Spatiotemporal Evolution and Frontier Focus Analysis Based on Coal Fire Control Body of Knowledge
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sources
2.2. Methodology
3. Results and Discussion
3.1. Year-to-Year Trends in the Number of Articles Issued
3.2. Analysis of National Publications and Cooperation
3.3. Analysis of Research Institutions and Cooperation
3.4. Author Analysis
3.4.1. Analysis of the Volume of Publications and Cooperation
3.4.2. Author Co-Citation Analysis
3.5. Journal Analysis
3.5.1. Analysis of Major Journals
3.5.2. Journal Co-Citation Analysis
3.6. Core Literature Citation Analysis
3.7. Hot Spots and Frontiers of Mine Fire Prevention and Control Research
3.7.1. Keyword Co-Occurrence Analysis
3.7.2. Keyword Clustering
3.7.3. Keyword Bursting
4. Conclusions
- (1)
- The annual volume of articles in the MFPC research field has grown significantly, especially between 2020 and 2023, indicating that the field is experiencing an unprecedented period of active development. China’s research contributions in the MFPC field are the most prominent, followed by the United States and Australia, showing the dominance of these countries in international research. CUMT ranks among the best research institutions. Fuel and Process Safety and Environmental Protection play a key role in both average citation and co-citation. The top 10 cited articles are one review and nine papers. One of these is entitled “An intelligent gel designed to control the spontaneous combustion of coal”. The research paper “Fire prevention and extinguishing properties” topped the list for citations;
- (2)
- The high occurrence rate of prevention and behavior keywords emphasizes the importance of prevention measures and coal spontaneous combustion behavior research. In terms of technology, the reference to retarding technologies, such as three-phase foams, gels, and ionic liquids, highlights the key role of materials and technological advances in the MFPC field. A keyword cluster analysis reveals the in-depth discussion of MFPC research in the evaluation of inhibition effect, adaptability of different coal characteristics, influence of external environmental factors, etc., and further confirms the status of inhibition mechanism as a current research hotspot;
- (3)
- The emergence of activation energy, release, quantum chemistry, and other recent hot words indicates that the research focus is shifting to the mechanism of physicochemical synergistic inhibition, energy release control, and the application of quantum chemistry theory in the study of coal spontaneous combustion. It indicates that the field is developing in the direction of more micro and theoretical depth;
- (4)
- The CiteSpace analysis reveals the dynamic changes in MFPC research, including the diversification of research topics, the iterative updating of technologies and the frontier transformation of research hotspots. Future research should continue to focus on the in-depth exploration of the coal spontaneous combustion mechanism, strengthen the development of physicochemical synergistic inhibition materials, and apply advanced computational methods, such as quantum chemical simulation, to improve the theoretical guidance and practical application level of MFPC. Exploring new chemical inhibitors, simplifying the preparation and application process of materials, improving the thermal stability of materials, extending the action time, and improving the environmental safety of materials are the main problems facing the development of fireproof materials. These findings not only provide a comprehensive overview of the current MFPC research but also point the way for future research direction and have important scientific value for reducing mine fire risk and ensuring mining safety.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
MFPC | mine fire prevention and control |
SCC | spontaneous combustion of coal |
WOS | Web of Science |
CUMT | China University of Mining and Technology |
XUST | Xi’an University of Science and Technology |
SDUST | Shandong University of Science and Technology |
HPU | Henan Polytechnic University |
AUST | Anhui University of Science and Technology |
USTB | University of Science and Technology of Beijing |
CSIRO | Commonwealth Scientific and Industrial Research Organisation |
PCSHE | Pennsylvania Commonwealth System of Higher Education |
References
- Yan, D.; Su, F.; Wang, Z.; Chen, Z.; Lei, Y.; Ye, B. Achieving High-Quality Development in China’s Coal-Based Cities: How Heterogeneities Green Innovation Promote Carbon Emission Performance. Environ. Dev. Sustain. 2024, 26, 13921–13941. [Google Scholar] [CrossRef]
