Seasonal Effects of Wildfires on the Physical and Chemical Properties of Soil in Andean Grassland Ecosystems in Cusco, Peru: Pending Challenges
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analyses of Physicochemical Properties of Soil
2.3. Biomass Estimation
2.4. Statistical Analysis
2.5. Estimation of Severity of the Burned Areas
3. Results
3.1. Perception of the Population
3.2. Wildfire Severity
3.3. Changes in Soil Properties
3.4. Performance of Dry Biomass
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveras, I.; Girardin, C.; Doughty, C.E.; Cahuana, N.; Arenas, C.E.; Oliver, V.; Huaraca Huasco, W.; Malhi, Y. Andean Grasslands Are as Productive as Tropical Cloud Forests. Environ. Res. Lett. 2014, 9, 115011. [Google Scholar] [CrossRef]
- Gonzalez, O.; Díaz, C.; Britto, B. Assemblage of Nectarivorous Birds and Their Floral Resources in an Elfin Forest of the Central Andes of Peru. Ecol. Apl. 2019, 18, 21. [Google Scholar] [CrossRef]
- Montesinos-Tubée, D.B.; Jans, H. Treasures of Peru. The Alpine Gardener. J. Alp. Gard. Soc. 2015, 83, 174–191. [Google Scholar]
- Hughes, C.E. The Tropical Andean Plant Diversity Powerhouse. New Phytol. 2016, 210, 1152–1154. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, B. The Puna High Elevation Grassland of the Andes. Rangel. Arch. 1984, 6, 99–101. [Google Scholar]
- Adams, J.; Samimi, C.; Mitterer, C.; Bendix, J.; Beck, E. Comparison of Pasture Types in the Tropical Andes: Species Composition, Distribution, Nutritive Value and Responses to Environmental Change. Basic Appl. Ecol. 2022, 59, 139–150. [Google Scholar] [CrossRef]
- Potschin, M.; Haines-Young, R.; Fish, R.; Turner, R.K.; Egoh, B.N.; Bengtsson, J.; Lindborg, R.; Bullock, J.M.; Dixon, P.; Rouget, M. The Importance of Grasslands in Providing Ecosystem Services. In Routledge Handbook of Ecosystem Services; Routledge: London, UK, 2023. [Google Scholar] [CrossRef]
- Modernel, P.; Rossing, W.A.H.; Corbeels, M.; Dogliotti, S.; Picasso, V.; Tittonell, P. Land Use Change and Ecosystem Service Provision in Pampas and Campos Grasslands of Southern South America. Environ. Res. Lett. 2016, 11, 113002. [Google Scholar] [CrossRef]
- Parr, C.L.; Lehmann, C.E.R.; Bond, W.J.; Hoffmann, W.A.; Andersen, A.N. Tropical Grassy Biomes: Misunderstood, Neglected, and under Threat. Trends Ecol. Evol. 2014, 29, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Borgnia, M.; Vilá, B.L.; Cassini, M.H. Foraging Ecology of Vicuña, Vicugna Vicugna, in Dry Puna of Argentina. Small Rumin. Res. 2010, 88, 44–53. [Google Scholar] [CrossRef]
- De La Cruz-Arango, J.; Cóndor Alarcón, R. Dynamics of Post-Fire Natural Regeneration of High Andean Ecosystems in the District of Chiara. Ayacucho-Peru. J. Selva Andin. Biosph. 2023, 11, 6–21. [Google Scholar] [CrossRef]
- Osman, K. Soils: Principles, Properties and Management; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Farguell, J.; Úbeda, X. Long-Term Dynamics of Soil Chemical Properties after a Prescribed Fire in a Mediterranean Forest (Montgrí Massif, Catalonia, Spain). Sci. Total Environ. 2016, 572, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Hofstede, R.G.M. The Effects of Grazing and Burning on Soil and Plant Nutrient Concentrations in Colombian Páramo Grasslands. Plant Soil 1995, 173, 111–132. [Google Scholar] [CrossRef]
- Zubieta, R.; Prudencio, F.; Ccanchi, Y.; Saavedra, M.; Sulca, J.; Reupo, J.; Alarco, G. Potential Conditions for Fire Occurrence in Vegetation in the Peruvian Andes. Int. J. Wildl. Fire 2021, 30, 836–849. [Google Scholar] [CrossRef]
- SERFOR. Plan de Prevención y Reducción de Riesgos de Incendios Forestales 2019–2022; Servicio Nacional Forestal y de Fauna Silvestre: Lima, Peru, 2018.
