The Impact of Fuel Thinning on the Microclimate in Coastal Rainforest Stands of Southwestern British Columbia, Canada
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Fuel Thinning Effect on Microclimate
3.2. Site Most Susceptible to the Threat of Wildfire
3.3. Grouping the Significance of Microclimate Variables
4. Discussion and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CWD | Coarse woody debris |
ECCC | Environment and Climate Change Canada |
GIS | Geographic information system |
Quantile–quantile | |
RH | Relative humidity |
RMOW | Resort Municipality of Whistler |
T | Thinned |
UT | Unthinned |
WUI | Wildland–urban interface |
Appendix A. Terminology Clarified
Appendix B. Distribution of Thinned and Unthinned Sampling Points across the Range in Ambient Air Temperatures and Relative Humidities for Both Spring and Late Summer Seasons
Appendix C. Regional- versus Stand-Level Weather Metric Comparison
Site | Date | Local Time 1 | Treatment 2 | Region 3 | Stand | Total AbsDiff √[Ʃ(Region-Stand) 2] | Avg. Diff. by Site, Thinned | Avg. Diff. by Site, Unthinned | % Diff [(UnT − T)/(Unt + T)]% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RH (%) | Wind (km h−1) | Temp (°C) | Precip. (mm) | RH (%) | Wind (km h−1) | Temp (°C) | Precip. (mm) 3 | ||||||||
Alpine | 01-May | 15:28 | T | 72.5 | 4.5 | 7.5 | 0.32 | 68.4 | 0.7 | 10.5 | 0.1 | 5.20 | 5.20 | 3.01 | −53.3 |
13:44 | UT | 69.7 | 7.7 | 7.8 | 0.32 | 71.1 | 0.0 | 9.4 | 0.0 | 3.01 | |||||
04-Aug | 11:36 | T | 16.0 | 9.0 | 31.1 | 0.00 | 28.3 | 4.3 | 27.6 | 0.0 | 12.82 | 12.82 | 10.37 | −21.1 | |
10:37 | UT | 36.8 | 2.3 | 25.1 | 0.00 | 46.5 | 0.6 | 21.5 | 0.0 | 10.57 | |||||
Lost Lake | 23-Apr | 14:31 | T | 53.8 | 5.5 | 11.9 | 0.00 | 51.7 | 9.8 | 11.8 | 0.1 | 2.39 | 6.68 | 10.45 | 44.1 |
15:30 | UT | 76.0 | 4.0 | 9.6 | 0.00 | 60.9 | 0.5 | 10.6 | 0.0 | 15.21 | |||||
24-Apr | 14:51 | T | 76.0 | 1.0 | 8.2 | 0.00 | 69.9 | 0.8 | 10.2 | 0.0 | 6.38 | ||||
14:51 | UT | 84.7 | 3.7 | 8.2 | 0.00 | 90.3 | 0.0 | 8.1 | 0.1 | 5.69 | |||||
25-Apr | 13:32 | T | 68.0 | 4.0 | 9.2 | 0.00 | 57.0 | 0.7 | 11.4 | 0.0 | 11.26 | ||||
UT | - | - | - | - | - | - | - | - | - | ||||||
29-Jul | 12:19 | T | 25.0 | 4.0 | 30.0 | 0.00 | 34.3 | 1.3 | 28.4 | 0.0 | 10.13 | 6.95 | - | - | |
14:44 | UT | - | - | - | - | 26.3 | 0.8 | 29.7 | 0.0 | - | |||||
30-Jul | 11:06 | T | 25.4 | 3.4 | 29.9 | 0.00 | 29.6 | 3.1 | 28.7 | 0.0 | 5.10 | ||||
UT | - | - | - | - | - | - | - | - | - | ||||||
Cheakamus | 26-Apr | 13:19 | T | 66.3 | 6.7 | 8.2 | 0.03 | 65.7 | 6.0 | 10.3 | 0.0 | 2.15 | 4.95 | 11.78 | 81.6 |
11:50 | UT | 67.0 | 5.5 | 7.9 | 0.00 | 77.1 | 1.4 | 8.0 | 0.0 | 10.17 | |||||