- Chen, J.; Lv, Y.; Fan, T. Research on the Evolution and Driving Factors of Digitalization of Energy in China—A New Perspective Based on Coupling Coordination. Heliyon 2023, 9, e14138. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.-C.; Huang, C.-F.; Shu, C.-M. A Case Study for an Assessment of Fire Station Selection in the Central Urban Area. Safety 2023, 9, 84. [Google Scholar] [CrossRef]
- Huang, A.-C.; Cao, F.-C.; Ma, X.-Y. A Comparative Approach Study on the Thermal and Calorimetric Analysis of Fire-Extinguishing Powders. Safety 2024, 10, 31. [Google Scholar] [CrossRef]
- Pei, Q.; Jia, Z.; Liu, J.; Wang, Y.; Wang, J.; Zhang, Y. Prediction of Coal Spontaneous Combustion Hazard Grades Based on Fuzzy Clustered Case-Based Reasoning. Fire 2024, 7, 107. [Google Scholar] [CrossRef]
- Yan, L.; Qin, Y.; Chu, C.; Sun, B.; Xu, Y.; Jiang, Q.; Song, Y.; Tang, F.; Xu, H. Experimental Study on Inhibition of Coal Spontaneous Combustion by Carbon Dioxide and Nitrogen. Energy Sources Part A-Recovery Util. Environ. Eff. 2024, 46, 6444–6460. [Google Scholar]
- Zhang, J.; Xu, K.; Reniers, G.; You, G. Statistical Analysis the Characteristics of Extraordinarily Severe Coal Mine Accidents (ESCMAs) in China from 1950 to 2018. Process Saf. Environ. Prot. 2020, 133, 332–340. [Google Scholar] [CrossRef]
- Yang, F.; Lu, Y.; Yan, Z.; Wang, G.G.X.; Hu, X.; Gu, W. Colloidal Particle-Stabilized Foam To Control the Coal Spontaneous Combustion: Stability Mechanism Analysis and Extinguishing Properties. Energy Fuels 2020, 34, 14822–14831. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, B.; Liu, S.-H.; Lei, B.; Zhao, J.; Zhao, Y. Thermal Kinetics of Nitrogen Inhibiting Spontaneous Combustion of Secondary Oxidation Coal and Extinguishing Effects. Fuel 2020, 278, 118223. [Google Scholar] [CrossRef]
- Dong, K.; Wang, J.; Zhang, Y.; Liang, Z.; Shi, Q. Performance of Fire Extinguishing Gel with Strong Stability for Coal Mine. Combust. Sci. Technol. 2022, 194, 1661–1677. [Google Scholar] [CrossRef]
- Ge, L.; Shao, Y.; Wang, Y.; Zhang, G.; Zhang, Z.; Liu, L. Experimental Research on Inerting Characteristics of Carbon Dioxide Used for Fire Extinguishment in a Large Sealed Space. Process Saf. Environ. Prot. 2020, 142, 174–190. [Google Scholar] [CrossRef]
- Tang, Y.; Guo, Q.; Yerman, L. Experimental Investigation on Using Chloride/Hydroxide Aerosol to Control Spontaneous Combustion of Lignite in Underground Coal Mines. Energy Fuels 2020, 34, 10607–10618. [Google Scholar] [CrossRef]
- Zhai, X.-W.; Pan, W.-J.; Xiao, Y.; Wang, S.; Ouyang, L. Inhibition of Coal Spontaneous Combustion by an Environment-Friendly, Water-Based Fire Extinguishing Agent. J. Therm. Anal. Calorim. 2021, 144, 325–334. [Google Scholar] [CrossRef]
- Xi, X.; Shi, Q.; Jiang, S.; Zhang, W.; Wang, K.; Zhengyan, W. Study on the Effect of Ionic Liquids on Coal Spontaneous Combustion Characteristic by Microstructure and Thermodynamic. Process Saf. Environ. Protect. 2020, 140, 190–198. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; Shi, S.; Wang, G.G.X.; Li, H.; Wang, T. Micro-Particles Stabilized Aqueous Foam for Coal Spontaneous Combustion Control and Its Flow Characteristics. Process Saf. Environ. Protect. 2020, 139, 262–272. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Xie, P.; Liu, H.; Deng, Q.; Dai, F. Experimental Study on Controlled-Release Inhibitor Foam for Restraining Spontaneous Combustion of Coal. Energy Explor. Exploit. 2020, 38, 1159–1177. [Google Scholar] [CrossRef]
- Han, C.; Nie, S.; Liu, Z.; Liu, S.; Zhang, H.; Li, J.; Zhang, H.; Wang, Z. A Novel Biomass Sodium Alginate Gel Foam to Inhibit the Spontaneous Combustion of Coal. Fuel 2022, 314, 122779. [Google Scholar] [CrossRef]
- Lu, W.; Sun, X.; Gao, L.; Hu, X.; Song, H.; Kong, B. Study on the Characteristics and Mechanism of DL-Malic Acid in Inhibiting Spontaneous Combustion of Lignite and Bituminous Coal. Fuel 2022, 308, 122012. [Google Scholar] [CrossRef]
- Xue, D.; Hu, X.; Cheng, W.; Yu, X.; Wu, M.; Zhao, Y.; Lu, Y.; Pan, R.; Niu, H.; Hu, S. Development of a Novel Composite Inhibitor Modified with Proanthocyanidins and Mixed with Ammonium Polyphosphate. Energy 2020, 213, 118901. [Google Scholar] [CrossRef]
- Geng, H.-J.; Zhao, Y.-M.; Liu, X.-L.; Tian, F.-C. The Application of Nitrogen Curtain Technology to Longwall Goaf to Prevent the Spontaneous Combustion of Coal: A Case Study in Shajihai Coalmine, China. Fire 2023, 6, 363. [Google Scholar] [CrossRef]
- Guo, J.; Cai, G.; Jin, Y.; Zheng, X.; Liu, Y. An Improved Composite Fly Ash Gel to Extinguish Underground Coal Fire in Close Distance Coal Seams: A Case Study. Adv. Mater. Sci. Eng. 2020, 2020, 5695471. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Z.; Cheng, J.; Wang, Y.; Chen, J.; Jiang, Z. Preparation and Performance Study of OPC-MF-PEG Microcapsules Based on Strong Antioxidant Groups against Spontaneous Coal Combustion. Constr. Build. Mater. 2024, 425, 135808. [Google Scholar] [CrossRef]