- Alvarez, S. Percepción Frente a La Ocurrencia de Incendios Forestales En Los Pobladores de La Comunidad Chanka, Huanoquite–Paruro y Del Centro Poblado Arín-Huarán, Calca–Calca. Tesis para Optar el Título Profesional de Antropóloga, Universidad San Antonio Abad del Cusco, Cusco, Perú, 2022. Available online: http://hdl.handle.net/20.500.12918/7125 (accessed on 1 June 2024).
- INEI. Censo Nacional 2017: XII de Población, VII de Vivienda y II de Comunidades Indigenas; Instituto Nacional de Estadistica e Informática: Lima, Peru, 2018.
- Wurzinger, M.; Gutiérrez, G. Alpaca Breeding in Peru: From Individual Initiatives towards a National Breeding Programme? Small Rumin. Res. 2022, 217, 106844. [Google Scholar] [CrossRef]
- Stavi, I. Wildfires in Grasslands and Shrublands: A Review of Impacts on Vegetation, Soil, Hydrology, and Geomorphology. Water 2019, 11, 1042. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed Burning in Southern Europe: Developing Fire Management in a Dynamic Landscape. Front. Ecol. Environ. 2013, 11, e4–e14. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, F.; de Figueiredo, T.; Nogueira, C.; Queirós, A. Effect of Prescribed Fire on Soil Properties and Soil Erosion in a Mediterranean Mountain Area. Geoderma 2017, 307, 172–180. [Google Scholar] [CrossRef]
- Dunson, C.P.; Oswald, B.P.; Farrish, K. The Effects of Prescribed Burning on Soil Water Infiltration Rates and Other Select Soil Physical and Chemical Properties in East Texas. Master’s Thesis, Stephen F Austin State University, Nacogdoches, TX, USA, 2021. [Google Scholar]
- Oliveira, A.P.P.D.; Silva, E.C.D.; Marcondes, R.A.T.; Pereira, M.G.; Motta, M.S.; Diniz, Y.V.D.F.G.; Fagundes, H.D.S.; Delgado, R.C.; Santos, O.A.Q.D.; Anjos, L.H.C.D. Slope Position Controls Prescribed Fire Effects on Soil: A Case Study in the High-Elevation Grassland of Itatiaia National Park. Rev. Bras. Ciência Solo 2023, 47, e0230009. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H. Fire Effects on Soils: The Human Dimension. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150171. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of Prescribed Fires on Soil Properties: A Review. Sci. Total Environ. 2018, 613–614, 944–957. [Google Scholar] [CrossRef]
- Santana, N.A.; Morales, C.A.S.; Silva, D.A.A.D.; Antoniolli, Z.I.; Jacques, R.J.S. Soil Biological, Chemical, and Physical Properties After a Wildfire Event in a Eucalyptus Forest in the Pampa Biome. Rev. Bras. Cienc. Solo 2018, 42, e0170199. [Google Scholar] [CrossRef]
- Araya, S.N.; Meding, M.; Berhe, A.A. Thermal Alteration of Soil Physico-Chemical Properties: A Systematic Study to Infer Response of Sierra Nevada Climosequence Soils to Forest Fires. Soil 2016, 2, 351–366. [Google Scholar] [CrossRef]
- Pardini, G.; Gispert, M.; Dunjó, G. Distribution Patterns of Soil Properties in a Rural Mediterranean Area in Northeastern Spain. Mt. Res. Dev. 2004, 24, 44–51. [Google Scholar] [CrossRef]
- Gómez-Rey, M.X.; Couto-Vázquez, A.; García-Marco, S.; González-Prieto, S.J. Impact of Fire and Post-Fire Management Techniques on Soil Chemical Properties. Geoderma 2013, 195–196, 155–164. [Google Scholar] [CrossRef]