27-Apr | 10:41 | T | 78.5 | 2.0 | 7.0 | 0.00 | 65.4 | 3.4 | 10.2 | 0.0 | 13.53 | ||||
10:41 | UT | 84.5 | 3.0 | 6.6 | 0.00 | 72.1 | 1.3 | 8.8 | 0.0 | 12.59 | |||||
08-May | 12:50 | T | 64.8 | 4.8 | 6.0 | 0.00 | 61.2 | 3.9 | 7.4 | 0.0 | 3.89 | ||||
12:50 | UT | 63.8 | 4.3 | 6.3 | 0.00 | 66.7 | 1.5 | 6.9 | 0.0 | 3.06 | |||||
09-May | 13:01 | T | 47.3 | 3.7 | 11.1 | 0.00 | 47.5 | 3.6 | 12.9 | 0.0 | 1.79 | ||||
13:01 | UT | 56.2 | 5.0 | 9.7 | 0.00 | 55.8 | 1.4 | 11.3 | 0.0 | 1.94 | |||||
Cheakamus | 31-Jul | 12:45 | T | 55.3 | 1.7 | 22.9 | 0.03 | 52.4 | 1.7 | 22.0 | 0.0 | 3.33 | 7.70 | 8.08 | 4.7 |
12:24 | UT | 68.7 | 4.0 | 20.1 | 0.00 | 54.2 | 0.0 | 21.7 | 0.0 | 15.13 | |||||
02-Aug | 13:24 | T | 52.3 | 4.3 | 25.0 | 0.00 | 44.4 | 3.1 | 27.4 | 0.0 | 8.84 | ||||
12:47 | UT | 48.7 | 6.3 | 25.8 | 0.00 | 52.6 | 1.3 | 25.4 | 0.0 | 7.14 | |||||
03-Aug | 13:26 | T | 31.3 | 6.0 | 19.8 | 0.00 | 24.6 | 4.8 | 29.6 | 0.0 | 12.72 | ||||
12:56 | UT | 31.8 | 5.4 | 27.7 | 0.00 | 36.9 | 0.5 | 26.4 | 0.0 | 7.45 | |||||
Callaghan | 02-May | 13:43 | T | 57.0 | 4.0 | 9.3 | 0.00 | 57.3 | 2.8 | 12.7 | 0.0 | 3.39 | 3.39 | 31.11 | 160.7 |
11:07 | UT | 49.0 | 4.4 | 10.7 | 0.00 | 80.1 | 0.5 | 9.1 | 0.0 | 31.11 | |||||
01-Aug | 12:58 | T | 55.5 | 3.0 | 24.4 | 0.00 | 59.0 | 0.4 | 24.2 | 0.0 | 4.53 | 3.56 | 11.83 | 107.4 | |
12:13 | UT | 49.0 | 3.7 | 25.4 | 0.00 | 60.7 | 0.0 | 24.4 | 0.0 | 12.34 | |||||
Total difference across the 4 areas, between region and stand microclimate indices, by treatment | 51.26 | 86.63 | 51.3 |
Appendix D. The Relative Importance of Topography When Assessing Fire Behaviour Potential
Geographical Region | Percent Slope Steepness Class | |||
---|---|---|---|---|
0–20% | 21–40% | 40–60% | >60% | |
Whistler | ||||
Area (ha) | 36,405 | 54,306 | 52,396 | 53,240 |
Proportion | 18.6 | 27.7 | 26.7 | 27.1 |
Fort Nelson | ||||
Area (ha) | 188,407 | 6890 | 891 | 159 |
Proportion | 96.0 | 3.5 | 0.5 | 0.1 |
Appendix E. Analysis of Slope Effect on Rate of Fire Speed
References
- Coogan, S.C.P.; Daniels, L.D.; Boychuk, D.; Burton, P.J.; Flannigan, M.D.; Gauthier, S.; Kafka, V.; Park, J.S.; Wotton, B.M. Fifty years of wildland fire science in Canada. Can. J. For. Res. 2020, 51, 283–302. [Google Scholar] [CrossRef]
- Beverly, J.L.; Leverkus, S.E.R.; Cameron, H.; Schroeder, D. Stand-level fuel reduction treatments and fire behaviour in Canadian boreal conifer forests. Fire 2020, 3, 35. [Google Scholar] [CrossRef]
- Beresford, H.; (Environmental Manager, Resort Municipality of Whistler, Whistler, Canada). Personal communication, 4 January 2022.