- Du, Q.; Mu, X.; Deng, C.; Duan, H.; Jing, P.; Qiao, L.; Guo, Y. Preparation of Complex Physicochemical Synergistic Inhibitors and Study on Inhibition of Spontaneous Combustion of Coal. Int. J. Coal Prep. Util. 2024. [Google Scholar] [CrossRef]
- Xi, X.; Xia, C.; Yin, C.; Jiang, S. Preparation and Fire Extinguishing Characteristics of Inorganic Solidified Foam with Large Amount of Slag. Energy Sources Part A-Recovery Util. Environ. Eff. 2024, 46, 5522–5535. [Google Scholar]
- Li, L.; Liu, T.; Li, Z.; Chen, X.; Wang, L.; Feng, S. Different Prevention Effects of Ventilation Dilution on Methane Accumulation at High Temperature Zone in Coal Mine Goafs. Energies 2023, 16, 3168. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Q.; Su, H.; Huang, Z.; Wang, G. Synthesis and Characteristics of a pH-Sensitive Sol-Gel Transition Colloid for Coal Fire Extinguishing. Gels 2023, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Pan, Y. Preparation, Properties and Application of Gel Materials for Coal Gangue Control. Energies 2022, 15, 557. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Wang, D. Experimental Study on the Inhibition Effects of Nitrogen and Carbon Dioxide on Coal Spontaneous Combustion. Energies 2020, 13, 5256. [Google Scholar] [CrossRef]
- Yan, Q.; Lu, Y.; Wang, Q.; Gu, W.; Wu, F. Research Progress and Development Trend of Coal Spontaneous Combustion Prevention Technology. Combust. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Liu, S.; Shi, G.; Ren, H.; Cao, J.; Wang, D. Key Parameters of Separated Nitrogen Injection in Goaf Based on Orthogonal Test. Combust. Sci. Technol. 2023, 9, 15428–15438. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Abramowicz, A.; Fabiańska, M.; Misz-Kennan, M.; Ciesielczuk, J. Classification of Fires in Coal Waste Dumps Based on Landsat, Aster Thermal Bands and Thermal Camera in Polish and Ukrainian Mining Regions. Int. J. Coal Sci. Technol. 2021, 8, 441–456. [Google Scholar] [CrossRef]
- Alipour, M.; Alizadeh, B.; Jahangard, A.; GandomiSani, A. Wildfire Events at the Triassic–Jurassic Boundary of the Tabas Basin, Central Iran. Int. J. Coal Sci. Technol. 2021, 8, 897–907. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z. Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer and CiteSpace. Electron. Commer. Res. 2022, 22, 787–809. [Google Scholar] [CrossRef]
- Yue, T.; Liu, H.; Long, R.; Chen, H.; Gan, X.; Liu, J. Research Trends and Hotspots Related to Global Carbon Footprint Based on Bibliometric Analysis: 2007–2018. Environ. Sci. Pollut. Res. 2020, 27, 17671–17691. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hong, R.; Xiang, C.; Lv, C.; Li, H. Visualization and Analysis of Mapping Knowledge Domains for Spontaneous Combustion Studies. Fuel 2020, 262, 116598. [Google Scholar] [CrossRef]
- Qiu, H.-H.; Liu, L.-G. A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping. Energies 2018, 11, 1103. [Google Scholar] [CrossRef]
- Hernandez-Torrano, D.; Ibrayeva, L. Creativity and Education: A Bibliometric Mapping of the Research Literature (1975–2019). Think. Skills Creat. 2020, 35, 100625. [Google Scholar] [CrossRef]
- Shao, Z.; Tan, B.; Guo, Y.; Li, T.; Li, X.; Fang, X.; Wang, F.; Zhang, Q.; Wang, H. Visualization and Analysis of Mapping Knowledge Domains for Coal Pores Studies. Fuel 2022, 320, 123761. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, H.; Liao, Q.; Qu, B.; Gao, R.; Tao, R.; Fu, M. Visual Analysis of Coal Fire Detection Research Based on Bibliometrics. Int. J. Remote Sens. 2023, 44, 5976–6011. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, Y.; Deng, J.; Shu, P.; Yao, D. A Systematic Exploration of Mapping Knowledge Domains for Free Radical Research Related to Coal. Energy 2023, 282, 128914. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Liu, Y.; Zhou, Z.; Wang, G.; Wang, Y.; Fang, X.; Chen, Z.; Qi, Q. Visualization and Analysis of Mapping Knowledge Domains for Coal Functional Groups. Combust. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Fang, X.; Wang, G.; Chen, Y.; Xu, Z.; Qi, Q. Research Progress and Visualization of Underground Coal Fire Detection Methods. Environ. Sci. Pollut. Res. 2023, 30, 74671–74690. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Chao, Q.; Yang, L.; Qin, K.; Zuo, J. A Review on Application of Acoustic Emission in Coal-Analysis Based on CiteSpace Knowledge Network. Processes 2022, 10, 2397. [Google Scholar] [CrossRef]
- Yang, F.; Qiu, D. Exploring Coal Spontaneous Combustion by Bibliometric Analysis. Process Saf. Environ. Protect. 2019, 132, 1–10. [Google Scholar] [CrossRef]
- Yan, C.; Li, H.; Pu, R.; Deeprasert, J.; Jotikasthira, N. Knowledge Mapping of Research Data in China: A Bibliometric Study Using Visual Analysis. Libr. Hi Tech 2024, 42, 331–349. [Google Scholar] [CrossRef]