- Fernández-García, V.; Marcos, E.; Fernández-Guisuraga, J.M.; Taboada, A.; Suárez-Seoane, S.; Calvo, L. Impact of Burn Severity on Soil Properties in a Pinus Pinaster Ecosystem Immediately after Fire. Int. J. Wildl. Fire 2019, 28, 354–364. [Google Scholar] [CrossRef]
- Benhalima, Y.; Santos, E.; Arán, D.; Fonseca, M.; Abreu, M.M.; Duarte, I.; Acacio, V.; Nunes, L.; Lerma, V.; Rego, F. Preliminary Evaluation of Physical Characteristics of Soils from Mediterranean Cork Oak Forests: Post Fire Long Term Assessment. Rev. Ciências Agrárias 2022, 45, 700–703. [Google Scholar]
- Sulaeman, D.; Sari, E.N.N.; Westhoff, T.P. Effects of Peat Fires on Soil Chemical and Physical Properties: A Case Study in South Sumatra. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 12146. [Google Scholar] [CrossRef]
- Fadaei, Z.; Kavian, A.; Solaimani, K.; Sarabsoreh, L.Z.; Kalehhouei, M.; Zuazo, V.H.D.; Rodrigo-Comino, J. The Response of Soil Physicochemical Properties in the Hyrcanian Forests of Iran to Forest Fire Events. Fire 2022, 5, 195. [Google Scholar] [CrossRef]
- Zomer, M.A.; Ramsay, P.M. Post-Fire Changes in Plant Growth Form Composition and Diversity in Andean Páramo Grassland. Appl. Veg. Sci. 2021, 24, e12554. [Google Scholar] [CrossRef]
- Camargo-García, J.C.; Dossman, M.Ã.; Rodriguez, J.A.; Arias, L.M.; Galvis-Quintero, J.H. Cambios En Las Propiedades Del Suelo, Posteriores a Un Incendio En El Parque Nacional Natural de Los Nevados, Colombia. Acta Agron. 2012, 61, 151–165. [Google Scholar]
- Chandra, K.K.; Bhardwaj, A.K. Incidence of Forest Fire in India and Its Effect on Terrestrial Ecosystem Dynamics, Nutrient and Microbial Status of Soil. Int. J. Agric. For. 2015, 5, 69–78. [Google Scholar] [CrossRef]
- Minervini, M.G.; Morrás, H.J.M.; Taboada, M.Á. Efectos Del Fuego En La Matriz Del Suelo. Consecuencias Sobre Las Propiedades Físicas y Mineralógicas. Ecol. Austral 2018, 28, 012–027. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L.M. Fire Effects on Soil Aggregation: A Review. Earth-Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Di Bella, C.M.; Jobbágy, E.G.; Paruelo, J.M.; Pinnock, S. Continental Fire Density Patterns in South America. Glob. Ecol. Biogeogr. 2006, 15, 192–199. [Google Scholar] [CrossRef]
- Astete, F.; Bastante, J. Machupicchu Investigaciones Interdisciplinarias; Dirección desconcentrada de Cultura de Cusco, Ministerio de Cultura: Lima, Peru, 2020; ISBN 978-612-4375-13–2.
- SENAMHI. Caracterización Climática de Las Regiones Apurímac y Cusco. Informe Final de Investigación Del Estudio Bi-Regional Disciplinario. Proy; Programa Adaptacion al Cambio Climático PACC: Cusco, Peru, 2012.
- MINAM. Memoria Descriptiva Del Mapa Nacional de Ecosistemas Del Perú; Ministerio del Ambiente: Lima, Peru, 2019.
- Zubieta, R.; Prudencio, F.; Alarco, G.; Reupo, J. Ocurrencia de Incendios Forestales En El Perú Durante Eventos El Niño. Boletín Técnico El Niño. Inst. Geofísico Del Perú 2019, 6, 6–9. [Google Scholar]
- Ccanchi, Y. Evaluación de Sequías y Del Riesgo Potencial a La Ocurrencia de Incendios Forestales En Ecosistemas Altoandinos Mediante Uso de Sensores Remotos. Tesis para Optar el Título Profesional de Ingeniero Agrícola, Universidad Nacional Agraria, Lima, Perú, 2021. Available online: https://hdl.handle.net/20.500.12996/5195 (accessed on 1 June 2024).