- Countryman, C.M. Old-growth conversion also converts the fire climate. Fire Manag. Today 2021, 79, 19–21. [Google Scholar]
- Van Wagner, C.E. Conditions for the start and spread of crown fire. Can. J. For. Res. 1977, 7, 23–34. [Google Scholar] [CrossRef]
- Agee, J.K.; Skinner, C.N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Wotton, B.M.; Marshall, G.A.; De Groot, W.J.; Johnston, J.; Jurko, N.; Cantin, A.S. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Clim. Chang. 2016, 134, 59–71. [Google Scholar] [CrossRef]
- Agee, J.K. Fire Ecology of Pacific Northwest Forests; Island Press: Washington, DC, USA, 1993; p. 493. [Google Scholar]
- Reilly, M.J.; Zuspan, A.; Halofsky, J.S.; Raymond, C.; McEvoy, A.; Dye, A.W.; Donato, D.C.; Kim, J.B.; Potter, B.E.; Walker, N.; et al. Cascadia Burning: The historic, but not historically unprecedented, 2020 wildfires in the Pacific Northwest, USA. Ecosphere 2022, 13, e4070. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M.G. Evaluating the 3-m tree crown spacing guideline for the prevention of crowning wildfires in lodgepole pine forests, Alberta. For. Chron. 2020, 96, 165–173. [Google Scholar] [CrossRef]
- Byram, G.M.; Jemison, G.M. Solar radiation and forest fuel moisture. J. Agric. Res. 1943, 67, 149–176. [Google Scholar]
- Gibos, K.E. Effect of Slope and Aspect on Litter Layer Moisture Content of Lodgepole Pine Stands in the East Slopes of the Rocky Mountains of Alberta. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2010; pp. 1–155. [Google Scholar]
- Marshall, G.; Thompson, D.K.; Anderson, K.; Simpson, B.; Linn, R.; Schroeder, D. The impact of fuel treatments on wildfire behaviour in North America boreal fuels: A simulation study using FIRETEC. Fire 2020, 3, 18. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Logan, K.A.; Amiro, B.D.; Skinner, W.R.; Stocks, B.J. Future area burned in Canada. Clim. Chang. 2005, 72, 1–16. [Google Scholar] [CrossRef]
- Whitehead, R.J.; Russo, G.; Hawkes, B.C.; Taylor, S.W.; Brown, B.N.; Armitage, O.B.; Barclay, H.J.; Benton, R.A. Effect of Commercial Thinning on Within-stand Microclimate and Fine Fuel Moisture Conditions in a Mature Lodgepole Pine Stand in Southeastern British Columbia; Information Report; FI-X-004; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre: Victoria, BC, Canada, 2008; pp. 1–16. [Google Scholar]
- Whitehead, R.J.; Russo, G.L.; Hawkes, B.C.; Taylor, S.W.; Brown, B.N.; Barclay, H.J.; Benton, R.A. Effect of a spaced thinning in mature lodgepole pine on within-stand microclimate and fine fuel moisture content. In Fuels Management—How to Measure Success: Conference Proceedings. Portland, OR, USA, 28–30 March 2006; Andrews, P.L., Butler, B.W., Eds.; Proc. RMRS-P-41; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 523–536. [Google Scholar]
- Simpson, M. Case Study 2015 Elaho Fire. Unpublished Work. 2015; 1–10. [Google Scholar]
- Cohen, J.D.; Westhaver, A. An examination of the Lytton, British Columbia wildland-urban fire destruction; Summary report to the British Columbia FireSmart TM Committee. Inst. Catastrophic Loss Res. Pap. 2022, 73, 1–43. [Google Scholar]
- Countryman, C.M. The concept of fire environment. Fire Manag. Today 2004, 64, 49–52. [Google Scholar]
- Beardsley, C.A.; Fuller, K.A.; Reilly III, T.H.; Henry, C.S. Method for Analysis of Environmental Lead Contamination in Soils. Analyst 2022, 146, 7520–7527. [Google Scholar] [CrossRef]
- Peters, J. On-Farm Moisture Testing of Corn Silage, Extension University of Wisconsin-Madison. 2024. Available online: https://cropsandsoils.extension.wisc.edu/articles/on-farm-moisture-testing-of-corn-silage/ (accessed on 15 June 2024).
