Drought and Wildfire Trends in Native Forests of South-Central Chile in the 21st Century
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.3. Geospatial Forest Fire Database
2.4. National Forest Wildfire Database
2.5. Climate Data
2.6. Land Cover Data
2.7. Statistical Analysis
3. Results
3.1. Drought and Native Forests Affected by Fires
3.2. Long-Term Drought in Central-South Chile
3.3. Relationship between the PDSI and Native Forest Fire
4. Discussion
4.1. Relationship between the PDSI and Forest Fire
4.2. Native Forest Degradation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- González, M.E.; Gómez-González, S.; Lara, A.; Garreaud, R.; Díaz-Hormazábal, I. The 2010–2015 Megadrought and its influence on the fire regime in central and south-central Chile. Ecosphere 2018, 9, e02300. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A review of the relationships between drought and forest fire in the United States. Glob. Change Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, T.N.; Mueller, S.E. Climate influences on future fire severity: A synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecol. 2023, 19, 43. [Google Scholar] [CrossRef]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global Trends of Forest Loss Due to Fire From 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- Boer, M.M.; Resco de Dios, V.; Bradstock, R.A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 2020, 10, 171–172. [Google Scholar] [CrossRef]
- McWethy, D.B.; Pauchard, A.; García, R.A.; Holz, A.; González, M.E.; Veblen, T.T.; Stahl, J.; Currey, B. Landscape drivers of recent fire activity (2001–2017) in south-central Chile. PLoS ONE 2018, 13, e0201195. [Google Scholar] [CrossRef]
- Heilmayr, R.; Echeverría, C.; Fuentes, R.; Lambin, E.F. A plantation-dominated forest transition in Chile. Appl. Geogr. 2016, 75, 71–82. [Google Scholar] [CrossRef]
- Garrido-Ruiz, C.; Sandoval, M.; Stolpe, N.; Sanchez-Hernandez, J.C. Fire impacts on soil and post fire emergency stabilization treatments in Mediterranean-climate regions. Chil. J. Agric. Res. 2022, 82, 335–347. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Boisier, J.P.; Garreaud, R.; Seibert, J.; Vis, M. Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile. Hydrol. Earth Syst. Sci. 2021, 25, 429–446. [Google Scholar] [CrossRef]
- Barrientos, G.; Rubilar, R.; Duarte, E.; Paredes, A. Runoff variation and progressive aridity during drought in catchments in southern-central Chile. Hydrol. Res. 2023, 54, 1590–1605. [Google Scholar] [CrossRef]
- CONAF. Estadísticas Históricas: Incendios Forestales. Estadísticas Históricas de Incendios Forestales en Chile. 2023. Available online: http://www.conaf.cl/incendios-forestales/incendios-forestales-en-chile/estadisticas-historicas/ (accessed on 17 December 2021).
- Bowman, D.M.J.S.; Moreira-Muñoz, A.; Kolden, C.A.; Chávez, R.O.; Muñoz, A.A.; Salinas, F.; González-Reyes, Á.; Rocco, R.; de la Barrera, F.; Williamson, G.J.; et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 2019, 48, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Urrutia-Jalabert, R.; González, M.E.; González-Reyes, Á.; Lara, A.; Garreaud, R. Climate variability and forest fires in central and south-central Chile. Ecosphere 2018, 9, e02171. [Google Scholar] [CrossRef]
- Piao, Y.; Lee, D.; Park, S.; Kim, H.G.; Jin, Y. Multi-hazard mapping of droughts and forest fires using a multi-layer hazards approach with machine learning algorithms. Geomat. Nat. Hazards Risk 2022, 13, 2649–2673. [Google Scholar] [CrossRef]
- Scasta, J.D.; Weir, J.R.; Stambaugh, M.C. Droughts and Wildfires in Western U.S. Rangelands. Rangelands 2016, 38, 197–203. [Google Scholar] [CrossRef]
- Torres, P.; Rodes-Blanco, M.; Viana-Soto, A.; Nieto, H.; García, M. The Role of Remote Sensing for the Assessment and Monitoring of Forest Health: A Systematic Evidence Synthesis. Forests 2021, 12, 1134. [Google Scholar] [CrossRef]
- Payra, S.; Sharma, A.; Verma, S. Chapter 14—Application of remote sensing to study forest fires. In Atmospheric Remote Sensing; Kumar Singh, A., Tiwari, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 239–260. [Google Scholar]
- Vo, V.D.; Kinoshita, A.M. Remote sensing of vegetation conditions after post-fire mulch treatments. J. Environ. Manag. 2020, 260, 109993. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cabello, F.; Montorio, R.; Alves, D.B. Remote sensing techniques to assess post-fire vegetation recovery. Curr. Opin. Environ. Sci. Health 2021, 21, 100251. [Google Scholar] [CrossRef]
- Bar, S.; Parida, B.R.; Pandey, A.C. Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sens. Appl. Soc. Environ. 2020, 18, 100324. [Google Scholar] [CrossRef]
- Saleh, A.; Zulkifley, M.A.; Harun, H.H.; Gaudreault, F.; Davison, I.; Spraggon, M. Forest fire surveillance systems: A review of deep learning methods. Heliyon 2024, 10, e23127. [Google Scholar] [CrossRef] [PubMed]
- Palmer, W.C. Meteorological Drought; U.S. Department of Commerce, Weather Bureau: Silver Spring, MD, USA, 1965.