- Zubieta, R.; Ccanchi, Y.; Martínez, A.; Saavedra, M.; Norabuena, E.; Alvarez, S.; Ilbay, M. The Role of Drought Conditions on the Recent Increase in Wildfire Occurrence in the High Andean Regions of Peru. Int. J. Wildl. Fire 2023, 32, 531–544. [Google Scholar] [CrossRef]
- Zubieta, R.; Ccanchi, Y.; Liza, R. Performance of Heat Spots Obtained from Satellite Datasets to Represent Burned Areas in Andean Ecosystems of Cusco, Peru. Remote Sens. Appl. Soc. Environ. 2023, 32, 101020. [Google Scholar] [CrossRef]
- MINAGRI. D. S. 16-2002-AG. Aprueban Reglamento de Manejo de los Residuos Sólidos del Sector Agrario. Available online: https://busquedas.elperuano.pe/normaslegales/aprueban-reglamento-de-manejo-de-los-residuos-solidos-del-se-decreto-supremo-n-016-2012-ag-866098-1/ (accessed on 25 August 2021).
- Ley que Modifica Diversos Artículos del Código Penal y la Ley General del Ambiente, Artículo 310. 2008. Ley 29263. 2008. Available online: https://diariooficial.elperuano.pe/Normas/obtenerDocumento?idNorma=2 (accessed on 15 July 2024).
- Carlotto, V.S.; Cardenas, J.D. Revisión y Actualización Del Cuadrángulo de Cusco (28-s). Escala 1:50 000, Instituto Geológico Minero Metalurgico. 2003. Available online: https://hdl.handle.net/20.500.12544/2115 (accessed on 12 June 2024).
- Guest, G.; Bunce, A.; Johnson, L. How Many Interviews Are Enough?: An Experiment with Data Saturation and Variability. Field Methods 2006, 18, 59–82. [Google Scholar] [CrossRef]
- Smyth, H.J.; Morris, P.W.G. An Epistemological Evaluation of Research into Projects and Their Management: Methodological Issues. Int. J. Proj. Manag. 2007, 25, 423–436. [Google Scholar] [CrossRef]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 3rd ed.; International Soil Reference and Information Center (ISRIC): Wageningen, The Netherlands, 1992; p. 34. [Google Scholar]
- Espinoza Villar, J.C.; Ronchail, J.; Guyot, J.L.; Cochonneau, G.; Naziano, F.; Lavado, W.; De Oliveira, E.; Pombosa, R.; Vauchel, P. Spatio-Temporal Rainfall Variability in the Amazon Basin Countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol. 2009, 29, 1574–1594. [Google Scholar] [CrossRef]
- Bendix, J.; Rollenbeck, R.; Fabian, P.; Emck, P.; Richter, M.; Beck, E. Climate Variability. In Gradients in a Tropical Mountain Ecosystem of Ecuador; Beck, E., Bendix, J., Kottke, I., Makeschin, F., Mosandl, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 281–290. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Sadzawka, A.; Carrasco, M.; Grez, R.; Mora, M.; Flores, H.; Neaman, A. Métodos de Análisis de Suelos Recomendados Para Los Suelos de Chile; Revisión Instituto de Investigaciones Agropecuarias: Santiago, Chile, 2006; p. 34.
- Bremner, J.M. Determination of Nitrogen in Soil by the Kjeldahl Method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Klute, A. Methods of Soil Analysis Part 1, 2nd ed.; CABI: Wallingford, UK, 1986. [Google Scholar]
- Dorich, R.A.; Nelson, D.W. Direct Colorimetric Measurement of Ammonium in Potassium Chloride Extracts of Soils. Soil Sci. Soc. Am. J. 1983, 47, 833–836. [Google Scholar] [CrossRef]
- Chowdhury, S.; Manjón-Cabeza, J.; Ibáñez, M.; Mestre, C.; Broncano, M.J.; Mosquera-Losada, M.R.; Plaixats, J.; Sebastià, M.-T. Responses in Soil Carbon and Nitrogen Fractionation after Prescribed Burning in the Montseny Biosphere Reserve (NE Iberian Peninsula). Sustainability 2022, 14, 4232. [Google Scholar] [CrossRef]
- Parker, K. The 3 Step Method for Measuring Condition and Trend of Forest Study; U.S. Deptepartment of Agriculture, Techniques and Methods of Measuring Understory Vegetation; USDA: Washington, DC, USA, 1958.