- Kokol, P.; Blazun Vosner, H.; Zavrsnik, J. Application of Bibliometrics in Medicine: A Historical Bibliometrics Analysis. Health Inf. Libr. J. 2021, 38, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.V.K.; Tripathi, D.D.; Singh, V.K. Evaluation of Suitable Technology for Prevention and Control of Spontaneous Heating/Fire in Coal Mines. Arch. Min. Sci. 2008, 53, 555–564. [Google Scholar]
- Wu, C.; Li, Z.; Yang, F.; Hu, H.; Gu, D. Risk Forecast of Spontaneous Combustion of Sulfide Ore Dump in a Stope and Controlling Approaches of the Fire. Arch. Min. Sci. 2008, 53, 565–579. [Google Scholar]
- Xie, Z.; Li, R. Study on Prediction Technology of Coal Seam Spontaneous Combustion of Renlou Coal Mine. In Proceedings of the Progress in Safety Science and Technology, Vol VII, PTS A and B, Bejing, China, 24 September 2008; Li, S.C., Wang, Y.J., An, Y., Sun, X.Y., Li, X., Eds.; Science Press Beijing: Beijing, China, 2008; Volume 7, pp. 1419–1423. [Google Scholar]
- Wang, J.; Fan, Z.; Zhang, J. Prevention and Control for Coal Spontaneous Combustionin by Fully Mechanized Top-Coal Caving of Extremely Thick Coal Seam. In Proceedings of the Mine Hazards Prevention and Control Technology, Brisbane, Australia, 19–21 November 2013; Wang, C., Guo, W.J., Cheng, J.L., Eds.; Science Press Beijing: Qingdao, China, 2007; pp. 186–191. [Google Scholar]
- Deng, J.; Lue, H.-F.; Xiao, Y.; Wang, C.-P.; Shu, C.-M.; Jiang, Z.-G. Thermal Effect of Ionic Liquids on Coal Spontaneous Combustion. J. Therm. Anal. Calorim. 2019, 138, 3415–3424. [Google Scholar] [CrossRef]
- Xi, Z.; Wang, X.; Wang, X.; Wang, L.; Li, D.; Guo, X.; Jin, L. Self-Hardening Thermoplastic Foam for the Inhibition of Coal Oxidation at Low Temperatures. Combust. Sci. Technol. 2019, 191, 1942–1959. [Google Scholar] [CrossRef]
- Wang, L.; Tawiah, B.; Shi, Y.; Cai, S.; Rao, X.; Liu, C.; Yang, Y.; Yang, F.; Yu, B.; Liang, Y.; et al. Highly Effective Flame-Retardant Rigid Polyurethane Foams: Fabrication and Applications in Inhibition of Coal Combustion. Polymers 2019, 11, 1776. [Google Scholar] [CrossRef] [PubMed]
- Bin, L.; Tsai, Y.-T.; Liu, S.-H.; Deng, J.; Xiao, Y.; Wang, Q.-H.; Shu, C.-M. Effects of 1-Butyl-3-Methylimidazolium Nitrate on the Thermal Hazardous Properties of Lignitous and Long Flame Coal through a Green Approach and Thermokinetic Models. Process Saf. Environ. Protect. 2019, 131, 127–134. [Google Scholar]
- Lu, H.-F.; Xiao, Y.; Deng, J.; Li, D.; Yin, L.; Shu, C.-M. Inhibiting Effects of 1-Butyl-3-Methyl Imidazole Tetrafluoroborate on Coal Spontaneous Combustion under Different Oxygen Concentrations. Energy 2019, 186, 115907. [Google Scholar] [CrossRef]
- Wang, K.; Fan, H.; Gao, P.; He, Y.; Shu, P. Spontaneous Combustion Characteristics of Wetting Coal under Different Prepyrolysis Temperatures. ACS Omega 2020, 5, 33347–33356. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-P.; Bai, Z.-J.; Xiao, Y.; Deng, J.; Shu, C.-M. Effects of FeS2 on the Process of Coal Spontaneous Combustion at Low Temperatures. Process Saf. Environ. Protect. 2020, 142, 165–173. [Google Scholar] [CrossRef]
- Lei, B.; He, B.; Xiao, B.; Du, P.; Wu, B. Effects of N2 and 1,1,1,3,3,3-Hexafluoropropane (C3H2F6) on Inhibition of Coal Flames. J. Energy Resour. Technol.-Trans. ASME 2020, 142, 102304. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, Y.; Dong, Z.; Zhang, R.; Wang, W.; Wei, G.; Chu, T.; Yu, Z.; Qin, Y.; Liu, G.; et al. A Novel Composite Inorganic Retarding Gel for Preventing Coal Spontaneous Combustion. Case Stud. Therm. Eng. 2021, 28, 101648. [Google Scholar] [CrossRef]
- Xue, D.; Hu, X.; Dong, H.; Cheng, W.; Wang, W.; Liang, Y. Examination of Characteristics of Anti-Oxidation Compound Inhibitor for Preventing the Spontaneous Combustion of Coal. Fuel 2022, 310, 122160. [Google Scholar] [CrossRef]
- Dou, G.; Liu, J.; Jiang, Z.; Jian, H.; Zhong, X. Preparation and Characterization of a Lignin Based Hydrogel Inhibitor on Coal Spontaneous Combustion. Fuel 2022, 308, 122074. [Google Scholar] [CrossRef]
- Wang, F.; Sun, M.; Wang, J. Dimethyl Methylphosphonate for the Suppression of Coal Spontaneous Combustion. Combust. Sci. Technol. 2023, 195, 982–999. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Yang, H.; Li, H.; Yu, M.; He, T.; Luo, Z.; Liu, F. A Novel Biomass Thermoresponsive Konjac Glucomannan Composite Gel Developed to Control the Coal Spontaneous Combustion: Fire Prevention and Extinguishing Properties. Fuel 2021, 306, 121757. [Google Scholar] [CrossRef]
