatial Information. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 57–64. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omrani, K.; Aghdam, F.B. Fuzzy Analytical Hierarchical Process and Spatially Explicit Uncertainty Analysis Approach for Multiple Forest Fire Risk Mapping. GI_Forum 2015, 1, 72–80. [Google Scholar] [CrossRef]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Rossi, M. Forest Fire Susceptibility Mapping in the Minudasht Forests, Golestan Province, Iran. Environ. Earth Sci. 2015, 73, 1515–1533. [Google Scholar] [CrossRef]
- Tien Bui, D.; Le, K.-T.; Nguyen, V.; Le, H.; Revhaug, I. Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression. Remote Sens. 2016, 8, 347. [Google Scholar] [CrossRef]
- Mhawej, M.; Faour, G.; Abdallah, C.; Adjizian-Gerard, J. Towards an Establishment of a Wildfire Risk System in a Mediterranean Country. Ecol. Inform. 2016, 32, 167–184. [Google Scholar] [CrossRef]
- Satir, O.; Berberoglu, S.; Donmez, C. Mapping Regional Forest Fire Probability Using Artificial Neural Network Model in a Mediterranean Forest Ecosystem. Geomat. Nat. Hazards Risk 2016, 7, 1645–1658. [Google Scholar] [CrossRef]
- Eugenio, F.C.; Dos Santos, A.R.; Fiedler, N.C.; Ribeiro, G.A.; Da Silva, A.G.; Dos Santos, Á.B.; Paneto, G.G.; Schettino, V.R. Applying GIS to Develop a Model for Forest Fire Risk: A Case Study in Espírito Santo, Brazil. J. Environ. Manag. 2016, 173, 65–71. [Google Scholar] [CrossRef]
- Jafari Goldarag, Y.; Mohammadzadeh, A.; Ardakani, A.S. Fire Risk Assessment Using Neural Network and Logistic Regression. J. Indian Soc. Remote Sens. 2016, 44, 885–894. [Google Scholar] [CrossRef]
- Suryabhagavan, K.V.; Alemu, M.; Balakrishnan, M. GIS-Based Multi-Criteria Decision Analysis for Forest Fire Susceptibility Mapping: A Case Study in Harenna Forest, Southwestern Ethiopia. Trop. Ecol. 2016, 57, 33–43. [Google Scholar]
- Eskandari, S. A New Approach for Forest Fire Risk Modeling Using Fuzzy AHP and GIS in Hyrcanian Forests of Iran. Arab. J. Geosci. 2017, 10, 190. [Google Scholar] [CrossRef]
- Akay, A.E.; Erdoğan, A. GIS-Based Multi-Criteria Decision Analysis For Forest Fire Risk Mapping. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-4-W4, 25–30. [Google Scholar] [CrossRef]
- Johnston, L.M.; Flannigan, M.D. Mapping Canadian Wildland Fire Interface Areas. Int. J. Wildland Fire 2017, 27, 1–14. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Salis, M.; Ager, A.A.; Castell, R.; Vega-García, C. Assessing Wildland Fire Risk Transmission to Communities in Northern Spain. Forests 2017, 8, 30. [Google Scholar] [CrossRef]
- Hong, H.; Naghibi, S.A.; Moradi Dashtpagerdi, M.; Pourghasemi, H.R.; Chen, W. A Comparative Assessment between Linear and Quadratic Discriminant Analyses (LDA-QDA) with Frequency Ratio and Weights-of-Evidence Models for Forest Fire Susceptibility Mapping in China. Arab. J. Geosci. 2017, 10, 167. [Google Scholar] [CrossRef]
- Kanga, S. Climate Induced Variation in Forest Fire Using Remote Sensing and GIS in Bilaspur District of Himachal Pradesh. Int. J. Eng. Comput. Sci. 2017, 6, 21695–21702. [Google Scholar] [CrossRef]
- Kanga, S.; Tripathi, G.; Singh, S. Forest Fire Hazards Vulnerability and Risk Assessment in Bhajji Forest Range of Himachal Pradesh (India): A Geospatial Approach. J. Remote Sens. GIS 2017, 8, 25–40. [Google Scholar]
- Sahana, M.; Ganaie, T.A. GIS-Based Landscape Vulnerability Assessment to Forest Fire Susceptibility of Rudraprayag District, Uttarakhand, India. Environ. Earth Sci. 2017, 76, 676. [Google Scholar] [CrossRef]
- Tien Bui, D.; Le, H.V.; Hoang, N.-D. GIS-Based Spatial Prediction of Tropical Forest Fire Danger Using a New Hybrid Machine Learning Method. Ecol. Inform. 2018, 48, 104–116. [Google Scholar] [CrossRef]