- Puma, E. Comparativo de Dos Métodos de Determinación de La Condición de Un Pastizal Tipo Pajonal de Pampa En CICAS LA RAYA-FAZ; Universidad San Antonio Abad del Cusco: Cusco, Peru, 2014. [Google Scholar]
- Howard, J.; Hoyt, S.; Isensee, K.; Telszewski, M.; Pidgeon, E. (Eds.) Coastal Blue Carbon; Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows. Conservation International. 2019. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000372868 (accessed on 1 June 2024).
- Magwaza, L.S.; Tesfay, S.Z. A Review of Destructive and Non-Destructive Methods for Determining Avocado Fruit Maturity. Food Bioprocess Technol. 2015, 8, 1995–2011. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Pla, L. Biodiversidad: Inferencia Basada En El Índice de Shannon y La Riqueza. Interciencia 2006, 31, 583–590. [Google Scholar]
- Cuniff, P. International. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Rockville, MD, USA, 1997. [Google Scholar]
- Pérez-Escobar, O.A.; Zizka, A.; Bermúdez, M.A.; Meseguer, A.S.; Condamine, F.L.; Hoorn, C.; Hooghiemstra, H.; Pu, Y.; Bogarín, D.; Boschman, L.M.; et al. The Andes through Time: Evolution and Distribution of Andean Floras. Trends Plant Sci. 2022, 27, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Mann, H.B.; Whitney, D.R. On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Key, C.; Benson, N. Landscape Assessment (LA) Sampling and Analysis Methods; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; pp. 1–51.
- Adagbasa, E.; Adelabu, S.; Okello, T. Assessment of Short Term Inter-Annual Post Fire Vegetation Recovery Using Land Surface Temperature (LST); University of the Free State: Bloemfontein, South Africa, 2018. [Google Scholar]
- Picos, J.; Alonso, L.; Bastos, G.; Armesto, J. Event-Based Integrated Assessment of Environmental Variables and Wildfire Severity through Sentinel-2 Data. Forests 2019, 10, 1021. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Schmidt-Riese, E.; Kattenborn, T.; Hernández, J. Explaining Sentinel 2-Based DNBR and RdNBR Variability with Reference Data from the Bird’s Eye (UAS) Perspective. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102262. [Google Scholar] [CrossRef]
- Dindaroglu, T.; Babur, E.; Yakupoglu, T.; Rodrigo-Comino, J.; Cerdà, A. Evaluation of Geomorphometric Characteristics and Soil Properties after a Wildfire Using Sentinel-2 MSI Imagery for Future Fire-Safe Forest. Fire Saf. J. 2021, 122, 103318. [Google Scholar] [CrossRef]
- Borrelli, P.; Armenteras, D.; Panagos, P.; Modugno, S.; Schütt, B. The Implications of Fire Management in the Andean Paramo: A Preliminary Assessment Using Satellite Remote Sensing. Remote Sens. 2015, 7, 11061–11082. [Google Scholar] [CrossRef]
- Lecina-Diaz, J.; Alvarez, A.; Retana, J. Extreme Fire Severity Patterns in Topographic, Convective and Wind-Driven Historical Wildfires of Mediterranean Pine Forests. PLoS ONE 2014, 9, e85127. [Google Scholar] [CrossRef] [PubMed]
- Edalati-nejad, A.; Ghodrat, M.; Sharples, J. The Effect of Downslope Terrain on Wildfire Dynamics in the Presence of a Cubic Structure. Adv. For. Fire Res. 2022, 775–783. [Google Scholar] [CrossRef]
- Farfan, R.; Farfan, E. Producción de Pasturas Cultivadas y Manejo de Pastos Naturales Altoandinos; Instituto Nacional de Innovación Agraria: La Molina, Peru, 2012. Available online: http://repositorio.inia.gob.pe/handle/20.500.12955/417 (accessed on 1 June 2024).