- Zhao, F.; Liu, Y. Important meteorological predictors for long-range wildfires in China. For. Ecol. Manag. 2021, 499, 119638. [Google Scholar] [CrossRef]
- Donovan, V.M.; Wonkka, C.L.; Wedin, D.A.; Twidwell, D. Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains. Remote Sens. 2020, 12, 1869. [Google Scholar] [CrossRef]
- Yang, S.; Zeng, A.; Tigabu, M.; Wang, G.; Zhang, Z.; Zhu, H.; Guo, F. Investigating Drought Events and Their Consequences in Wildfires: An Application in China. Fire 2023, 6, 223. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- CONAF. Cifras Oficiales y Actualizadas Provenientes del Catastro de los Recursos Vegetacionales y Uso de la Tierra. 2023. Available online: https://www.conaf.cl/nuestros-bosques/bosques-en-chile/catastro-vegetacional/ (accessed on 1 February 2024).
- Donoso, P.; Promis, A. Forestry in Native Forests. Advances in research in Chile, Argentina and New Zeland. In Las Especies Arbóreas de Los Bosques Templados de Chile Y Argentina; Marisa Cuneo Ediciones: Valdivia, Chile, 2013. [Google Scholar]
- Holz, A.; Haberle, S.; Veblen, T.T.; de Pol-Holz, R.; Southon, J. Fire history in western Patagonia from paired tree-ring fire-scar and charcoal records. Clim. Past 2012, 8, 451–466. [Google Scholar] [CrossRef]
- Veblen, T.T.; Donoso, C.; Kitzberger, T.; Rebertus, A. Ecology of Southern Chilean and Argentinean Nothofagus Forest. In Ecology and Biogeography of Nothofagus Forest; Yale University Press: London, UK, 1996. [Google Scholar]
- Gonzáles, M.; Cortés, M.; Izquierdo, F.; Gallo, L.; Echeverría, C.; Bekessy, C. Araucaria araucana. In Las Especies Arbóreas de Los Bosques Templados de Chile Y Argentina, Autoecología; Biblioteca Digital Instituto Forestal: Concepción, Chile, 2013; pp. 36–53. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Giglio, L.; Justice, C.; Boschetti, L.; Roy, D. MODIS/Terra + Aqua Burned Area Monthly L3 Global 500m SIN Grid V061 [Data Set]; USGS: Reston, VA, USA, 2021. [CrossRef]
- Liu, Y.; Zhu, Y.; Ren, L.; Singh, V.P.; Yang, X.; Yuan, F. A multiscalar Palmer drought severity index. Geophys. Res. Lett. 2017, 44, 6850–6858. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Rhee, J.; Carbone, G.J. A Comparison of Weekly Monitoring Methods of the Palmer Drought Index. J. Clim. 2007, 20, 6033–6044. [Google Scholar] [CrossRef]
- Dai, A. (Ed.); NCAR. The Climate Data Guide: Palmer Drought Severity Index (PDSI). 2024. Available online: https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi (accessed on 1 February 2024).