- Burry, L.S.; Palacio, P.I.; Somoza, M.; Trivi De Mandri, M.E.; Lindskoug, H.B.; Marconetto, M.B.; D’Antoni, H.L. Dynamics of Fire, Precipitation, Vegetation and NDVI in Dry Forest Environments in NW Argentina. Contributions to Environmental Archaeology. J. Archaeol. Sci. Rep. 2018, 18, 747–757. [Google Scholar] [CrossRef]
- Ying, L.; Han, J.; Du, Y.; Shen, Z. Forest Fire Characteristics in China: Spatial Patterns and Determinants with Thresholds. For. Ecol. Manag. 2018, 424, 345–354. [Google Scholar] [CrossRef]
- Akay, A.E.; ŞahiN, H. Forest Fire Risk Mapping by Using GIS Techniques and AHP Method: A Case Study in Bodrum (Turkey). Eur. J. For. Eng. 2019, 5, 25–35. [Google Scholar] [CrossRef]
- Busico, G.; Giuditta, E.; Kazakis, N.; Colombani, N. A Hybrid GIS and AHP Approach for Modelling Actual and Future Forest Fire Risk Under Climate Change Accounting Water Resources Attenuation Role. Sustainability 2019, 11, 7166. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Aryal, J. Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables. Fire 2019, 2, 50. [Google Scholar] [CrossRef]
- Mitsopoulos, I.; Chrysafi, I.; Bountis, D.; Mallinis, G. Assessment of Factors Driving High Fire Severity Potential and Classification in a Mediterranean Pine Ecosystem. J. Environ. Manag. 2019, 235, 266–275. [Google Scholar] [CrossRef]
- Yathish, H.; Athira, K.V.; Preethi, K.; Pruthviraj, U.; Shetty, A. A Comparative Analysis of Forest Fire Risk Zone Mapping Methods with Expert Knowledge. J. Indian Soc. Remote Sens. 2019, 47, 2047–2060. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F.; Martínez-Álvarez, F.; Tien Bui, D. A Novel Ensemble Modeling Approach for the Spatial Prediction of Tropical Forest Fire Susceptibility Using LogitBoost Machine Learning Classifier and Multi-Source Geospatial Data. Theor. Appl. Climatol. 2019, 137, 637–653. [Google Scholar] [CrossRef]
- Hong, H.; Jaafari, A.; Zenner, E.K. Predicting Spatial Patterns of Wildfire Susceptibility in the Huichang County, China: An Integrated Model to Analysis of Landscape Indicators. Ecol. Indic. 2019, 101, 878–891. [Google Scholar] [CrossRef]
- Vallejo-Villalta, I.; Rodríguez-Navas, E.; Márquez-Pérez, J. Mapping Forest Fire Risk at a Local Scale—A Case Study in Andalusia (Spain). Environments 2019, 6, 30. [Google Scholar] [CrossRef]
- Mota, P.H.S.; Rocha, S.J.S.S.D.; Castro, N.L.M.D.; Marcatti, G.E.; França, L.C.D.J.; Schettini, B.L.S.; Villanova, P.H.; Santos, H.T.D.; Dos Santos, A.R. Forest Fire Hazard Zoning in Mato Grosso State, Brazil. Land Use Policy 2019, 88, 104206. [Google Scholar] [CrossRef]
- Coban, H.; Erdin, C. Forest Fire Risk Assessment Using Gis And Ahp Integration In Bucak Forest Enterprise, Turkey. Appl. Ecol. Environ. Res. 2020, 18, 1567–1583. [Google Scholar] [CrossRef]
- Elia, M.; D’Este, M.; Ascoli, D.; Giannico, V.; Spano, G.; Ganga, A.; Colangelo, G.; Lafortezza, R.; Sanesi, G. Estimating the Probability of Wildfire Occurrence in Mediterranean Landscapes Using Artificial Neural Networks. Environ. Impact Assess. Rev. 2020, 85, 106474. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Bui, D.T.; Pradhan, B.; Foong, L.K. Fuzzy-Metaheuristic Ensembles for Spatial Assessment of Forest Fire Susceptibility. J. Environ. Manag. 2020, 260, 109867. [Google Scholar] [CrossRef]
- Kayijamahe, C.B.; Rwanyiziri, G.; Mugabowindekwe, M.; Tuyishimire, J. Integrating Remote Sensing and GIS to Model Forest Fire Rik in Virunga Massif, Central—Eastern Africa. Rwanda J. Eng. Sci. Technol. Environ. 2020, 3, 146–166. [Google Scholar] [CrossRef]
