Detecting Glucose in the Phloem to Quickly Define Latent Post-Fire Mortality in Pinus Trees in Northern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol Setup
2.1.1. Sample Collection and Preparation
2.1.2. Soluble Sugars Measurements
2.1.3. Preliminary Tests
2.2. Protocol Validation
2.2.1. Study Site
2.2.2. Sample Collection
2.2.3. Sample Analysis
2.2.4. Starch Analysis
2.3. Data Analysis
3. Results
3.1. Protocol Set Up
3.2. Protocol Validation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bär, A.; Michaletz, S.T.; Mayr, S. Fire effects on tree physiology. New Phytol. 2019, 223, 1728–1741. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, K.L.; Dickinson, M.B.; Bova, A.S. A way forward for fire-caused tree mortality prediction Modeling a physiological consequence of fire. Fire Ecol. 2010, 6, 80–94. [Google Scholar] [CrossRef]
- Youngblood, A.; Grace, J.B.; McIver, J.D. Delayed conifer mortality after fuel reduction treatments: Interactive effects of fuel, fire intensity, and bark beetles. Ecol. Appl. 2009, 19, 321–337. [Google Scholar] [CrossRef] [PubMed]
- Pons, P.; Rost, J.; Tobella, C.; Puig Gironès, R.; Bas, J.M.; Franch, M.; Mauri, E. Towards better practices of salvage logging for reducing the ecosystem impacts in Mediterranean burned forests. iForest 2020, 13, 360–368. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Burton, P.J.; Franklin, J.F. Salvage Logging and its Ecological Conse Quences; Island Press: Washington, DC, USA, 2008; p. 227. [Google Scholar]
- Cansler, C.A.; Hood, S.M.; Varner, J.M.; van Mantgem, P.J.; Agne, M.C.; Andrus, R.A.; Ayres, M.P.; Ayres, B.D.; Bakker, J.D.; Battaglia, M.A.; et al. The Fire and Tree Mortality Database, for empirical modeling of individual tree mortality after fire. Sci. Data 2020, 7, 194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reilly, M.J.; Zuspan, A.; Yang, Z. Characterizing post-fire delayed tree mortality with remote sensing Sizing up the elephant in the room. Fire Ecol. 2023, 19, 64. [Google Scholar] [CrossRef]
- Hood, S.M.; Cluck, D.R.; Smith, S.L.; Ryan, K.C. Using bark char codes to predict post-fire cambium mortality. Fire Ecol. 2008, 4, 57–73. [Google Scholar] [CrossRef]
- Dickinson, M.B.; Johnson, E.A. Temperature-dependent rate models of vascular cambium cell mortality. Can. J. Forest Res. 2004, 34, 546–559. [Google Scholar] [CrossRef]
- Espinosa, J.; Rodríguez, D.R.O.; Madrigal, J.; Guijarro, M.; Hernando, C. Predicting potential cambium damage and fire resistance in Pinus nigra Arn. Ssp. Salzmannii. For. Ecol. Manag. 2020, 474, 118372. [Google Scholar] [CrossRef]
- Cocozza, C.; Traversi, M.L.; Giovannelli, A. Tree growth conditions are demanded when optimal, are unwanted when limited, but when are they suboptimal? Plants 2021, 10, 1943. [Google Scholar] [CrossRef]
- Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress A review. Eur. J. For. Res. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Bhatla, S.C.; Lal, M.A. Plant physiology, development and metabolism. Plant Physiol. Develop. Metab. 2018, 25, 1–9. [Google Scholar] [CrossRef]
- Michaletz, S.T. Xylem dysfunction in fires Towards a hydraulic theory of plant responses to multiple disturbance stressors. New Phytol. 2018, 217, 1391–1393. [Google Scholar] [CrossRef]
- Cherubini, P.; Battipaglia, G.; Innes, J.L. Tree vitality and forest health Can tree-ring stable isotopes be used as indicators? Curr. For. Rep. 2021, 7, 69–80. [Google Scholar] [CrossRef]
- Partelli-Feltrin, R.; Smith, A.M.S.; Adams, H.D.; Thompson, R.A.; Kolden, C.A.; Yedinak, K.M.; Johnson, D.M. Death from hunger or thirst? phloem death, rather than xylem hydraulic failure, as a driver of fire-induced conifer mortality. New Phytol. 2022, 237, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Trinidad, T.; Watson, W.T.; Arnold, M.A.; Lombardini, L.; Appel, D.N. Comparing various techniques to measure tree vitality of live oaks. Urban Forestry Urban Green 2010, 9, 199–203. [Google Scholar] [CrossRef]
- Lambers, H.; Stuart Chapin, F.; Pons, T.L. Plant Physiological Ecology, 2nd ed.; Springer Nature: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Reed, C.C.; Sharon, M.H. Nonstructural carbohydrates explain post-fire tree mortality and recovery patterns. Tree Physiol. 2024, 44, tpad155. [Google Scholar] [CrossRef]
- Emiliani, G.; Traversari, S.; De Carlo, A.; Traversi, M.L.; Cantini, C.; Giovannelli, A. B-type cyclin modulation in response to carbon balance in callus of Populus alba. Plant Cell Tissue Organ Cult. 2016, 124, 283–293. [Google Scholar] [CrossRef]
- Rapetti, F. Considerazioni sui caratteri climatici del Monte Pisano. In I Monti Pisani: Il Ruolo delle ANPIL per la Conservazione e la Valorizzazione del Territorio; Felici Editore Pisa: Pisa, Italy, 2000; pp. 6–13. [Google Scholar]
- Parks, S.A.; Dillon, G.K.; Miller, C. A new metric for quantifying burn severity The relativized burn ratio. Remote Sens. 2014, 6, 1827–1844. [Google Scholar] [CrossRef]
- Simard, S.; Giovannelli, A.; Treydte, K.; Traversi, M.L.; King, G.M.; Frank, D.; Fonti, P. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiol. 2013, 33, 913–923. [Google Scholar] [CrossRef]
- Giovannelli, A.; Emiliani, G.; Traversi, M.L.; Deslauriers, A.; Rossi, S. Sampling cambial region and mature xylem for non structural carbohydrates and starch analyses. Dendrochronologia 2011, 29, 177–182. [Google Scholar] [CrossRef]
- Bellasio, C.; Fini, A.; Ferrini, F. Evaluation of a High Throughput Starch Analysis Optimised for Wood. PLoS ONE 2014, 9, e86645. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R a Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 30 May 2024).
