Research Progress on the Fire Characteristics of Electric Cables and Wires
Abstract
:1. Introduction
- First, the cable sheath and insulating materials are flammable, which can be ignited in high-temperature situations;
- Secondly, under good ventilation conditions, cable fires can accelerate their spread along the cables. Due to the fact that cables are mostly connected to important places, once a fire spreads to important places, the loss is significant;
- Third, the burning process of cables can release toxic and corrosive gases such as hydrogen chloride and carbon monoxide, which can cause significant damage to people and equipment;
- Fourth, the process of cable burning is often accompanied by a large amount of smoke, greatly affecting the escape and rescue work.
2. Wire Combustion Characteristics
2.1. Ignition
2.1.1. Piloted Ignition by External Heating
- (1)
- (2)
- (3)
- (1)
- The contact thermal resistance between the insulation layer and the wire core are ignored;
- (2)
- The materials are isotropic;
- (3)
- The phase transitions and deformations are ignored;
- (4)
- The radial heat transfer is ignored.
2.1.2. Overcurrent Ignition
2.1.3. Arc Ignition
2.1.4. Ignition to Flame Propagation Transition
2.1.5. Pyrolysis Model
2.2. Fire Spread
- (1)
- the heat feedback of the flame to the preheating zone (including the convection component and the radiation component);
- (2)
- the heat feedback from the core to the insulation in the preheating zone the heat feedback from the core to the insulation in the preheating zone (and joule heat generated by the energized core if the wire is energized);
- (3)
- the molten insulation in the liquid phase and Marangoni convection (and the heat loss of dripping behavior if the molten insulation drips);
- (4)
- the heat loss from the sample surface (convection and radiation).
2.2.1. The Metal Core
2.2.2. Inclination Effect
2.2.3. Oxygen Concentration
2.2.4. Ambient Pressure
2.2.5. Gravity
2.2.6. Airflow
- (1)
- Regime A (as-phase convection-enhanced regime): The enhancement in the gas relative flow causes the enhancement of net heat flow in the low-velocity area.
- (2)
- Regime B (cooling effect-enhanced regime): The heat loss because of the heat sink of the core results in the net heat flux increasing.
- (3)
- Regime C (liquid-phase Marangoni convection effect regime): The heat flux from the molten material (liquid-phase Marangoni convection) and the solidified droplets formed downstream prevent the cooling of the naked core due to airflow, eventually causing an increase in the net heat flux.
- (4)
- Regime D (limited chemical reaction regime): The high transverse flow velocity results in the limited chemical reaction rate.
2.2.7. Electric Current and Electric Field
2.3. Dripping
2.4. Extinction
3. Real Cable Fire Research
3.1. Combustion Characteristics of Cable Materials
3.2. Cable Fire Behavior
- (1)
- The effects of pressure induced by fires in forced ventilated enclosures;
- (2)
- The effects of oxygen depletion on the fuel mass loss rate;
- (3)
- The relative effects of heat and mass transfers from the fire compartment to an adjacent room;
- (4)
- The effects of the ventilation flow rate on the velocity profiles from the fire room to neighboring compartments;
- (5)
- Cable performance testing;
- (6)
- The effects of damper closure on the fire scenario;
- (7)
- The behavior of the activation of a sprinkler system in a fire scenario;
- (8)
- The behavior of a cable fire in confined and ventilated fire scenarios;
- (9)
- The behavior of an electrical cabinet fire in confined and ventilated fire scenarios.
3.3. The Release of Toxic Gases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Implication | Symbol | Implication |
A | Cross-section area (m2)/pre-exponential factor | Nu | Nusselt number |
a | Strain rate (s−1) | / | Heat flux (kW/m2) |
B | Mass transfer number | r | Radius (m) |
Bo | Bond number | t | Time (s) |
c | Specific heat (kJ/kg/K)/proportionality constant | T | Temperature (K or °C) |
D | Diffusion coefficient (m2/s)/diameter (m) | U | Sliding velocity (m/s) |
Da | Damkohler number | x | Wire axial direction |
E | Gaseous reaction activation energy (kJ/mol) | δ | Thickness (m) |
f | Frequency (s−1) | Coefficient | |
Gr | Grashoff number | Chemical reaction rate (mol/L/s) | |
Reaction heat (kJ/mol) | X | Volume fraction (%) | |
h | Convective heat transfer coefficient (W/(m2·K)) | Density (kg/m2) | |
I | Electrical current (A) | Surface tension (Pa) | |
k | Thermal conductivity (W/m/K) | Equivalence ratio | |
L | Heating length (m) | Critical shear stress (Pa) | |
Le | Lewis number | Angle (°) | |
Mass loss rate (kg/s) |
References
- Residential Building Electrical Malfunction Fire Trends. Available online: https://www.usfa.fema.gov/statistics/residential-fires/electrical.html (accessed on 9 April 2024).