- Tonini, M.; D’Andrea, M.; Biondi, G.; Degli Esposti, S.; Trucchia, A.; Fiorucci, P. A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy. Geosciences 2020, 10, 105. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Gayen, A.; Lasaponara, R.; Tiefenbacher, J.P. Application of Learning Vector Quantization and Different Machine Learning Techniques to Assessing Forest Fire Influence Factors and Spatial Modelling. Environ. Res. 2020, 184, 109321. [Google Scholar] [CrossRef] [PubMed]
- Novo, A.; Fariñas-Álvarez, N.; Martínez-Sánchez, J.; González-Jorge, H.; Fernández-Alonso, J.M.; Lorenzo, H. Mapping Forest Fire Risk—A Case Study in Galicia (Spain). Remote Sens. 2020, 12, 3705. [Google Scholar] [CrossRef]
- Kayet, N.; Chakrabarty, A.; Pathak, K.; Sahoo, S.; Dutta, T.; Hatai, B.K. Comparative Analysis of Multi-Criteria Probabilistic FR and AHP Models for Forest Fire Risk (FFR) Mapping in Melghat Tiger Reserve (MTR) Forest. J. For. Res. 2020, 31, 565–579. [Google Scholar] [CrossRef]
- Parajuli, A.; Gautam, A.P.; Sharma, S.P.; Bhujel, K.B.; Sharma, G.; Thapa, P.B.; Bist, B.S.; Poudel, S. Forest Fire Risk Mapping Using GIS and Remote Sensing in Two Major Landscapes of Nepal. Geomat. Nat. Hazards Risk 2020, 11, 2569–2586. [Google Scholar] [CrossRef]
- Milanović, S.; Marković, N.; Pamučar, D.; Gigović, L.; Kostić, P.; Milanović, S.D. Forest Fire Probability Mapping in Eastern Serbia: Logistic Regression versus Random Forest Method. Forests 2020, 12, 5. [Google Scholar] [CrossRef]
- Çolak, E.; Sunar, F. Evaluation of Forest Fire Risk in the Mediterranean Turkish Forests: A Case Study of Menderes Region, Izmir. Int. J. Disaster Risk Reduct. 2020, 45, 101479. [Google Scholar] [CrossRef]
- Tomar, J.S.; Kranjčić, N.; Đurin, B.; Kanga, S.; Singh, S.K. Forest Fire Hazards Vulnerability and Risk Assessment in Sirmaur District Forest of Himachal Pradesh (India): A Geospatial Approach. ISPRS Int. J. Geo-Inf. 2021, 10, 447. [Google Scholar] [CrossRef]
- Tiwari, A.; Shoab, M.; Dixit, A. GIS-Based Forest Fire Susceptibility Modeling in Pauri Garhwal, India: A Comparative Assessment of Frequency Ratio, Analytic Hierarchy Process and Fuzzy Modeling Techniques. Nat. Hazards 2021, 105, 1189–1230. [Google Scholar] [CrossRef]
- Sari, F. Forest Fire Susceptibility Mapping via Multi-Criteria Decision Analysis Techniques for Mugla, Turkey: A Comparative Analysis of VIKOR and TOPSIS. For. Ecol. Manag. 2021, 480, 118644. [Google Scholar] [CrossRef]
- Peprah, M.S.; Kumi-Boateng, B.; Larbi, E.K. Prioritization Of Forest Fire Hazard Risk Simulation Using Hybrid Grey Relativity Analysis (Hgra) And Fuzzy Analytical Hierarchy Process (Fahp) Coupled With Multicriteria Decision Analysis (Mcda) Techniques—A Comparative Study Analysis. Geod. Cartogr. 2021, 47, 147–161. [Google Scholar] [CrossRef]
- Nuthammachot, N.; Stratoulias, D. Multi-Criteria Decision Analysis for Forest Fire Risk Assessment by Coupling AHP and GIS: Method and Case Study. Environ. Dev. Sustain. 2021, 23, 17443–17458. [Google Scholar] [CrossRef]
- Mohajane, M.; Costache, R.; Karimi, F.; Bao Pham, Q.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of Remote Sensing and Machine Learning Algorithms for Forest Fire Mapping in a Mediterranean Area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Bustillo Sánchez, M.; Tonini, M.; Mapelli, A.; Fiorucci, P. Spatial Assessment of Wildfires Susceptibility in Santa Cruz (Bolivia) Using Random Forest. Geosciences 2021, 11, 224. [Google Scholar] [CrossRef]
- Mgina, M.; Wawa, A.I. Assessment of Wildfires in Tanzania Forest Plantations: A Case of Sao Hill in Mufindi District. Huria J. 2021, 27, 30–55. [Google Scholar] [CrossRef]