- Konietschke, F.; Placzek, M.; Schaarschmidt, F.; Hothorn, L.A. Nparcomp An R software package for nonparametric multiple comparisons and simultaneous confidence intervals. J. Stat. Softw. 2015, 64, 1–17. [Google Scholar] [CrossRef]
- Smith, K.T.; Sutherland, E.K. Resistance of eastern hardwood stems to fire injury and damage. USDA For. Serv. 1999, 210–217. [Google Scholar]
- Chatziefstratiou, E.K.; Bohrer, G.; Bova, A.S.; Subramanian, R.; Frasson, R.P.M.; Scherzer, A.; Butler, B.W.; Dickinson, M.B. FireStem2D—A two-dimensional heat transfer model for simulating tree stem injury in fires. PLoS ONE 2013, 8, e70110. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.C.; Frandsen, W.H. Basal injury from smoldering fires in mature Pinus ponderosa laws. Int. J. Wildl. Fire 1991, 1, 107–118. [Google Scholar] [CrossRef]
- Sala, A.; Woodruff, D.R.; Meinzer, F.C. Carbon dynamics in trees Feast or famine? Tree Physiol. 2012, 32, 764–775. [Google Scholar] [CrossRef]
Comparison | Estimator | Lower | Upper | p Value |
---|---|---|---|---|
p (D, L) | 0.999 | 0 | 1.000 | 1 |
p (D, X) | 0.817 | 0 | 0.885 | 1 |
p (L, X) | 0.137 | 0 | 0.237 | <0.001 |
Average | Range | ||
---|---|---|---|
Living trees | F | 32 | 7.4 |
C | 42.7 | 14.8 | |
Dead trees | F | 0 | 0 |
C | 1.4 | 1.2 | |
Scorched trees (X) | F | 21.8 | 15.2 |
C | 4 | 8.7 | |
S | 13.5 | 15.2 | |
G | 12.3 | 15.3 |
Average | Range | ||
---|---|---|---|
Living trees | 56.11 | 13.59 | b |
Dead trees | 3.10 | 1.02 | c |
Scorched trees | 107.49 | 29.83 | a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frassinelli, N.; Cocozza, C.; Marchi, E.; Foderi, C.; Touloupakis, E.; Neri, F.; Traversi, M.L.; Giovannelli, A. Detecting Glucose in the Phloem to Quickly Define Latent Post-Fire Mortality in Pinus Trees in Northern Italy. Fire 2024, 7, 315. https://doi.org/10.3390/fire7090315
Frassinelli N, Cocozza C, Marchi E, Foderi C, Touloupakis E, Neri F, Traversi ML, Giovannelli A. Detecting Glucose in the Phloem to Quickly Define Latent Post-Fire Mortality in Pinus Trees in Northern Italy. Fire. 2024; 7(9):315. https://doi.org/10.3390/fire7090315
Chicago/Turabian StyleFrassinelli, Niccolò, Claudia Cocozza, Enrico Marchi, Cristiano Foderi, Eleftherios Touloupakis, Francesco Neri, Maria Laura Traversi, and Alessio Giovannelli. 2024. "Detecting Glucose in the Phloem to Quickly Define Latent Post-Fire Mortality in Pinus Trees in Northern Italy" Fire 7, no. 9: 315. https://doi.org/10.3390/fire7090315
APA StyleFrassinelli, N., Cocozza, C., Marchi, E., Foderi, C., Touloupakis, E., Neri, F., Traversi, M. L., & Giovannelli, A. (2024). Detecting Glucose in the Phloem to Quickly Define Latent Post-Fire Mortality in Pinus Trees in Northern Italy. Fire, 7(9), 315. https://doi.org/10.3390/fire7090315