- Parra, F.; Torres, J.; Ceroni, A. Composición Florística y Vegetación de Una Microcuenca Andina: El Pachachaca (Huancavelica). Ecol. Apl. 2004, 3, 9–16. [Google Scholar] [CrossRef]
- Tovar, O. Estudio Florístico de Los Pastizales de La Costa Norte Del Perú. Rev. Peru Biol. 2005, 12, 397–413. [Google Scholar] [CrossRef]
- Romanyà, J.; Khanna, P.K.; Raison, R.J. Effects of Slash Burning on Soil Phosphorus Fractions and Sorption and Desorption of Phosphorus. For. Ecol. Manag. 1994, 65, 89–103. [Google Scholar] [CrossRef]
- Sánchez-García, C.; Santín, C.; Neris, J.; Sigmund, G.; Otero, X.L.; Manley, J.; González-Rodríguez, G.; Belcher, C.M.; Cerdà, A.; Marcotte, A.L.; et al. Chemical Characteristics of Wildfire Ash across the Globe and Their Environmental and Socio-Economic Implications. Environ. Int. 2023, 178, 108065. [Google Scholar] [CrossRef]
- Giovannini, G.; Lucchesi, S. Modifications Induced in Soil Physico-Chemical Parameters by Experimental Fires at Different Intensities. Soil Sci. 1997, 162, 479–486. [Google Scholar] [CrossRef]
- Huaman, L.D. Efecto de La Quema En Las Propiedades Fisicoquímicas de Un Suelo Agrícola En El Distrito de Sincos, Jauja, 2018. Tesis para optar el título profesional de Ingeniero Ambiental, Universidad Continental, Junin, Perú, 2021. Available online: https://hdl.handle.net/20.500.12394/11421 (accessed on 1 June 2024).
- Alva, D.M.; Manosalva, H.I. Efecto Del Fuego En Las Propiedades Químicas Del Suelo En El Cañón de Sangal, Cajamarca. Tesis para Optar el Título Profesional de Ingeniero Ambiental, Universidad Privada del Norte, La Libertad, Peru, 2019. Available online: https://hdl.handle.net/11537/21088 (accessed on 1 June 2024).
- Hernández, T.; García, C.; Reinhardt, I. Short-Term Effect of Wildfire on the Chemical, Biochemical and Microbiological Properties of Mediterranean Pine Forest Soils. Biol. Fertil. Soils 1997, 25, 109–116. [Google Scholar] [CrossRef]
- Verma, S.; Singh, D.; Singh, A.K.; Jayakumar, S. Post-Fire Soil Nutrient Dynamics in a Tropical Dry Deciduous Forest of Western Ghats, India. For. Ecosyst. 2019, 6, 6. [Google Scholar] [CrossRef]
- Francos, M.; Stefanuto, E.B.; Úbeda, X.; Pereira, P. Long-Term Impact of Prescribed Fire on Soil Chemical Properties in a Wildland-Urban Interface. Northeastern Iberian Peninsula. Sci. Total Environ. 2019, 689, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Gutiérrez, S.E.; Domínguez-Rivera, I.C.; Daza-Torrez, M.C.; Ochoa-Tocachi, B.F.; Oviedo-Ocaña, E.R. Effects of Rainfall Seasonality and Land Use Change on Soil Hydrophysical Properties of High-Andean Dry Páramo Grasslands. Catena 2024, 238, 107866. [Google Scholar] [CrossRef]
- Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Zhou, Q.; Nandwani, D.; Hui, D.; Yu, J. Electrical Conductivity of Nutrient Solution Influenced Photosynthesis, Quality, and Antioxidant Enzyme Activity of Pakchoi (Brassica Campestris L. Ssp. Chinensis) in a Hydroponic System. PLoS ONE 2018, 13, e0202090. [Google Scholar] [CrossRef] [PubMed]
- Pacheco Isasi, A.E. Efecto Del Fuego Sobre Las Comunidades de Pastizales y Matorrales En El Anexo de Torotani, Distrito de Polobaya, Arequipa, Octubre-Diciembre, 2018. Tesis para Optar el Título Profesional de Bióloga, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2019. Available online: http://repositorio.unsa.edu.pe/handle/UNSA/9043 (accessed on 1 June 2024).