- Wen, H.; Guo, Q.; Zeng, Y.; Wu, Z.; Sun, Z. Study on Forest Fire Risk in Conghua District of Guangzhou City Based on Multi-Source Data. Nat. Hazards 2022, 114, 3163–3183. [Google Scholar] [CrossRef]
- Trucchia, A.; Meschi, G.; Fiorucci, P.; Gollini, A.; Negro, D. Defining Wildfire Susceptibility Maps in Italy for Understanding Seasonal Wildfire Regimes at the National Level. Fire 2022, 5, 30. [Google Scholar] [CrossRef]
- Takam Tiamgne, X.; Kanungwe Kalaba, F.; Raphael Nyirenda, V.; Phiri, D. Modelling Areas for Sustainable Forest Management in a Mining and Human Dominated Landscape: A Geographical Information System (GIS)- Multi-Criteria Decision Analysis (MCDA) Approach. Ann. GIS 2022, 28, 343–357. [Google Scholar] [CrossRef]
- Sivrikaya, F.; Küçük, Ö. Modeling Forest Fire Risk Based on GIS-Based Analytical Hierarchy Process and Statistical Analysis in Mediterranean Region. Ecol. Inform. 2022, 68, 101537. [Google Scholar] [CrossRef]
- Shao, Y.; Feng, Z.; Sun, L.; Yang, X.; Li, Y.; Xu, B.; Chen, Y. Mapping China’s Forest Fire Risks with Machine Learning. Forests 2022, 13, 856. [Google Scholar] [CrossRef]
- Seddouki, M.; Benayad, M.; Aamir, Z.; Tahiri, M.; Maanan, M. Using Machine Learning Coupled With Remote Sensing For Forest Fire Susceptibility Mapping. Case Study Tetouan Province, Northern Morocco. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 48, 333–342. [Google Scholar] [CrossRef]
- Santana Neto, V.P.; Vieira Leite, R.; Juste Dos Santos, V.; Do Carmo Alves, S.; De Siqueira Castro, J.; Tamiozzo Pereira Torres, F.; Lucia Calijuri, M. Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach. Floresta E Ambiente 2022, 29, e20210078. [Google Scholar] [CrossRef]
- Reyes-Bueno, F.; Loján-Córdova, J. Assessment of Three Machine Learning Techniques with Open-Access Geographic Data for Forest Fire Susceptibility Monitoring—Evidence from Southern Ecuador. Forests 2022, 13, 474. [Google Scholar] [CrossRef]
- Patel, N.; Kuriakose, S.L.; Ajin, R.S.; Oniga, V.-E.; Rajaneesh, A.; Mammen, P.C.; Prasad, M.K.; Nikhil, S.; Danumah, J.H.; Pradeep, G.S. Forest Fire Risk Zone Mapping of Eravikulam National Park in India: A Comparison Between Frequency Ratio and Analytic Hierarchy Process Methods. Croat. J. For. Eng. 2022, 43, 199–217. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Bravo-Montero, L.; Carrión-Mero, P.; Velastegui-Montoya, A.; Berrezueta, E. Forest Fire Assessment Using Remote Sensing to Support the Development of an Action Plan Proposal in Ecuador. Remote Sens. 2022, 14, 1783. [Google Scholar] [CrossRef]
- Macki Aaleagha, M.; Bozorgmehr, B.; Behbahaninia, A. Environmental Management of Forest Fire Risk Using A’SWOT’ Analysis Model (a Case Study: Forest Parks in the Southern Slopes of Alborz, Iran). Anthropog. Pollut. J. 2022, 6, 73–79. [Google Scholar] [CrossRef]
- De Souza Camargo, L.; Silva, C.; Pimentel, L.C.G.; Da Silva, R.W.; Sobrinho, M.A.B.; Landau, L. Geotechnologies as Decision Support Strategies for the Identification of Fire-Susceptible Areas in Rio de Janeiro State. Environ. Monit. Assess. 2022, 194, 557. [Google Scholar] [CrossRef]
- De Sousa, J.A.P.; Do Nascimento Lopes, E.R.; Duarte, M.L.; Ewbank, H.; Lourenço, R.W. Forest Fire Risk Indicator (FFRI) Based on Geoprocessing and Multicriteria Analysis. Nat. Hazards 2022, 114, 2311–2330. [Google Scholar] [CrossRef]
- Jovanovska, D.; Lj, M. Land Cover Succession as a Result of Changing Land Use Practices in Northeast Macedonia. In Proceedings of the 4th Congress of Ecologists of Macedonia with International Participation, Ohrid, North Macedonia, 12–15 October 2012; pp. 185–197. [Google Scholar]