- Ricotta, C.; Bajocco, S.; IGuglietta, D.; Conedera, M. Assessing the influence of roads on fire ignition: Does land cover matter? Fire 2018, 1, 24. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kane, J.M. Stand conditions alter seasonal microclimate and dead fuel moisture in a Northwestern California oak woodland. Agric. For. Meteorol. 2021, 308–309, 108602. [Google Scholar] [CrossRef]
- Pickering, B.J.; Duff, T.J.; Baillie, C.; Cawson, J.G. Darker, cooler, wetter: Forest understories influence surface fuel moisture. Agric. For. Meteorol. 2021, 300, 108311. [Google Scholar] [CrossRef]
- Faiella, S.M.; Bailey, J.D. Fluctuations in fuel moisture across restoration treatments in semi-arid ponderosa pine forests of northern Arizona, USA. Int. J. Wildland Fire 2007, 16, 119–127. [Google Scholar] [CrossRef]
- Stickel, P.W. The Measurement and Interpretation of Forest Fire-Weather in the Western Adirondacks; Technical Publication No. 34; Syracuse University, New York State College of Forestry: Syracuse, NY, USA, 1931; pp. 1–115. [Google Scholar]
- Bigelow, S.W.; North, M.P. Microclimate effects of fuels-reduction and group-selection silviculture: Implications for fire behaviour in Sierran mixed-conifer forests. For. Ecol. Manag. 2011, 264, 51–59. [Google Scholar] [CrossRef]
- Weatherspoon, C.P. Fire-Silviculture Relationships in Sierra Forests. In Sierra Nevada Ecosystem Project, Final Report to Congress, II: Vol. II: Assessments and Scientific Basis for Management Options; Water Resources Center Report No. 37; Centers for Water and Wildland Resources, University of California, Davis: Davis, CA, USA, 1996; pp. 1167–1176. Available online: https://pubs.usgs.gov/dds/dds-43/VOL_II/VII_C44.PDF (accessed on 12 May 2023).
- Estes, B.L.; Knapp, E.E.; Skinner, C.N.; Uzoh, C.C. Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California. Int. J. Wildland Fire 2012, 21, 428–435. [Google Scholar] [CrossRef]
- Schroeder, D.; Russo, G.; Beck, J.; Hawkes, B.; Dalrymple, G. Modelling Ignition Probability of Thinned Lodgepole Pine Stands; Advantage 7(12); Forest Research Institute of Canada: Pointe-Claire, QC, Canada, 2006; pp. 1–8. [Google Scholar]
- Blackwell, B.A. Community Wildfire Resiliency Plan, Resort Municipality of Whistler. 2022; pp. 1-100 + Appendices. Available online: https://www.whistler.ca/services/emergency/fire/community-wildfire-protection-and-preparedness/wildfire-protection-strategy/ (accessed on 15 June 2024).
- Alexander, M.E. A fuels management bibliography with subject index. Fire Manag. Today 2007, 67, 45. [Google Scholar]
- Drysdale, D. Introduction to Fire Dynamics; Wiley: Chichester, UK, 2011; p. 551. [Google Scholar]
- Hallett, D.J.; Lepofsky, D.S.; Mathewes, R.W.; Lertzman, K.P. 11,000 years of fire history and climate in the mountain hemlock rain forests of southwestern British Columbia based on sedimentary charcoal. Can. J. For. Res. 2003, 33, 292–312. [Google Scholar] [CrossRef]
- Hoffman, K.M.; Gavin, D.G.; Lertzman, K.P.; Smith, D.J.; Starzomski, B.M. 13,000 years of fire history derived from soil charcoal in a British Columbia coastal temperate rain forest. Ecosphere 2016, 7, e01415. [Google Scholar] [CrossRef]
- Brown, K.J.; Hebda, N.J.; Conder, N.; Golinski, K.G.; Hawkes, B.; Schoups, G. Changing climate, vegetation, and fire disturbance in a sub-boreal pine-dominated forest, British Columbia, Canada. Can. J. For. Res. 2017, 47, 615–627. [Google Scholar] [CrossRef]
- Brown, K.J.; Hebda, N.J.R.; Schoups, G.; Conder, N.; Smith, K.A.P.; Trofymow, J.A. Long-term climate, vegetation and fire regime change in a managed municipal water supply area, British Columbia, Canada. Holocene 2019, 29, 1411–1424. [Google Scholar] [CrossRef]
- Graham, R.T.; Harvey, A.E.; Jain, T.B.; Tonn, J.R. The Effects of Thinning and Similar stand Treatments on Fire Behavior in Western Forests; General Technical Report; PNW-GTR-463; USDA Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1999; pp. 1–27. [Google Scholar]
- Lezberg, A.L.; Battaglia, M.A.; Shepperd, W.D.; Schoettle, A.W. Decades-old silvicultural treatments influence surface wildfire severity and post-fire nitrogen availability in a ponderosa pine forest. For. Ecol. Manag. 2008, 255, 49–61. [Google Scholar] [CrossRef]
- Cumming, S.G. Forest type and wildfire in the Alberta boreal mixedwood: What do fires burn? Ecol. Appl. 2001, 11, 97–110. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Barber, Q.E.; Hirsch, K.G.; Stockdale, C.A.; Erni, S.; Wang, X.; Arsenault, D.; Parks, S.A. Fire deficit increases wildfire risk for many communities in the Canadian boreal forest. Nat. Commun. 2020, 11, 2121. [Google Scholar] [CrossRef]
- Countryman, C.M. The Fire Environment Concept; Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1972; pp. 1–12. [Google Scholar]
- Lawson, B.D.; Armitage, O.B. Weather Guide for the Canadian Forest Fire Danger Rating System; Canadian Forest Service Northern Forestry Centre: Edmonton, AB, Canada, 2008; pp. 1–73. [Google Scholar]
- PIP. FireSmart: Protecting Your Community from Wildfire, 2nd ed.; Partners in Protection: Edmonton, AB, Canada, 2003; pp. 1–165. [Google Scholar]
- Alexander, M.E. Thoughts on living with fire in Canada’s forests. In Proceedings of the Institute of Catastrophic Loss Reduction (ICLR) Friday Forum; Online, 15 May 2020. Available online: https://www.frames.gov/catalog/61283 (accessed on 15 June 2024).