- NOAA; CPC. Weekly Palmer Drought and Crop Moisture Data Products Explanation. 2024. Available online: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/palmer_drought/wpdanote.shtml (accessed on 1 February 2024).
- Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Szép, I.J.; Mika, J.; Dunkel, Z. Palmer drought severity index as soil moisture indicator: Physical interpretation, statistical behaviour and relation to global climate. Phys. Chem. Earth Parts A/B/C 2005, 30, 231–243. [Google Scholar] [CrossRef]
- Nkemdirim, L.C. PALMER DROUGHT INDEX. In Encyclopedia of Atmospheric Sciences; Holton, J.R., Ed.; Academic Press: Oxford, UK, 2003; pp. 1685–1691. [Google Scholar]
- Wells, N.; Goddard, S.; Hayes, M.J. A Self-Calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Wang-Erlandsson, L.; Bastiaanssen, W.G.M.; Gao, H.; Jägermeyr, J.; Senay, G.B.; van Dijk, A.I.J.M.; Guerschman, J.P.; Keys, P.W.; Gordon, L.J.; Savenije, H.H.G. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 2016, 20, 1459–1481. [Google Scholar] [CrossRef]
- Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente—Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Rayne, S.; Forest, K. Evidence for increasingly variable palmer drought severity index in the United States since 1895. Sci. Total Environ. 2016, 544, 792–796. [Google Scholar] [CrossRef]
- CONAF. Catastro de los Recursos Vegetacionales Nativos de Chile al año 2020. 2021; Volume 76. Available online: https://sit.conaf.cl/varios/Catastros_Recursos_Vegetacionales_Nativos_de_Chile_Nov2021.pdf (accessed on 1 February 2024).
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K. Defining extreme wildfire events: Difficulties, challenges, and impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; Collins, L.; Resco de Dios, V.; Clarke, H.; Jenkins, M.; Kenny, B.; Bradstock, R.A. Causes and consequences of eastern Australia’s 2019-20 season of mega-fires. Glob. Change Biol. 2020, 26, 1039–1041. [Google Scholar] [CrossRef] [PubMed]
- Pica-Téllez, A.; Garreaud, R.; Meza, F.; Bustos, S.; Falvey, M.; Ibarra, M.; Duarte, K.; Ormazábal, R.; Dittborn, R.; Silva, I. Informe Proyecto ARClim: Atlas de Riesgos Climáticos Para Chile; Centro de Ciencia del Clima y la Resiliencia, Centro de Cambio Global UC and Meteodata for the Ministerio del Medio Ambiente via La Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ): Santiago, Chile, 2020. [Google Scholar]
- Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef]
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef]
- Davis, A.; MacAfee, S.; Restaino, C.; Ormerod, K.J. Drought and Fire in Nevada: Is Fire Risk Higher during Drought? 2022. Available online: https://extension.unr.edu/publication.aspx?PubID=4950 (accessed on 19 October 2023).
- Villaroel, C.; Gutierrez, R.; Aravena, C.; Gotelli, C.; Vásquez, R.; Vilches, C. Reporte Anual de la Evolución del Chile en Chile 2022; Meteorological Directorate of Chile: Santiago, Chile, 2023; p. 52. [Google Scholar]
- CONAF. Estrategia Nacional de Cambio Climático y Recursos Vegetacionales ENCCRV. 2016. Available online: https://www.conaf.cl/cms/editorweb/ENCCRV/ENCCRV-3a_Edicion-17mayo2017.pdf (accessed on 1 February 2024).