- Anticona, A.V.; Zúñiga, C.O.; Santos, A.R.D.; Lorenzon, A.S.; Filho, P.G. Gis and Fuzzy Logic Approach for Forest Fire Risk Modeling in the Cajamarca Region, Peru. Decis. Sci. Lett. 2023, 12, 353–368. [Google Scholar] [CrossRef]
- Pramanick, N.; Kundu, B.; Acharyya, R.; Mukhopadhyay, A. Forest Fire Risk Zone Mapping in Mizoram Using RS and GIS. IOP Conf. Ser. Earth Environ. Sci. 2023, 1164, 012005. [Google Scholar] [CrossRef]
- Sinha, A.; Nikhil, S.; Ajin, R.S.; Danumah, J.H.; Saha, S.; Costache, R.; Rajaneesh, A.; Sajinkumar, K.S.; Amrutha, K.; Johny, A.; et al. Wildfire Risk Zone Mapping in Contrasting Climatic Conditions: An Approach Employing AHP and F-AHP Models. Fire 2023, 6, 44. [Google Scholar] [CrossRef]
- Ysla Huaman, M.H.; Ponce Ramos, C.J.; Zacarias Arauco, N.D.; Cornejo Tueros, J.V. Modeling of Risk Zones for Forest Fires in High Andean Zones of Peru. In Proceedings of the 7th International Conference on Energy and Environmental Science, Environmental Science and Engineering, Antalya, Türkiye, 6–10 November 2023. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, B.; Luo, J.; Liu, H.; Deng, Q.; Wang, L.; Zuo, Z. Forest Fire Driving Factors and Fire Risk Zoning Based on an Optimal Parameter Logistic Regression Model: A Case Study of the Liangshan Yi Autonomous Prefecture, China. Fire 2023, 6, 336. [Google Scholar] [CrossRef]
- Ju, W.; Xing, Z.; Wu, J.; Kang, Q. Evaluation of Forest Fire Risk Based on Multicriteria Decision Analysis Techniques for Changzhou, China. Int. J. Disaster Risk Reduct. 2023, 98, 104082. [Google Scholar] [CrossRef]
- Pishahang, M.; Jovcic, S.; Hashemkhani Zolfani, S.; Simic, V.; Görçün, Ö.F. MCDM-Based Wildfire Risk Assessment: A Case Study on the State of Arizona. Fire 2023, 6, 449. [Google Scholar] [CrossRef]
- Vergara, A.J.; Valqui-Reina, V.S.; Cieza-Tarrillo, D.; Munoz-Astecker, L.D.; Ocaña, C.L.; Cubas, J.; Auquiñivin-Silva, E.A. Integration of the AHP Method and GIS Techniques for Mapping Areas Susceptible to Forest Fires in the Southern Amazon Region (Peru). Int. J. Des. Nat. Ecodyn. 2024, 19, 769–778. [Google Scholar] [CrossRef]
- Simataa, C.B.; Mapaure, I. Geomorphological-Based Remote Sensing and GIS Analyses to Identify Vulnerable Zones of Forest Fire in Zambezi Region, North-Eastern Namibia. Namib. J. Res. Sci. Technol. 2024, 5, 1–7. [Google Scholar] [CrossRef]
- El Mazi, M.; Boutallaka, M.; Saber, E.; Chanyour, Y.; Bouhlal, A. Forest Fire Risk Modeling in Mediterranean Forests Using GIS and AHP Method: Case of the High Rif Forest Massif (Morocco). Euro-Mediterr. J. Environ. Integr. 2024, 9, 1109–1123. [Google Scholar] [CrossRef]
- Noroozi, F.; Ghanbarian, G.; Safaeian, R.; Pourghasemi, H.R. Forest Fire Mapping: A Comparison between GIS-Based Random Forest and Bayesian Models. Nat. Hazards 2024, 120, 6569–6592. [Google Scholar] [CrossRef]
- Krsnik, G.; Busquets Olivé, E.; Piqué Nicolau, M.; Larrañaga, A.; Terés, J.Á.; Garcia-Gonzalo, J.; González Olabarria, J.R. Spatial Multi-Criteria Analysis for Prioritising Forest Management Zones to Prevent Large Forest Fires in Catalonia (NE Spain). Environ. Chall. 2024, 15, 100959. [Google Scholar] [CrossRef]
- Purnama, M.I.; Jaya, I.N.S.; Syaufina, L.; Çoban, H.O.; Raihan, M. Predicting Forest Fire Vulnerability Using Machine Learning Approaches in the Mediterranean Region: A Case Study of Türkiye. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2024; Volume 1315, p. 012056. [Google Scholar]
- Mambile, C.; Kaijage, S.; Leo, J. Deep Learning Models for Enhanced Forest-Fire Prediction at Mount Kilimanjaro, Tanzania: Integrating Satellite Images, Weather Data and Human Activities Data. Nat. Hazards Res. 2025, 5, 335–347. [Google Scholar] [CrossRef]