- Wildfire Prevention. Available online: https://www2.gov.bc.ca/gov/content/safety/wildfire-status/prevention/vegetation-and-fuel-management (accessed on 15 June 2024).
- Stevens, V. The Ecological Role of Coarse Woody Debris: An Overview of the Ecological Importance of CWD in B.C. Forests; Ministry of Forests, British Columbia: Victoria, BC, Canada, 1997; p. 30. [Google Scholar]
- Scheungrab, D.B.; Trettin, C.C.; Lea, R.; Jurgensen, M.F. Woody debris. In General Technical Report SRS-38; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2000; pp. 47–48. [Google Scholar]
- Van Galen, L.G.; Jordan, G.J.; Baker, S.C. Relationships between coarse woody debris habitat quality and forest maturity attributes. Conserv. Sci. Pract. 2019, 1, e55. [Google Scholar] [CrossRef]
- Hart, S.C.; Porter, T.M.; Basiliko, N.; Venier, L.; Hajibabaei, M.; Morris, D. Fungal community dynamics and carbon mineralization in coarse woody debris across decay stage, tree species, and stand development stage in northern boreal forests. bioRxiv 2022, 1–65. [Google Scholar] [CrossRef]
- Whistler.Ca. Available online: https://www.whistler.ca/media/news/media-advisory-infrastructure-announcement-whistler?utm_medium=email&utm_campaign=Whistler%20Today%20November%2010%202022&utm_content=Whistler%20Today%20November%2010%202022+CID_36a9958ef0633a2e4eba703717db32dc&utm_source=Email%20marketing%20software&utm_term=Read%20More (accessed on 10 November 2022).
- Taylor, C.; Blanchard, W.; Lindenmayer, D.B. Does forest thinning reduce fire severity in Australian eucalypt forests? Conserv. Lett. 2020, 14, e12766. [Google Scholar] [CrossRef]
- Merrill, D.L. Glossary of Forest Fire Management Terms, 4th ed.; Alexander, M.E., Ed.; NRCC No. 26516; National Research Council of Canada, Canadian Committee on Forest Fire Management: Ottawa, ON, Canada, 1987; pp. 1–91. [Google Scholar]
- Hirsch, K.G.; Pengelly, I. Forest fuels management in theory and practice. In Stand Density Management: Planning and Implementation; Bamsey, C.R., Alberta, E., Eds.; Proceedings of a Conference, November 6–7, 1997; Clear Lake Ltd.: Edmonton, AB, Canadian, 1998; pp. 112–116. [Google Scholar]
- Smith, D.M. The Practice of Silviculture, 7th ed.; John Wiley & Sons: New York, NY, USA, 1962; pp. 1–578. [Google Scholar]
- Alexander, M.E. Are shaded fuelbreaks the answer to Canada’s community wildfire protection problem? For. Chron. 2019, 95, 2–3. [Google Scholar] [CrossRef]
- Braun, W.J.; Murdoch, D.J. A First Course in Statistical Programming with R, 3rd ed.; Cambridge University Press: Cambridge, UK, 2021; pp. 1–257. [Google Scholar]
- Barrows, J.S. Fire Behavior in Northern Rocky Mountain Forests; Station Paper, No. 29; U.S. Department of Agriculture, Forest Service, Northern Rocky Mountain Forest and Range, Experiment Station: Missoula, MT, USA, 1951; pp. 1–103. Available online: https://www.frames.gov/documents/behaveplus/publications/Barrows_1951_SP-29.pdf (accessed on 15 June 2024).