- Cardella, G.M.; Hernández-Sánchez, B.R.; Sánchez-García, J.C. Women Entrepreneurship: A Systematic Review to Outline the Boundaries of Scientific Literature. Front. Psychol. 2020, 11, 1557. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.; Li, L.-L.; Liu, Z.; Min, Y.-M.; Guo, S.-J.; Chen, L.-C.; Wang, Q.-L.; Li, J.-H.; Yang, J.-F.; Zhang, J.-W.; et al. Oxidation to Spontaneous Combustion of Pyrophoric Iron Sulphides in the Process Industries: A Review. J. Loss Prev. Process Ind. 2023, 85, 105171. [Google Scholar] [CrossRef]
- Wang, C.; Duan, X.; Deng, Y.; Deng, J.; Bai, Z.; Yang, N.; Qu, G. Study of Inflatable Temperature-Sensitive Hydrogel to Prevent the Coal Spontaneous Combustion. Fuel 2023, 354, 129333. [Google Scholar] [CrossRef]
- He, Y.; Deng, J.; Yi, X.; Xiao, Y.; Deng, Y.; Chen, W. Effect of Rare-Earth-Containing Inhibitors on the Low-Temperature Oxidation Characteristics and Thermodynamic Properties of Coal. Energy 2023, 281, 128316. [Google Scholar] [CrossRef]
- Bai, Z.; Deng, J.; Wang, C.; Hou, Y.; Zhang, Y.; Kang, F.; Ramakrishna, S. Study on the Mechanism of Lignite Oxidation Inhibition by Antioxidant Resveratrol. Energy 2023, 273, 127235. [Google Scholar] [CrossRef]
- Bai, Z.; Deng, J.; Wang, C.; Zhang, Y.; Shu, C.-M.; Ramakrishna, S. Effect of Anions in Ionic Liquids on Microstructure and Oxidation Characteristics of Lignite. Fuel 2023, 339, 127446. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, G.; Hu, X.; Xue, D.; Wang, K. Study on the Preparation of Inorganic Solidified Foam with High Stability and Its Prevention and Treatment of Coal Spontaneous Combustion. Energy Fuels 2023, 37, 14268–14279. [Google Scholar] [CrossRef]
- Chen, J.; Jia, B.; Fu, S.; Wen, Y.; Liang, Y.; Tian, F. Novel PFA-Based Inorganic Three-Phase Foam for Inhibiting Coal Spontaneous Combustion. ACS Omega 2023, 8, 24615–24623. [Google Scholar] [CrossRef]
- Xue, D.; Hu, X.; Sun, G.; Wang, K.; Liu, T.; Wang, J.; Wang, F. A Study on a Janus-Type Composite Solidified Foam and Its Characteristics for Preventing and Controlling Spontaneous Combustion of Coal. Energy 2023, 275, 127433. [Google Scholar] [CrossRef]
- Dong, H.; Hu, X.; Yu, A.; Wang, W.; Zhao, Q.; Wei, H.; Yang, Z.; Wang, X.; Luo, C. Study on the Mechanism of an Enteromorpha-Based Compound Inhibitor for Inhibiting the Spontaneous Combustion of Coal Using in Situ Infrared Spectroscopy and Thermal Analysis Kinetics. J. Environ. Chem. Eng. 2023, 11, 109577. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Y.; Huang, Z.; Ding, H.; Hu, X.; Gao, Y.; Yang, Y. Study on the Synergistic Antioxidant Effect of Coal Inhibitors and the DFT Calculation. Combust. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Ma, W.; Ma, Q.; Zhao, Y.; Hu, X.; He, Z.; Chi, L.; Zhao, X.; Zhao, Y.; Sun, F.; Chu, C. Preparation and Resource Utilization of Sludge-Based Fire-Preventive and Extinguishing Composite Gel for Coal Mine. J. Environ. Chem. Eng. 2023, 11, 109465. [Google Scholar] [CrossRef]
- Cao, H.; Lu, W.; Yin, Z.; Fu, H.; Mou, X.; Pan, X.; Kong, B. Research on the Tracing and Fire Prevention Performance of New Mining Composite Gel. Combust. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Zhou, G.; Li, S.; Zhang, Q.; Liang, Y.; Song, S.; Sun, B.; Wang, Q. Preparation and Properties of Bio-Based Self-Healing Fire Prevention Gel Reinforced with Expanded Graphite Ligand. J. Build. Eng. 2023, 66, 105845. [Google Scholar] [CrossRef]
- Shi, Q.; Qin, B.; Hao, Y.; Li, H. Experimental Investigation of the Flow and Extinguishment Characteristics of Gel-Stabilized Foam Used to Control Coal Fire. Energy 2022, 247, 123484. [Google Scholar] [CrossRef]
- Shi, Q.; Qin, B.; Xu, Y.; Hao, M.; Shao, X.; Zhuo, H. Experimental Investigation of the Drainage Characteristic and Stability Mechanism of Gel-Stabilized Foam Used to Extinguish Coal Fire. Fuel 2022, 313, 122685. [Google Scholar] [CrossRef]
- Lu, X.-X.; Han, Y.; Xue, X.; Wang, D.-M. Research on a Noble Extinguish Material for the Underground Fire Prevention. Fire Mater. 2020, 44, 230–241. [Google Scholar] [CrossRef]
- Shi, Q.; Qin, B. Experimental Research on Gel-Stabilized Foam Designed to Prevent and Control Spontaneous Combustion of Coal. Fuel 2019, 254, 115558. [Google Scholar] [CrossRef]
- Shi, Q.; Qin, B.; Bi, Q.; Qu, B. Fly Ash Suspensions Stabilized by Hydroxypropyl Guar Gum and Xanthan Gum for Retarding Spontaneous Combustion of Coal. Combust. Sci. Technol. 2018, 190, 2097–2110. [Google Scholar] [CrossRef]
- Miao, J.; Yang, S.; Jiang, X.; Hou, Z.; Shao, H. Effect of the Sudden Change of Ambient Atmosphere on Free Radicals in Coal Body by CO2 Fire Prevention Gas Injection. Energy Sources Part A-Recovery Util. Environ. Eff. 2023, 45, 829–840. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, H.; Deng, J.; Yang, S.; Xu, G.; Zheng, W.; Chang, P. Synergistic Inhibiting and Sealing Material for Preventing the Compound Disaster of Gas and Coal Spontaneous Combustion: Ratio Optimization and Inhibition Test. Combust. Sci. Technol. 2022. [CrossRef]