- Mofokeng, O.D.; Adelabu, S.A.; Jackson, C.M. An Integrated Grassland Fire-Danger-Assessment System for a Mountainous National Park Using Geospatial Modelling Techniques. Fire 2024, 7, 61. [Google Scholar] [CrossRef]
- Vergara, A.J.; Valqui-Reina, S.V.; Cieza-Tarrillo, D.; Gómez-Santillán, Y.; Chapa-Gonza, S.; Ocaña-Zúñiga, C.L.; Auquiñivin-Silva, E.A.; Cayo-Colca, I.S.; Rosa Dos Santos, A. Modeling of Forest Fire Risk Areas of Amazonas Department, Peru: Comparative Evaluation of Three Machine Learning Methods. Forests 2025, 16, 273. [Google Scholar] [CrossRef]
- Ersoy, İ.; Ünsal, E.; Gürsoy, Ö. A Multi-Criteria Forest Fire Danger Assessment System on GIS Using Literature-Based Model and Analytical Hierarchy Process Model for Mediterranean Coast of Manavgat, Türkiye. Sustainability 2025, 17, 1971. [Google Scholar] [CrossRef]
- Souza, J.P.S.; Oliveira, G.S.D.; Cardozo, É.P.; Alves, A.M.O.S.; Costa, A.A.A.; Andrade, P.C.D.R. Spatial Modeling of Forest Fire Risks in A Watershed Using Remote Sensing. Rev. Gest. Soc. E Ambient. 2025, 19, e010759. [Google Scholar] [CrossRef]
- Shinga, P.S.; Tesfamichael, S.G.; Sibandze, P.; Kalumba, A.M.; Afuye, G.A. Modelling Spatiotemporal Patterns of Wildfire Risk in the Garden Route District Biodiversity Hotspots Using Analytic Hierarchy Process in South Africa. Nat. Hazards 2025, 121, 1945–1969. [Google Scholar] [CrossRef]
- Nejatiyanpour, E.; Ghorbanzadeh, O.; Strobl, J.; Yousefpour, R.; Kakhki, M.D.; Amirnejad, H.; Gholamnia, K.; Sabouni, M.S. Assessing Hyrcanian Forest Fire Vulnerability: Socioeconomic and Environmental Perspectives. J. For. Res. 2025, 36, 35. [Google Scholar] [CrossRef]
- Mupfiga, U.; Mutanga, O.; Dube, T. Assessing Drivers of Vegetation Fire Occurrence in Zimbabwe—Insights from Maxent Modelling and Historical Data Analysis. Remote Sens. Appl. Soc. Environ. 2025, 37, 101404. [Google Scholar] [CrossRef]
- Irumba, D.R.; Gidudu, A.; Kayondo, L.M. Analysis of Spatial-Temporal Patterns of Wildfire Susceptibility in Queen Elizabeth National Park (QENP)—Uganda. S. Afr. J. Geomat. 2025, 14, 38–56. [Google Scholar] [CrossRef]
Methodology Classification | Indicator Analysis |
---|---|
|
|
Region | Number of Studies | Percentage (%) | Expected Frequency * | Chi-Square Contribution |
---|---|---|---|---|
Asia | 40 | 36% | 28 | 5.14 |
Mediterranean basin | 37 | 33% | 28 | 2.89 |
America | 21 | 19% | 28 | 1.75 |
Africa | 14 | 13% | 28 | 7.00 |
Method | Number of Studies | Percentage (%) | Z-Score | Statistical Significance * |
---|---|---|---|---|
Multi-Criteria Decision Analysis | 49 | 44% | 3.21 | 0.001 |
Machine learning | 28 | 25% | 1.87 | 0.05 |
Integrated Geospatial Modeling | 19 | 17% | 1.98 | 0.05 |
Statistical and Probabilistic | 16 | 14% | 2.14 | 0.05 |
Methods | Studies (n) | Percentage of MCDA | Statistical Significance * |
---|---|---|---|
Analytical Hierarchical Process (AHP) | 39 | 80.0% | p < 0.001 |
Fuzzy-Analytical Hierarchical Process (FAHP) | 4 | 8.2% | p > 0.05 |
Modified AHP (M-AHP) | 2 | 4.1% | p > 0.05 |
Analytic Network Process (ANP) | 1 | 2.0% | p > 0.05 |
Gray Relativity Analysis (GRA) | 1 | 2.0% | p > 0.05 |
Algorithms | Studies (n) | Percentage of ML | Z-Score | Statistical Significance |
---|---|---|---|---|
Random Forest (RF) | 22 | 78.6% | 4.32 | p < 0.001 |
Support Vector Machine (SVM) | 11 | 39.2% | 1.86 | p < 0.05 |
Artificial Neural Network | 6 | 21.4% | 0.45 | p > 0.05 |
Decision Tree (DT) | 4 | 14.3% | −0.23 | p > 0.05 |
XGBoost | 3 | 10.7% | −0.58 | p > 0.05 |
Boosted Regression Tree (BRT) | 3 | 10.7% | −0.58 | p > 0.05 |
AdaBoost (AB) | 2 | 7.1% | −0.71 | p > 0.05 |
Gradient Boost (GB) | 2 | 7.1% | −0.71 | p > 0.05 |