- Forestry Canada Fire Danger Group. Development and Structure of the Canadian Forest Fire Behavior Prediction System; Information Report; ST-X-3; Forestry Canada, Science and Sustainable Development Directorate: Ottawa, ON, Canada, 1992; pp. 1–63. [Google Scholar]
- Taylor, S.W.; Alexander, M.E.; Pike, R.G. Field Guide to the Canadian Forest Fire Behaviour Prediction (FBP) System; Canadian Forest Service, Northern Forestry Centre: Edmonton, AB, Canada, 1997; Volume 11. [Google Scholar]
- Turner, J.A.; Lawson, B.D. Weather in the Canadian forest fire danger rating system. In A User Guide to National Standards and Practices; Information Report. BC-X-177; Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada, 1978; Volume 40. [Google Scholar]
- Andrews, P.L. Modeling Wind Adjustment Factor and Midflame Wind Speed for Rothermel’s Surface Fire Spread Model; Gen. Tech. Rep. RMRS-GTR-266; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2012; p. 266. 39p. [Google Scholar]
- Anderson, M.J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 2006, 62, 245–253. [Google Scholar] [CrossRef]
- Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006, 9, 683–693. [Google Scholar] [CrossRef]
- O’Neill, M.E. A Weighted Least Squares Approach to Levene’s Test of Homogeneity of Variance. Aust. N. Z. J. Stat. 2000, 42, 81–100. [Google Scholar] [CrossRef]
- Stier, A.C.; Geange, S.W.; Hanson, K.M.; Bolker, B.M. Predator density and timing of arrival affect reef fish community assembly. Ecology 2013, 94, 1057–1068. [Google Scholar] [CrossRef]
- Colquhoun, D. An investigation of the false discovery rate and the misinterpretation of p-values. R. Soc. Open Sci. 2014, 1, 140216. [Google Scholar] [CrossRef]
Site | Treatment | Tree Species Composition 1 | Avg. DBH 2 (cm) | Avg. Height (m) (Min–Max) | Stand Density (stems ha−1) | Tree Age (Min–Max) |
---|---|---|---|---|---|---|
Alpine | Unthinned | Bl, Cw, Fd, Hw | 33.4 | 20.1 (12–26) | 440 | 87.4 (54–195) |
Thinned | Bl, Cw, Fd | 44.6 | 21.5 (16–26) | 220 | 71.6 (34–102) | |
Lost Lake | Unthinned | Bl, Cw, Fd, Hw, Pw, Pl | 29.8 | 18.0 (8–30) | 548 | 97.7 (25–163) |
Thinned | Bl, Cw, Fd, Hw, Pw, Pl, Py | 26.9 | 18.9 (11–26) | 733 | 78.0 (47–118) | |
Callaghan | Unthinned | Bl, Cw, Fd, Hw | 22.4 | 18.9 (12–35) | 900 | 33.7 (22–41) |
Thinned | Bl, Cw, Fd, Hw | 35.5 | 19.9 (12–26) | 567 | 36.3 (28–41) | |
Cheakamus | Unthinned | Bl, Cw, Fd, Hw | 29.0 | 20.1(11–27) | 717 | 40.7 (36–47) |
Thinned | Bl, Cw, Fd, Hw, Pw | 33.6 | 21.7 (13–28) | 317 | 40.5 (30–48) |
Season | Treatment | Site | |||
---|---|---|---|---|---|
Alpine | Lost Lake | Cheakamus | Callaghan | ||
Spring | Thinned | 4 | 13 | 19 | 8 |
Unthinned | 6 | 13 | 22 | 14 | |
Late summer | Thinned | 4 | 15 | 25 | 8 |
Unthinned | 6 | 12 | 28 | 13 |
Treatment | Index 1 | Spring | Late Summer | ||||
---|---|---|---|---|---|---|---|
Min | Max | Avg. | Min | Max | Avg. | ||
Thinned | Local Time | 7:57 | 16:40 | 13:48 | 9:04 | 17:07 | 12:28 |
Temp. (°C) | 5.5 | 13.9 | 9.0 | 18.1 | 35.2 | 27.4 | |
RH (%) | 44 | 85 | 61 | 8 | 82 | 36 | |