- Zhou, B.; Yang, S.; Yang, W.; Jiang, X.; Song, W.; Cai, J.; Xu, Q.; Tang, Z. Variation Characteristics of Active Groups and Macroscopic Gas Products during Low-Temperature Oxidation of Coal under the Action of Inert Gases N2 and CO2. Fuel 2022, 307, 121893. [Google Scholar] [CrossRef]
- Cai, J.; Yang, S.; Zhong, Y.; Song, W.; Zheng, W. A Physical-Chemical Synergetic Inhibitor for Coal Spontaneous Combustion and Its Fire Prevention Performance. Combust. Sci. Technol. 2022, 194, 1155–1167. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, S.; Hu, X.; Song, W.; Cai, J.; Xu, Q. Restraining Effect of Nitrogen on Coal Oxidation in Different Stages: Non-Isothermal TG-DSC and EPR Research. Int. J. Min. Sci. Technol. 2020, 30, 387–395. [Google Scholar] [CrossRef]
- Gao, L.; Tan, B.; Fan, L.; Wang, H.; Li, X.; Lu, W.; Jiang, Y. Comparison and Analysis of Spontaneous Combustion Control between Coal Storage Silos and Biomass Silos. Energy 2024, 286, 129623. [Google Scholar] [CrossRef]
- Sun, Q.; Niu, H.; Yang, Y.; Sun, S. Study on the Inhibitory Effect of DL-Malic Acid on the Phase Structure and Combustion Characteristics of Coal. Fire Mater. 2024, 48, 238–247. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, H.; Tan, B.; Fu, S. Carbon Dioxide Prevents Oxygen Adsorption at Low-Temperature Oxidation Stage of Low-Rank Coal: Laboratory Study and Molecular Simulation. Processes 2023, 11, 2504. [Google Scholar] [CrossRef]
- Niu, H.; Liu, Y.; Wang, H.; Tan, B.; Li, S. Effect of Functional Groups on Spontaneous Combustion Characteristics of High Water-Rich Coal after Long-Term Soaking and Drying. Energy Sources Part A-Recovery Util. Environ. Eff. 2023, 45, 9325–9340. [Google Scholar] [CrossRef]
- Niu, H.; Sun, Q.; Bu, Y.; Yang, Y.; Sun, S.; Li, S.; Tao, M.; Mao, Z. Review and Prospects of Research on Materials to Prevent and Extinguish Mine Fires. Fire Mater. 2023, 47, 739–757. [Google Scholar] [CrossRef]
- Tan, B.; Song, X.; Zhang, B.; Shao, Z.; Li, Z.; Liu, S. Study on the Effect of Different Seawater Mass Ratio on Coal Spontaneous Combustion Characteristics. Thermochim. Acta 2022, 716, 179328. [Google Scholar] [CrossRef]
- Fang, X.; Wang, H.; Tan, B.; Wang, F.; Shao, Z.Z.; Cheng, G.; Yao, H. Experimental Comparison Study of CO2 and N2 Inerted Loose Coal Based on Atmospheric Pressure Gas Replacement. Fuel 2022, 328, 125347. [Google Scholar] [CrossRef]
- Tan, B.; Li, X.; Zhang, X.; Zhang, Z.; Zhang, H. Research on Initial Prevention of Spontaneous Combustion in Coal Bunkers Based on Fire-Extinguishing and Fireproof Inerting. ACS Omega 2022, 7, 3359–3368. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tan, B.; Shao, Z.; Guo, Y.; Zhang, Z.; Xu, C. Influence of Different Content of FeS2 on Spontaneous Combustion Characteristics of Coal. Fuel 2021, 288, 119582. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Yang, Y.; Zhang, X.; Yan, D.; Liu, L. Inhibitive Effects of Antioxidants on Coal Spontaneous Combustion. Energy Fuels 2017, 31, 14180–14190. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Si, L.; Hou, S.; Zhou, Y.; Qi, Q. Consolidation Grouting Technology for Fire Prevention in Mined-out Areas of Working Face with Large Inclined Angle and Its Application. Fire Mater. 2017, 41, 700–715. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Tang, Y.; Liu, Z.; Ji, H. Fine Coal Covering for Preventing Spontaneous Combustion of Coal Pile. Nat. Hazards 2014, 74, 603–622. [Google Scholar] [CrossRef]
- Cheng, W.; Hu, X.; Xie, J.; Zhao, Y. An Intelligent Gel Designed to Control the Spontaneous Combustion of Coal: Fire Prevention and Extinguishing Properties. Fuel 2017, 210, 826–835. [Google Scholar] [CrossRef]
- Ren, X.; Hu, X.; Xue, D.; Li, Y.; Shao, Z.; Dong, H.; Cheng, W.; Zhao, Y.; Xin, L.; Lu, W. Novel Sodium Silicate/Polymer Composite Gels for the Prevention of Spontaneous Combustion of Coal. J. Hazard. Mater. 2019, 371, 643–654. [Google Scholar] [CrossRef]
- Colaizzi, G.J. Prevention, Control and/or Extinguishment of Coal Seam Fires Using Cellular Grout. Int. J. Coal Geol. 2004, 59, 75–81. [Google Scholar] [CrossRef]
- Li, Q.-W.; Xiao, Y.; Zhong, K.-Q.; Shu, C.-M.; Lu, H.-F.; Deng, J.; Wu, S. Overview of Commonly Used Materials for Coal Spontaneous Combustion Prevention. Fuel 2020, 275, 117981. [Google Scholar] [CrossRef]
- Deng, J.; Yang, Y.; Zhang, Y.-N.; Liu, B.; Shu, C.-M. Inhibiting Effects of Three Commercial Inhibitors in Spontaneous Coal Combustion. Energy 2018, 160, 1174–1185. [Google Scholar] [CrossRef]
- Synthesis and Characteristics of Fire Extinguishing Gel with High Water Absorption for Coal Mines (Topic)—1—All Databases. Available online: https://webofscience-clarivate-cn-s.vpn.cumtb.edu.cn:8118/wos/alldb/summary/519b1f54-a5c7-481a-9d4c-13169e237368-bc4da01d/relevance/1 (accessed on 11 December 2023).