- Qin, Y.; Xiao, X.; Wigneron, J.-P.; Ciais, P.; Brandt, M.; Fan, L.; Li, X.; Crowell, S.; Wu, X.; Doughty, R.; et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 2021, 11, 442–448. [Google Scholar] [CrossRef]
- Duarte, E.; Barrera, J.A.; Dube, F.; Casco, F.; Hernández, A.J.; Zagal, E. Monitoring Approach for Tropical Coniferous Forest Degradation Using Remote Sensing and Field Data. Remote Sens. 2020, 12, 2531. [Google Scholar] [CrossRef]
- Pearson, T.R.H.; Brown, S.; Murray, L.; Sidman, G. Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance Manag. 2017, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed]
- Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Souza, C.M.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens. Environ. 2005, 98, 329–343. [Google Scholar] [CrossRef]
- Viedma, O.; Chico, F.; Fernández, J.J.; Madrigal, C.; Safford, H.D.; Moreno, J.M. Disentangling the role of prefire vegetation vs. burning conditions on fire severity in a large forest fire in SE Spain. Remote Sens. Environ. 2020, 247, 111891. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Schmidt-Riese, E.; Kattenborn, T.; Hernández, J. Explaining Sentinel 2-based dNBR and RdNBR variability with reference data from the bird’s eye (UAS) perspective. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102262. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Miranda, A.; Mentler, R.; Moletto-Lobos, Í.; Alfaro, G.; Aliaga, L.; Balbontín, D.; Barraza, M.; Baumbach, S.; Calderón, P.; Cárdenas, F.; et al. The Landscape Fire Scars Database: Mapping historical burned area and fire severity in Chile. Earth Syst. Sci. Data 2022, 14, 3599–3613. [Google Scholar] [CrossRef]
Dataset | Type | Source | Applied in the Study 1 |
---|---|---|---|
Palmer Drought Severity Index (PDSI) | Raster Collection | ee.ImageCollection (“IDAHO_EPSCOR/TERRACLIMATE”) | Drought severity |
MODIS MCD64A1 version 6.1 | Raster Collection | ee.ImageCollection (“MODIS/061/MCD64A1”) | Monitoring the burned area |
National forest fire database | Point | https://simef.minagri.gob.cl/ (accessed on 15 January 2024) | In situ wildfire data |
Land cover map | Polygon | https://sit.conaf.cl/ (accessed on 15 January 2024) | Native forest cover land |
Region | PDSI Max | PDSI Min | PDSI Mean | PDSI Std | Native Forest (ha) | Native Forest Burned (ha) | Native Forest Burned (%) |
---|---|---|---|---|---|---|---|
Metropolitana | −5.52 | −0.71 | −2.38 | 0.71 | 364,716 | 57,950 | 15.9% |
O’Higgins | −4.96 | −1.75 | −2.53 | 0.36 | 460,052 | 70,786 | 15.4% |
Maule | −3.37 | −1.85 | −2.25 | 0.17 | 582,214 | 72,733 | 12.5% |
La Araucanía | −3.38 | −1.23 | −2.65 | 0.43 | 962,221 | 98,226 | 10.2% |
Valparaíso | −5.52 | −1.23 | −2.11 | 0.50 | 484,778 | 43,450 | 9.0% |
Biobío | −3.89 | −1.75 | −2.76 | 0.35 | 597,201 | 36,355 | 6.1% |
Ñuble | −3.15 | −2.16 | −2.61 | 0.21 | 247,861 | 14,663 | 5.9% |
Los Ríos | −3.55 | −2.11 | −2.86 | 0.43 | 907,327 | 13,398 | 1.5% |
Total | 4,606,369 | 407,561 | 8.8% |
Fire Season | Number of Large-Scale Fires | Burned Area (ha) | |
---|---|---|---|
Native Forest | Total | ||
2002–2003 | 3 | 1865 | 6802 |
2003–2004 | 8 | 2881 | 9393 |
2004–2005 | 8 | 3147 | 10,272 |
2005–2006 | 2 | 400 | 1070 |
2006–2007 | 2 | 753 | 3071 |
2007–2008 | 2 | 2161 | 7340 |
2008–2009 | 8 | 6638 | 11,301 |
2009–2010 | 14 | 5833 | 21,554 |