Multilayer Perceptron (MLP-Net) | 2 | 7.1% | −0.71 | p > 0.05 |
Adaptive Neuro-Fuzzy Inference System (ANFIS) | 1 | 2.8% | −0.94 | p > 0.05 |
CatBoost | 1 | 2.8% | −0.94 | p > 0.05 |
LightGBM (LGBM) | 1 | 2.8% | −0.94 | p > 0.05 |
KNN—K-nearest neighbors (KNN) | 1 | 2.8% | −0.94 | p > 0.05 |
Multiple linear regression (MLR) | 1 | 2.8% | −0.94 | p > 0.05 |
Generalized linear regression (GLR) | 1 | 2.8% | −0.94 | p > 0.05 |
Long-Short Term Memory (LSTM) | 1 | 2.8% | −0.94 | p > 0.05 |
Convolutional Neural Network (CNN) | 1 | 2.8% | −0.94 | p > 0.05 |
Convolutional Long-Short Term Memory (ConvLSTM) | 1 | 2.8% | −0.94 | p > 0.05 |
Generalized additive model (GAM) | 1 | 2.8% | −0.94 | p > 0.05 |
Shannon’s Entropy Model (ShE) | 1 | 2.8% | −0.94 | p > 0.05 |
Methods | Studies (n) | Percentage of S&P | Fisher’s Exact Test | Statistical Significance |
---|---|---|---|---|
Frequency ratio (FR) | 6 | 37.5% | vs. uniform | p < 0.05 |
Maximum Entropy (MAXENT) | 4 | 25.0% | vs. uniform | p > 0.05 |
Weight of evidence (WoE) | 4 | 25.0% | vs. uniform | p > 0.05 |
Logistic Regression (LR) | 3 | 18.8% | vs. uniform | p > 0.05 |
Bayesian Networks (BN) | 3 | 18.8% | vs. uniform | p > 0.05 |
Naïve Bayes (NB) | 2 | 12.5% | vs. uniform | p > 0.05 |
Statistical regression model (SRM) | 2 | 12.5% | vs. uniform | p > 0.05 |
Principal component analysis (PCA) | 1 | 6.3% | vs. uniform | p > 0.05 |
Multivariate logistic regression (MLR) | 1 | 6.3% | vs. uniform | p > 0.05 |
Algorithms | Studies (n) | Percentage of Opt. | Fisher’s Exact Test | Statistical Significance |
---|---|---|---|---|
Genetic Algorithm (GA) | 1 | 25.0% | vs. uniform | p > 0.05 |
Particle swarm optimization (PSO) | 1 | 25.0% | vs. uniform | p > 0.05 |
Differential Evolution (DE) | 1 | 25.0% | vs. uniform | p > 0.05 |
Frequency Ratio with multiple algorithms (FR-MLP, FR-LR, FR-CART, FR-SVM, FR-RF) | 1 | 25.0% | vs. uniform | p > 0.05 |
Category | Number of Indicators | % of Total No. of Indicators |
---|---|---|
Remote Sensing Indices | 18 | 26.9% |
Climatic | 11 | 16.4% |
Biotic | 11 | 16.4% |
Abiotic | 9 | 13.4% |
Socio-economic | 7 | 10.4% |
Organizational | 7 | 10.4% |
Topographic | 4 | 6% |
TOTAL | 67 | 100% |
Indicators | Studies (n) | Percentage of Total | Z-Score | Statistical Significance |
---|---|---|---|---|
Slope | 105 | 93.8% | 9.23 | p < 0.001 |
Aspect | 94 | 83.9% | 7.45 | p < 0.001 |
Elevation | 89 | 79.5% | 6.78 | p < 0.001 |
Plan Curvature Map | 15 | 13.4% | −8.34 | p < 0.001 |
Indicators | Studies (n) | Percentage of Total | Statistical Significance * |
---|---|---|---|
Precipitation | 69 | 61.6% | p < 0.001 |
Maximum temperature, Minimum temperature, and Average temperature | 63 | 56.3% | p < 0.001 |
Wind velocity | 48 | 42.9% | p < 0.001 |
Relative humidity | 21 | 18.8% | p < 0.05 |
Land surface temperature | 15 | 13.4% | p > 0.05 |
Evapotranspiration | 8 | 7.1% | p > 0.05 |
Aridity map | 4 | 3.5% | p > 0.05 |
Density of lighting | 3 | 2.6% | p > 0.05 |
Average air pressure | 2 | 1.7% | p > 0.05 |
(LST index) | 1 | 0.89% | p > 0.05 |
Solar radiation | 1 | 0.89% | p > 0.05 |
Indicators | Studies (n) | Percentage of Total | Statistical Significance |
---|---|---|---|
Road networks | 92 | 82.1% | p < 0.001 |
Human settlements | 86 | 77.0% | p < 0.001 |
Rivers | 29 | 26.0% | p < 0.001 |
Distance from agricultural land | 20 | 17.6% | p < 0.05 |
Population density | 18 | 16.1% | p > 0.05 |
Railways | 12 | 10.7% | p > 0.05 |
Water deficit map | 8 | 7.1% | p > 0.05 |
Distance from Farmlands | 7 | 6.3% | p > 0.05 |
Powerlines | 7 | 6.3% | p > 0.05 |
Indicators | Studies (n) | Percentage of Total | Statistical Significance |
---|---|---|---|
Vegetation types | 46 | 41.1% | p < 0.001 |