- Novara, A.; Gristina, L.; Bodí, M.B.; Cerdà, A. The Impact of Fire on Redistribution of Soil Organic Matter on a Mediterranean Hillslope under Maquia Vegetation Type. L. Degrad. Dev. 2011, 22, 530–536. [Google Scholar] [CrossRef]
- Mason, J.A.; Zanner, C.W. Grassland soils. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 138–145. [Google Scholar] [CrossRef]
- Bahr, E.; Chamba Zaragocin, D.; Makeschin, F. Soil Nutrient Stock Dynamics and Land-Use Management of Annuals, Perennials and Pastures after Slash-and-Burn in the Southern Ecuadorian Andes. Agric. Ecosyst. Environ. 2014, 188, 275–288. [Google Scholar] [CrossRef]
- Sala, M.; Rubio, J.L. Soil Erosion as a Consequence of Forest Fires; Sociedad Europea Para La Conservación Del Suelo; Geoderma Ediciones: Logroño, Spain, 1994; pp. 15–27. [Google Scholar]
- Pretty, J. Agroecology: Ecological Processes in Sustainable Agriculture. Second Edition. By S. R. Gliessman. Boca Raton, FL, USA: Lewis Publishers (CRC Press) (2007), Pp. 408, £29.99. ISBN 0-8493-2845-4. Exp. Agric. 2007, 43, 521. [Google Scholar] [CrossRef]
- Hermitaño and Crisostommo, H. Efecto de La Quema de Pastizales En Las Propiedades de Los Suelos En Huamancaca Chico. Huan-Cayo. 2020. Tesis para optar el título profesional de Ingeniero Ambiental, Universidad Continental, Huancayo, Peru, 2021. Available online: https://hdl.handle.net/20.500.12394/10349 (accessed on 1 June 2024).
- Thompson, L.M.; Tomás, J.P.; Troeh, F.R. Los Suelos y Su Fertilidad; Editorial Reverté: Barcelona, Spain, 1980. [Google Scholar]
- Végvári, Z.; Valkó, O.; Balázs, D.; Török, P.; Konyhás, S.; Tóthmérész, B. Effects of Land Use and Wildfires on the Habitat Selection of Great Bustard (Otis Tarda L.)—Implications for Species Conservation. Land Degrad. Dev. 2016, 27, 910–918. [Google Scholar] [CrossRef]
- Medrano, M.; Hernández, J.; Corral, S.; Nájera, J. Tree Diversity at Different Altitude Levels in the El Salto, Durango Region. Rev. Mex. Cienc. For. 2017, 8, 57–68. [Google Scholar]
- Tedim, F.; Leone, V. The Dilemma of Wildfire Definition: What It Reveals and What It Implies. Front. For. Glob. Change 2020, 3, 134. [Google Scholar] [CrossRef]
- USDA. National Prescribed Fire Resource Mobilization Strategy; Forest Service U.S. Department of Agriculture: Washington, DC, USA, 2023.
- Corona, P.; Ascoli, D.; Barbati, A.; Bovio, G.; Colangelo, G.; Elia, M.; Garfì, V.; Iovino, F.; Lafortezza, R.; Leone, V.; et al. Integrated Forest Management to Prevent Wildfires under Mediterranean Environments. Ann. Silvic. Res. 2015, 39, 1–22. [Google Scholar] [CrossRef]
- IPCC. Tropical Forests. In Climate Change 2022–Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; pp. 2369–2410. [Google Scholar] [CrossRef]
- Carrión-Paladines, V.; Hinojosa, M.B.; Jiménez Álvarez, L.; Reyes-Bueno, F.; Correa Quezada, L.; García-Ruiz, R. Effects of the Severity of Wildfires on Some Physical-Chemical Soil Properties in a Humid Montane Scrublands Ecosystem in Southern Ecuador. Fire 2022, 5, 66. [Google Scholar] [CrossRef]
Peasant Community | Macay | Salloc |
---|---|---|
Province | Calca | Quispicanchi |
District | Calca | Andahuaylillas |
Altitude | 2944 masl. | 3524 masl. |
Average slope | 33.0° | 3.4° |
Latitude | 13.387 S | 13.639 S |
Longitude | 71.923 W | 71.686 W |
Celsius temperature | 10°–25° | 5°–9° |
Main economic activity | Agriculture (potatoes, corn, etc.), Livestock (cattle and sheep) | Agriculture (corn, etc.), Livestock (cattle and sheep) |
Main species | Stipa ichu, Poa annua, Calamagrostis intermedia | Pennicetum clandestinum, Paspalum vaginatum, Melinis minutiflora |
Characteristics | Wildfire | Wildfire |
Approximate duration | 15:00–19: 00 h | 14:30–18:00 h |
Date | 23 August 2022 | 30 August 2022 |
Affected area | 94 ha. | 13 ha. |