Precip. (mm) | 0.0 | 0.1 | 0.0 | 0.0 | 2.5 | 1.2 | |
Wind (km h−1) | 0.0 | 10.0 | 4.7 | 0.0 | 9.0 | 5.3 | |
Unthinned | Local Time | 8:58 | 17:02 | 12:46 | 8:25 | 16:55 | 12:39 |
Temp. (°C) | 4.9 | 13.4 | 8.6 | 18.8 | 30.3 | 24.6 | |
RH (%) | 44 | 89 | 64 | 19 | 88 | 46 | |
Precip. (mm) | 0.0 | 1.4 | 0.1 | 0.0 | 0.0 | 0.1 | |
Wind (km h−1) | 0.0 | 0.2 | 4.4 | 0.0 | 0.0 | 3.6 |
Direction of Effect with Higher Risk | Variable | Instrument |
---|---|---|
Increase | Solar radiation (W m−2) | Extech Solar power meter; hand-held (https://www.flir.ca/products/SP505/ (accessed on 15 June 2024)) |
Ambient air temperature (°C) | Kestrel 5500 with vane, tripod-mounted (https://kestrelmeters.com/products/kestrel-5500-weather-meter (accessed on 15 June 2024)) | |
In-stand wind speed (m s−1) | Kestrel 5500; wind speed averaged over a 5 min interval, taken in the field as m s−1 and then converted to km h−1 | |
Decrease | Relative humidity (%) | Kestrel 5500 |
Snow depth (cm) | Snow ruler (mm) (https://backcountryaccess.com/en-ca/p/2-meter-ruler (accessed on 15 June 2024)) | |
Snow cover (cm2) | Snow ruler (mm) | |
Soil moisture (%) | Extech MO750 Soil Moisture Meter (20 cm probe) (https://www.itm.com/product/extech-mo750-soil-moisture-meter (accessed on 15 June 2024)) | |
Fuel moisture (%) | OHaus Scot II model balance (0.01 g), Excalibur 4-tray Dehydrator (https://excaliburdehydrator.com/products/2400-excalibur-4-tray-no-timer-black-solid-door (accessed on 15 June 2024)) | |
Canopy cover (%) | Olympus Tough TG4 (https://en.wikipedia.org/wiki/Olympus_Tough_TG-4 (accessed on 15 June 2024)) |
Treatment | Site | |||
---|---|---|---|---|
Alpine | Lost Lake | Cheakamus | Callaghan | |
Thinned | 2 | 4 | 5 | 4 |
Unthinned | 2 | 3 | 7 | 3 |
Treatment | Site | |||
---|---|---|---|---|
Alpine | Lost Lake | Cheakamus | Callaghan | |
Thinned | 4 | 4 | 18 | 17 |
Unthinned | 6 | 0 | 25 | 22 |
Direction Change | Variable | UT Avg. | T Avg. | % Change | UT SD | T SD | UT n | T n |
---|---|---|---|---|---|---|---|---|
Increase | Solar radiation (Wm−2) | 26.4 | 213.5 | 78.0 | 141.3 | 15.4 | 55 | 44 |
Ambient air temperature (°C) | 9.1 | 10.8 | 8.6 | 1.1 | 0.5 | 55 | 44 | |
In-stand wind speed (km h−1) | 0.7 | 3.7 | 68.1 | 0.6 | 0.2 | 55 | 44 | |
Decrease | Relative humidity (%) | 73.6 | 61.4 | −9.0 | 5.5 | 7.9 | 55 | 44 |
Soil moisture (%) | 4.6 | 2.4 | −32.1 | 1.0 | 1.7 | 55 | 44 | |
Snow depth (cm) | 7.8 | 0.0 | −100.0 | 0.0 | 8.3 | 55 | 44 | |
Snow cover (cm2) | 4.9 | 0.0 | −100.0 | 0.0 | 3.8 | 55 | 44 |
Direction Change | Variable | UT Avg. | T Avg. | % Change | UT SD | T SD | UT n | T n |
---|---|---|---|---|---|---|---|---|
Increase | Solar radiation (Wm−2) | 23.3 | 485.4 | 90.8 | 3.5 | 330.0 | 67 | 46 |
Ambient air temperature (°C) | 25.2 | 26.7 | 3.0 | 3.4 | 1.8 | 67 | 46 | |
In-stand wind speed (km h−1) | 0.6 | 2.5 | 63.4 | 0.1 | 0.5 | 67 | 46 | |
Decrease | Relative humidity (%) | 44.9 | 40.0 | −5.8 | 14.2 | 13.7 | 67 | 46 |
Soil moisture (%) | 1.6 | 1.3 | −10.8 | 1.3 | 1.3 | 67 | 46 | |