Crown closure | 11 | 9.8% | p < 0.001 |
Fuel Models | 8 | 7.14% | p < 0.001 |
Soil Map | 8 | 7.14% | p < 0.05 |
Age of stand development | 6 | 5.4% | p > 0.05 |
Forest density | 6 | 5.4% | p > 0.05 |
Soil moisture | 6 | 5.4% | p > 0.05 |
Soil texture | 5 | 4.5% | p > 0.05 |
Canopy metrics | 5 | 4.5% | p > 0.05 |
Leaf litter moisture | 1 | 0.9% | p > 0.05 |
Leaf litter depth | 1 | 0.9% | p > 0.05 |
Indicators | Studies (n) | Percentage of Total | Expected vs. Observed | p-Values |
---|---|---|---|---|
Artificial water bodies | 14 | 12.5% | χ2 = 34.56 | p < 0.001 |
Hydrant’s network map | 5 | 4.5% | χ2 = 78.23 | p < 0.001 |
Watch-towers | 2 | 1.8% | χ2 = 95.67 | p < 0.001 |
Distance from the Firefighting brigades | 2 | 1.8% | χ2 = 95.67 | p < 0.001 |
Fuel management practices (% of area of fuel reduction) | 2 | 1.8% | χ2 = 95.67 | p < 0.001 |
Response time of Firefighters | 2 | 1.8% | χ2 = 95.67 | p < 0.001 |
Indicators | Studies (n) | Percentage of Total | Expected vs. Observed | p-Values |
---|---|---|---|---|
Recreational area map | 8 | 7.1% | χ2 = 54.39 | p < 0.001 |
Visitors (Avg. people/area) | 5 | 4.5% | χ2 = 78.23 | p < 0.001 |
Population density map | 2 | 1.8% | χ2 = 95.67 | p < 0.001 |
Population age composition | 2 | 1.8% | χ2 = 95.67 | p < 0.001 |
Poverty map | 2 | 1.8% | χ2 = 95.67 | p < 0.001 |
Socio-economic vulnerability map | 2 | 1.8% | χ2 = 95.67 | p < 0.001 |
BBQ Sports map | 2 | 1.8% | χ2 = 95.67 | p < 0.001 |
Indicators | Studies (n) | Percentage of Total | p-Values |
---|---|---|---|
NDVI—Normalized Difference Vegetation Index | 50 | 44.6% | p < 0.001 |
TWI—Topographic Wetness Index | 21 | 18.7 | p < 0.001 |
FWI—Fire Weather Index | 5 | 4.5% | p < 0.05 |
NBR—Normalized Burn Ratio | 4 | 3.5% | p < 0.05 |
NDMI—Normalized Difference Moisture Index | 4 | 3.5% | p < 0.05 |
VCI—Vegetation Condition Index | 4 | 3.5% | p < 0.05 |
NDWI—Normalized Difference Water Index | 4 | 3.5% | p < 0.05 |
EVI—Enhanced Vegetation Index | 2 | 1.8% | p > 0.05 |
CRI—Canopy Resilience Index | 2 | 1.8% | p > 0.05 |
NDNI—Normalized Difference Nitrogen Index | 1 | 0.9% | p > 0.05 |
TRI—Topo ruggedness index | 1 | 0.9% | p > 0.05 |
SAVI—Soil-Adjusted Vegetation Index | 1 | 0.9% | p > 0.05 |
RENDV—Red Edge Normalized Difference Vegetation Index | 1 | 0.9% | p > 0.05 |
NDLI—Normalized Difference Lignin Index | 1 | 0.9% | p > 0.05 |
NDII—Normalized Difference Infrared Index | 1 | 0.9% | p > 0.05 |
VegDRI—Vegetation Drought Response Index | 1 | 0.9% | p > 0.05 |
CPI—Compound Topographic Index | 1 | 0.9% | p > 0.05 |
Indicators | Studies (n) | Percentage of Total |
---|---|---|
Fire history data | 73 | 65.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihajlovski, B.; Zhiyanski, M. Global Forest Fire Assessment Methods: A Comparative Analysis of Hazard, Susceptibility, and Vulnerability Approaches in Different Landscapes. Fire 2025, 8, 380. https://doi.org/10.3390/fire8100380
Mihajlovski B, Zhiyanski M. Global Forest Fire Assessment Methods: A Comparative Analysis of Hazard, Susceptibility, and Vulnerability Approaches in Different Landscapes. Fire. 2025; 8(10):380. https://doi.org/10.3390/fire8100380
Chicago/Turabian StyleMihajlovski, Bojan, and Miglena Zhiyanski. 2025. "Global Forest Fire Assessment Methods: A Comparative Analysis of Hazard, Susceptibility, and Vulnerability Approaches in Different Landscapes" Fire 8, no. 10: 380. https://doi.org/10.3390/fire8100380
APA StyleMihajlovski, B., & Zhiyanski, M. (2025). Global Forest Fire Assessment Methods: A Comparative Analysis of Hazard, Susceptibility, and Vulnerability Approaches in Different Landscapes. Fire, 8(10), 380. https://doi.org/10.3390/fire8100380