- Qin, B.; Lu, Y.; Li, Y.; Wang, D. Aqueous Three-Phase Foam Supported by Fly Ash for Coal Spontaneous Combustion Prevention and Control. Adv. Powder Technol. 2014, 25, 1527–1533. [Google Scholar] [CrossRef]
- Xue, D.; Hu, X.; Cheng, W.; Wei, J.; Zhao, Y.; Shen, L. Fire Prevention and Control Using Gel-Stabilization Foam to Inhibit Spontaneous Combustion of Coal: Characteristics and Engineering Applications. Fuel 2020, 264, 116903. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, H.; Guo, J.; Jin, Y.; Wei, G.; Yang, Z. Coal Spontaneous Combustion and N2 Suppression in Triple Goafs: A Numerical Simulation and Experimental Study. Fuel 2020, 271, 117625. [Google Scholar] [CrossRef]
- Zhou, F.; Shi, B.; Cheng, J.; Ma, L. A New Approach to Control a Serious Mine Fire with Using Liquid Nitrogen as Extinguishing Media. Fire Technol. 2015, 51, 325–334. [Google Scholar]
- Xue, D.; Hu, X.; Cheng, W.; Wu, M.; Shao, Z.; Li, Y.; Zhao, Y.; Zhang, K. Carbon Dioxide Sealing-Based Inhibition of Coal Spontaneous Combustion: A Temperature-Sensitive Micro-Encapsulated Fire-Retardant Foamed Gel. Fuel 2020, 266, 117036. [Google Scholar] [CrossRef]
- Fan, Y.-J.; Zhao, Y.-Y.; Hu, X.-M.; Wu, M.-Y.; Xue, D. A Novel Fire Prevention and Control Plastogel to Inhibit Spontaneous Combustion of Coal: Its Characteristics and Engineering Applications. Fuel 2020, 263, 116693. [Google Scholar] [CrossRef]
- Cao, Q.; Shen, J.; Guo, W. Effects of Foaming Agent on Properties of Foamed Gel. Adv. Compos. Lett. 2020, 29, 0963693519881649. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.; Cheng, W.; Shao, Z.; Xue, D.; Zhao, Y.; Lu, W. A Novel High-Toughness, Organic/Inorganic Double-Network Fire-Retardant Gel for Coal-Seam with High Ground Temperature. Fuel 2020, 263, 116779. [Google Scholar] [CrossRef]
- Gao, J.; Chu, R.; Meng, X.; Yang, J.; Yang, D.; Li, X.; Lou, W. Synergistic Mechanism of CO2 and Active Functional Groups during Low Temperature Oxidation of Lignite. Fuel 2020, 278, 118407. [Google Scholar] [CrossRef]
- Jin, J.; Hao, C.; Shen, W.; Yuan, Z.; He, W.; Li, L. Study on the Microcosmic Mechanism of Inhibition of Coal Spontaneous Combustion by Antioxidant Diphenylamine. J. Mol. Struct. 2023, 1294, 136357. [Google Scholar] [CrossRef]
- Li, H.; Shen, X.; Lu, J.; Lu, Y.; Shi, S.; Shao, S. Experimental and Quantum Chemical Investigation on the Inhibitory Effects of Resveratrol on Coal Spontaneous Combustion. Fuel 2023, 354, 129297. [Google Scholar] [CrossRef]
- Gao, F.; Jia, Z.; Bai, Q.; Dong, J. Characteristics and Mechanism of Glutathione in Inhibiting Coal Spontaneous Combustion. Fuel 2023, 352, 129006. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, B.; Zhang, J.; Fu, X.; Deng, H.; Qiao, L.; Ding, C.; Gao, F. Experimental and Simulation Study on Hydroxyl Group Promoting Low-Temperature Oxidation of Active Groups in Coal. Fuel 2023, 340, 127501. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, C.; Lu, B.; Gao, F.; Shan, C.; Zou, J. Study on the Inhibitory Mechanism of Dehydrogenated Antioxidants on Coal Spontaneous Combustion. Sci. Rep. 2022, 12, 21237. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hao, C.; Zhai, R.; He, W.; Deng, C. Study on the Mechanism of Free Radical Scavenger TEMPO Blocking in Coal Oxidation Chain Reaction. Fuel 2023, 331, 125853. [Google Scholar] [CrossRef]
- Dai, F.; Qin, G.; Huang, G.; Deng, H.; Zhang, X. A Comparison of the Inhibition Effect of Zn2+ or Fe2+ in the Oxidation of a-Thiophenol Groups in Coal. Chem. Eng. Sci. 2022, 260, 117863. [Google Scholar] [CrossRef]
- Zhang, L.; Han, Y.; Xu, D.; Jiang, Q.; Xin, H.; Fu, C.; He, W. Study on the Reaction Path of -CH3 and -CHO Functional Groups during Coal Spontaneous Combustion: Quantum Chemistry and Experimental Research. Energies 2022, 15, 4891. [Google Scholar] [CrossRef]
Rank | Author | Organization | Volume of Publication | Proportions | Rank | Author | Organization | Volume of Publication | Proportions |
---|---|---|---|---|---|---|---|---|---|
1 | Deng Jun | Xi’an University of Science and Technology | 34 | 4.7% | 6 | Wen Hu | Xi’an University of Science and Technology | 19 | 2.6% |
2 | Shu Chimin | National Yunlin University of Science and Technology | 27 | 3.8% | 7 | Wang Wei | Tsinghua University | 18 | 2.5% |
3 | Hu Xiangming | Shandong University of Science and Technology | 22 | 3.1% | 8 | Lu Wei | Shandong University of Science and Technology | 16 | 2.2% |