Affected Vegetation | Grassland | Grassland |
Characteristics | Macay | Salloc | ||
---|---|---|---|---|
Unburned Area | Burned Area | Unburned Area | Burned Area | |
Number of transects | 2 | 2 | 2 | 2 |
Longitudinal dimension of the transects | 300 m. | 300 m. | 100 m. | 100 m. |
Elevation masl. | 3177 | 3187 | 3105 | 3106 |
Slope | 33° | 31° | 3° | 5° |
Number of quadrants | 2 | 2 | 2 | 2 |
Quadrant dimension | 1 m2 | 1 m2 | 1 m2 | 1 m2 |
Question | Social Opinion |
---|---|
Who is involved in fire use? | Residents dedicated to activities such as agriculture or livestock are the ones who use fire. This occurs mainly in the morning to avoid intense winds (a potential factor in fire expansion), which occur mainly in the afternoon. |
What is the objective of burning? | Eliminating weeds and stubble to expand cropland. Renewing grasslands. Limiting the uncontrolled growth of vegetation. |
What is the season in which the burnings take place? | June, July, August, and September (for preparing the ground for the next agricultural campaign). April, May, October, and November (for grassland renewal). |
Who usually participates during the burning? | Families take responsibility for managing the fire to prevent its spread, along with people who have expertise in burning practices. |
Does the burning of grasslands improve soil fertility? | Yes, grassland burning enhances soil fertility by providing ash that can act as a fertilizer. |
After a fire, what is the process of grassland recovery, in terms of both quantity and quality and what is the typical timeframe for this recovery? | The post-fire recovery of grassland can vary in both quantity and quality. Sometimes, the grassland remains unchanged, while in other cases, there is a decrease in quantity (likely due to root damage). Full recovery may take several years, typically ranging from one to four years after the fire. |
Peasant Community | Macay | Peasant Community | Macay | Salloc | ||||
---|---|---|---|---|---|---|---|---|
g/m2 | Number of Plant Species | g/m2 | Number of Plant Species | g/m2 | ||||
Transect 1 | Transect 2 | Transect 1 | Transect 2 | |||||
Unburned area 2020 | 307 | Unburned area 2022 | 10 | 286 | 307 | 10 | 154 | 160 |
Burned area 2023 | 240 | Burned area 2023 | 18 | 112 | 69 | 13 | 98 | 45 |
Shannon Diversity Index | Macay | Salloc | |
---|---|---|---|
Unburned area | Transect a | 1.772 | 1.541 |
Transect b | 1.338 | 1.338 | |
Burned area | Transect c | 2.294 | 1.428 |
Transect d | 2.036 | 1.567 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, M.; Zubieta, R.; Ccanchi, Y.; Martínez, A.; Paucar, Y.; Alvarez, S.; Loayza, J.; Ayala, F. Seasonal Effects of Wildfires on the Physical and Chemical Properties of Soil in Andean Grassland Ecosystems in Cusco, Peru: Pending Challenges. Fire 2024, 7, 259. https://doi.org/10.3390/fire7070259
Roman M, Zubieta R, Ccanchi Y, Martínez A, Paucar Y, Alvarez S, Loayza J, Ayala F. Seasonal Effects of Wildfires on the Physical and Chemical Properties of Soil in Andean Grassland Ecosystems in Cusco, Peru: Pending Challenges. Fire. 2024; 7(7):259. https://doi.org/10.3390/fire7070259
Chicago/Turabian StyleRoman, Melida, Ricardo Zubieta, Yerson Ccanchi, Alejandra Martínez, Ysai Paucar, Sigrid Alvarez, Julio Loayza, and Filomeno Ayala. 2024. "Seasonal Effects of Wildfires on the Physical and Chemical Properties of Soil in Andean Grassland Ecosystems in Cusco, Peru: Pending Challenges" Fire 7, no. 7: 259. https://doi.org/10.3390/fire7070259
APA StyleRoman, M., Zubieta, R., Ccanchi, Y., Martínez, A., Paucar, Y., Alvarez, S., Loayza, J., & Ayala, F. (2024). Seasonal Effects of Wildfires on the Physical and Chemical Properties of Soil in Andean Grassland Ecosystems in Cusco, Peru: Pending Challenges. Fire, 7(7), 259. https://doi.org/10.3390/fire7070259