2010–2011 | 9 | 4431 | 12,765 |
2011–2012 | 7 | 4404 | 36,943 |
2013–2014 | 15 | 13,389 | 31,922 |
2014–2015 | 16 | 23,541 | 45,044 |
2015–2016 | 2 | 557 | 1300 |
2016–2017 | 49 | 82,206 | 474,268 |
2018–2019 | 11 | 3867 | 11,736 |
2019–2020 | 11 | 13,203 | 28,915 |
2020–2021 | 5 | 3594 | 7195 |
2021–2022 | 10 | 5912 | 37,674 |
2022–2023 | 50 | 57,761 | 304,244 |
Region | Sclerophyllous Scrubs Forests | Late Successional Forest | Early/Late Successional Forest | Early Successional Forest | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | ha | % | ha | % | |
Metropolitana | 0 | 0% | 0 | 0% | 1005 | 6% | 56,945 | 16% | 57,950 | 15.9% |
O’Higgins | 289 | 27% | 1518 | 22% | 2025 | 12% | 66,954 | 15% | 70,786 | 15.4% |
Maule | 591 | 4% | 633 | 5% | 1370 | 7% | 70,139 | 13% | 72,733 | 12.5% |
La Araucanía | 9241 | 11% | 30,786 | 11% | 9439 | 8% | 48,761 | 10% | 98,226 | 10.2% |
Valparaíso | 0 | 2% | 0 | 0% | 0 | 0% | 43,450 | 9% | 43,450 | 9.0% |
Biobío | 1331 | 3% | 1701 | 2% | 2050 | 4% | 31,273 | 7% | 36,355 | 6.1% |
Ñuble | 357 | 1% | 843 | 9% | 207 | 2% | 13,257 | 7% | 14,663 | 5.9% |
Los Ríos | 1595 | 4% | 6002 | 1% | 2168 | 2% | 3633 | 1% | 13,398 | 1.5% |
Total | 13,404 | 6% | 41,483 | 5% | 18,264 | 5% | 334,410 | 10% | 407,561 | 8.8% |
Pearson Correlation | ||||
---|---|---|---|---|
Region | Mean Annual Burned Area | PDSI | r | p-Value |
Los Ríos | 1–1000 ha fires | Maximum | 0.34 | 0.009 |
Araucanía | 1–1000 ha fires | Annual | −0.36 | 0.0028 |
Araucanía | 1–1000 ha fires | Spring | −0.29 | 0.017 |
Araucanía | 1–1000 ha fires | Summer | −0.34 | 0.003 |
Araucanía | 1–1000 ha fires | Maximum | −0.38 | 0.001 |
Araucanía | 1–1000 ha fires | Minimum | −0.29 | 0.015 |
Araucanía | 1–1000 ha fires | Median | −0.30 | 0.011 |
Biobío + Ñuble | 1–1000 ha fires | Annual | −0.22 | 0.073 |
Biobío + Ñuble | 1–1000 ha fires | Summer | −0.23 | 0.054 |
Biobío + Ñuble | 1–1000 ha fires | Maximum | −0.21 | 0.080 |
Biobío + Ñuble | 1–1000 ha fires | Minimum | −0.22 | 0.074 |
Maule | 1–1000 ha fires | Spring | −0.23 | 0.057 |
Maule | 1–1000 ha fires | Summer | −0.27 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, E.; Rubilar, R.; Matus, F.; Garrido-Ruiz, C.; Merino, C.; Smith-Ramirez, C.; Aburto, F.; Rojas, C.; Stehr, A.; Dörner, J.; et al. Drought and Wildfire Trends in Native Forests of South-Central Chile in the 21st Century. Fire 2024, 7, 230. https://doi.org/10.3390/fire7070230
Duarte E, Rubilar R, Matus F, Garrido-Ruiz C, Merino C, Smith-Ramirez C, Aburto F, Rojas C, Stehr A, Dörner J, et al. Drought and Wildfire Trends in Native Forests of South-Central Chile in the 21st Century. Fire. 2024; 7(7):230. https://doi.org/10.3390/fire7070230
Chicago/Turabian StyleDuarte, Efraín, Rafael Rubilar, Francisco Matus, Claudia Garrido-Ruiz, Carolina Merino, Cecilia Smith-Ramirez, Felipe Aburto, Claudia Rojas, Alejandra Stehr, José Dörner, and et al. 2024. "Drought and Wildfire Trends in Native Forests of South-Central Chile in the 21st Century" Fire 7, no. 7: 230. https://doi.org/10.3390/fire7070230
APA StyleDuarte, E., Rubilar, R., Matus, F., Garrido-Ruiz, C., Merino, C., Smith-Ramirez, C., Aburto, F., Rojas, C., Stehr, A., Dörner, J., Nájera, F., Barrientos, G., & Jofré, I. (2024). Drought and Wildfire Trends in Native Forests of South-Central Chile in the 21st Century. Fire, 7(7), 230. https://doi.org/10.3390/fire7070230