4 | Xiao Yang | Xi’an University of Science and Technology | 22 | 3.1% | 9 | Liang Yuntao | Shandong University of Science and Technology | 15 | 2.1% |
5 | Yang Shengqiang | China University of Mining and Technology | 20 | 2.8% | 10 | Qin Botao | China University of Mining and Technology | 15 | 2.1% |
Rank | Journal | Volume of Publications | Proportions | Impact Factor | Total Citations | Average Citation | Citation Index |
---|---|---|---|---|---|---|---|
1 | Fuel | 90 | 12.55% | 7.4 | 2789 | 30.9888 | SCI |
2 | Combustion Science and Technology | 72 | 10.04% | 1.9 | 522 | 7.2500 | SCI |
3 | Energy | 33 | 4.60% | 9.0 | 658 | 19.9394 | SCI |
4 | Process Safety and Environmental Protection | 30 | 4.18% | 7.8 | 1074 | 35.8000 | SCI |
5 | ACS Omega | 29 | 4.05% | 4.1 | 202 | 6.9655 | SCI |
6 | Journal of Thermal Analysis and Calorimetry | 19 | 2.65% | 4.4 | 229 | 12.0526 | SCI |
7 | Environmental Science and Pollution Research | 18 | 2.51% | 5.8 | 379 | 21.0556 | SCI |
8 | Energies | 17 | 2.37% | 3.2 | 113 | 6.6471 | SCI |
9 | Energy Sources Part A-Recovery Utilization and Environmental Effects | 17 | 2.37% | 2.9 | 116 | 6.8235 | SCI |
10 | Journal of Loss Prevention in the Process Industries | 15 | 2.09% | 3.5 | 155 | 10.3333 | SCI |
Rank | Journal | Co-Citation | Rank | Journal | Co-Citation |
---|---|---|---|---|---|
1 | Fuel | 519 | 6 | Energy and Fuels | 248 |
2 | International Journal of Coal Geology | 358 | 7 | International Journal of Mining Science and Technology | 240 |
3 | Process Safety and Environmental Protection | 349 | 8 | Journal of China Coal Society | 234 |
4 | Journal of Loss Prevention in the Process Industries | 279 | 9 | Combustion Science and Technology | 230 |
5 | Fuel Processing Technology | 271 | 10 | Energy | 228 |
Rank | Title | Types | Journal | Author | Year | Citation |
---|---|---|---|---|---|---|
#1 | An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties | Article | Fuel | Cheng et al. [100] | 2017 | 354 |
#2 | Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal | Article | Journal of Hazardous Materials | Ren et al. [101] | 2019 | 154 |
#3 | Prevention, control and/or extinguishment of coal seam fires using cellular grout | Article | International Journal of Coal Geology | Colaizzi, GJ [102] | 2004 | 131 |
#4 | Overview of commonly used materials for coal spontaneous combustion prevention | Review | Fuel | Li et al. [103] | 2020 | 112 |
#5 | Inhibiting effects of three commercial inhibitors in spontaneous coal combustion | Article | Energy | Deng et al. [104] | 2018 | 104 |
#6 | Synthesis and characteristics of fire extinguishing gel with high water absorption for coal mines | Article | Process Safety and Environmental Protection | Li et al. [105] | 2019 | 102 |
#7 | Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control | Article | Advanced Powder Technology | Qin et al. [106] | 2014 | 98 |
#8 | Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: Characteristics and engineering applications | Article | Fuel | Xue et al. [107] | 2020 | 96 |
#9 | Coal spontaneous combustion and N2 suppression in triple goafs: A numerical simulation and experimental study | Article | Fuel | Liu et al. [108] | 2020 | 91 |
#10 | A New Approach to Control a Serious Mine Fire with Using Liquid Nitrogen as Extinguishing Media | Article | Fire Technology | Zhou et al. [109] | 2015 | 84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Niu, G.; Liu, B.; Wang, F.; Ren, Y.; Su, C.; Yao, Y.; Zhao, Z. Spatiotemporal Evolution and Frontier Focus Analysis Based on Coal Fire Control Body of Knowledge. Fire 2024, 7, 187. https://doi.org/10.3390/fire7060187
Han D, Niu G, Liu B, Wang F, Ren Y, Su C, Yao Y, Zhao Z. Spatiotemporal Evolution and Frontier Focus Analysis Based on Coal Fire Control Body of Knowledge. Fire. 2024; 7(6):187. https://doi.org/10.3390/fire7060187
Chicago/Turabian StyleHan, Dandan, Guchen Niu, Bing Liu, Feiran Wang, Yongbo Ren, Chang Su, Yutong Yao, and Zining Zhao. 2024. "Spatiotemporal Evolution and Frontier Focus Analysis Based on Coal Fire Control Body of Knowledge" Fire 7, no. 6: 187. https://doi.org/10.3390/fire7060187
APA StyleHan, D., Niu, G., Liu, B., Wang, F., Ren, Y., Su, C., Yao, Y., & Zhao, Z. (2024). Spatiotemporal Evolution and Frontier Focus Analysis Based on Coal Fire Control Body of Knowledge. Fire, 7(6), 187. https://doi.org/10.3390/fire7060187