Fuel moisture (%) | 33.3 | 23.7 | −16.8 | 10.4 | 13.4 | 67 | 46 |
Treatment | Site | Total % Canopy | ||
---|---|---|---|---|
Alpine | Cheakamus | Callaghan | ||
Thinned | 66.6 | 60.4 | 63.6 | 63.5 |
Unthinned | 96.5 | 88.8 | 94.1 | 93.2 |
−18 | −19 | −19 | −19 |
Treatment | Fuel Component | Site | ||
---|---|---|---|---|
Alpine | Cheakamus | Callaghan | ||
Thinned | Living plants | 14.43 | 38.96 | 18.96 |
Moss | 0.78 | 5.32 | 1.64 | |
Coarse wood debris | 25.17 | 27.86 | 26.64 | |
Needles/cones | 24.71 | 5.90 | 4.21 | |
Chipped wood | 0.00 | 0.05 | 4.03 | |
Bare ground/rock | 34.35 | 18.91 | 44.98 | |
Unthinned | Living plants | 1.51 | 37.88 | 17.36 |
Moss | 1.57 | 16.72 | 8.72 | |
Coarse woody debris | 50.59 | 29.50 | 22.18 | |
Needles/cones | 18.54 | 4.20 | 10.04 | |
Chipped wood | 0.00 | 0.02 | 0.01 | |
Bare ground/rock | 23.84 | 7.67 | 43.68 |
Site | Reduction in % Canopy Cover (T − UT) | Year | Contractor |
---|---|---|---|
Alpine | −29.9 | 2021 | 3 |
Callaghan | −30.5 | 2017–1019 | 1 |
Cheakamus | −28.4 | 2019–2021 | 2 |
“Lightly-Thinned” | −12.0 | ||
“Moderately-Thinned” | −20.0 |
Treatment | Ranking | Variable | Spring | Late Summer | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A | LL | Cal | CCF | A | LL | Cal | CCF | |||
Untreated | Driest overall | RH | 4 | 1 | 3 | 2 | 2 | 4 | 1 | 3 |
Soil moisture | 4 | 3 | 2 | 1 | 1 | 4 | 2 | 3 | ||
Snow/Fuel | 3 | 4 | 1 | 2 | 3 | 4 | 2 | 1 | ||
Warmest overall | Temperature | 3 | 2 | 4 | 1 | 1 | 4 | 2 | 3 | |
Solar radiation | 1 | 2 | 4 | 3 | 2 | 4 | 1 | 3 | ||
Windiest overall | Wind speed | 1 | 1 | 3 | 4 | 4 | 4 | 1 | 4 | |
Treated | Driest overall | RH | 1 | 3 | 4 | 2 | 4 | 3 | 1 | 2 |
Soil moisture | 2 | 3 | 4 | 1 | 4 | 3 | 2 | 1 | ||
Snow/Fuel | 4 | 4 | 4 | 4 | 4 | 3 | 2 | 1 | ||
Warmest overall | Temperature | 2 | 3 | 4 | 1 | 3 | 4 | 1 | 2 | |
Solar radiation | 4 | 1 | 3 | 2 | 2 | 4 | 1 | 3 | ||
Windiest overall | Wind speed | 1 | 4 | 2 | 3 | 4 | 2 | 1 | 3 | |
Total ranking across treatments | 30 | 31 | 38 | 26 | 34 | 43 | 17 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millikin, R.L.; Braun, W.J.; Alexander, M.E.; Fani, S. The Impact of Fuel Thinning on the Microclimate in Coastal Rainforest Stands of Southwestern British Columbia, Canada. Fire 2024, 7, 285. https://doi.org/10.3390/fire7080285
Millikin RL, Braun WJ, Alexander ME, Fani S. The Impact of Fuel Thinning on the Microclimate in Coastal Rainforest Stands of Southwestern British Columbia, Canada. Fire. 2024; 7(8):285. https://doi.org/10.3390/fire7080285
Chicago/Turabian StyleMillikin, Rhonda L., W. John Braun, Martin E. Alexander, and Shabnam Fani. 2024. "The Impact of Fuel Thinning on the Microclimate in Coastal Rainforest Stands of Southwestern British Columbia, Canada" Fire 7, no. 8: 285. https://doi.org/10.3390/fire7080285
APA StyleMillikin, R. L., Braun, W. J., Alexander, M. E., & Fani, S. (2024). The Impact of Fuel Thinning on the Microclimate in Coastal Rainforest Stands of Southwestern British Columbia, Canada. Fire, 7(8), 285. https://doi.org/10.3390/fire7080285