- Eaton, T.E. Electric Services and Building Fires. Fire Technol. 1992, 28, 70–86. [Google Scholar] [CrossRef]
- Andersson, P.; Rosell, L.; Simonson, M.; Emanuelsson, V. Small and Large Scale Fire Experiments with Electric Cables under Well-Ventilated and Vitiated Conditions. Fire Technol. 2004, 40, 247–262. [Google Scholar] [CrossRef]
- Bakhman, N.N.; Aldabaev, L.I.; Kondrikov, B.N.; Filippov, V.A. Burning of Polymeric Coatings on Copper Wires and Glass Threads: II. Critical Conditions of Burning. Combust. Flame 1981, 41, 35–43. [Google Scholar] [CrossRef]
- Bakhman, N.N.; Aldabaev, L.I.; Kondrikov, B.N.; Filippov, V.A. Burning of Polymeric Coatings on Copper Wires and Glass Threads: I. Flame Propagation Velocity. Combust. Flame 1981, 41, 17–34. [Google Scholar] [CrossRef]
- Fernandez-Pello, A.; Hasegawa, H.; Staggs, K.; Lipska-quinn, A.; Alvares, N. A Study Of The Fire Performance Of Electrical Cables. Fire Saf. Sci. 1991, 3, 237–247. [Google Scholar] [CrossRef]
- Tewarson, A.; Khan, M.M. Flame Propagation for Polymers in Cylindrical Configuration and Vertical Orientation. Symp. Int. Combust. 1989, 22, 1231–1240. [Google Scholar] [CrossRef]
- Jia, S.; Ma, Y.; Guo, Z.; Hu, L. Experimental Study of Spontaneous Ignition of Overloaded Electrical Wires under Transverse Wind. Proc. Combust. Inst. 2023, 39, 4031–4039. [Google Scholar] [CrossRef]
- Guo, F.; Kawaguchi, S.; Hashimoto, N.; Fujita, O. Effect of Pyrolysis Kinetic Parameters on the Overload Ignition of Polymer Insulated Wires in Microgravity. Proc. Combust. Inst. 2023, 39, 3939–3947. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Konno, Y.; Huang, X.; Nakaya, S.; Tsue, M.; Hashimoto, N.; Fujita, O.; Fernandez-Pello, C. Laser Piloted Ignition of Electrical Wire in Microgravity. Proc. Combust. Inst. 2019, 37, 4211–4219. [Google Scholar] [CrossRef]
- Fang, J.; Zhao, S.; Wang, J.; Xue, Y.; He, X.; Zhang, Y. Sub-Atmospheric Bursting Ignition of Fluorinated Ethylene Propylene Wire Insulation. Fire Saf. J. 2018, 100, 45–50. [Google Scholar] [CrossRef]
- He, H.; Zhang, Q.; Wang, X.; Wang, F.; Zhao, L.; Zhang, Y. The Influence of Currents on the Ignition and Correlative Smoke Productions for PVC-Insulated Electrical Wires. Fire Technol. 2017, 53, 1275–1289. [Google Scholar] [CrossRef]
- Shimizu, K.; Kikuchi, M.; Hashimoto, N.; Fujita, O. A Numerical and Experimental Study of the Ignition of Insulated Electric Wire with Long-Term Excess Current Supply under Microgravity. Proc. Combust. Inst. 2017, 36, 3063–3071. [Google Scholar] [CrossRef]
- Takano, Y.; Fujita, O.; Shigeta, N.; Nakamura, Y.; Ito, H. Ignition Limits of Short-Term Overloaded Electric Wires in Microgravity. Proc. Combust. Inst. 2013, 34, 2665–2673. [Google Scholar] [CrossRef]
- Huang, X.; Nakamura, Y.; Williams, F.A. Ignition-to-Spread Transition of Externally Heated Electrical Wire. Proc. Combust. Inst. 2013, 34, 2505–2512. [Google Scholar] [CrossRef]
- Fujita, O.; Kyono, T.; Kido, Y.; Ito, H.; Nakamura, Y. Ignition of Electrical Wire Insulation with Short-Term Excess Electric Current in Microgravity. Proc. Combust. Inst. 2011, 33, 2617–2623. [Google Scholar] [CrossRef]
- Kong, W.; Wang, B.; Zhang, W.; Ai, Y.; Lao, S. Study on Prefire Phenomena of Wire Insulation at Microgravity. Microgravity Sci. Technol. 2008, 20, 107–113. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, J.; Wang, J.; Zhang, Y.; Song, L. Lower Pressure Dripping Limits of Inclined Polyethylene-Insulated Wires during Flame Spreading under Different Oxygen Concentrations. Fire Saf. J. 2021, 120, 103108. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Nakaya, S.; Tsue, M.; Takahashi, S. Flame Spread over Polyethylene-Insulated Copper and Stainless-Steel Wires at High Pressure. Fire Saf. J. 2021, 120, 103062. [Google Scholar] [CrossRef]
- Gagnon, L.; Fernandez-Pello, C.; Urban, J.L.; Carey, V.P.; Konno, Y.; Fujita, O. Effect of Reduced Ambient Pressures and Opposed Airflows on the Flame Spread and Dripping of LDPE Insulated Copper Wires. Fire Saf. J. 2021, 120, 103171. [Google Scholar] [CrossRef]
- He, H.; Zhang, Q.; Shi, L.; Li, H.; Huang, D.; Zhang, Y. Experimental Study on the Thermoplastic Dripping and Flame Spread Behaviors of Energized Electrical Wire under Reduced Atmospheric Pressure. Polymers 2021, 13, 346. [Google Scholar] [CrossRef]
- Nagachi, M.; Citerne, J.-M.; Dutilleul, H.; Guibaud, A.; Jomaas, G.; Legros, G.; Hashimoto, N.; Fujita, O. Effect of Ambient Pressure on the Extinction Limit for Opposed Flame Spread over an Electrical Wire in Microgravity. Proc. Combust. Inst. 2021, 38, 4767–4774. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, X.; Lu, Y.; Lv, J.; Zhu, N.; Hu, L. Effect of Transverse Flow on Flame Spread and Extinction over Polyethylene-Insulated Wires. Proc. Combust. Inst. 2021, 38, 4727–4735. [Google Scholar] [CrossRef]
- Kang, M.S.; Park, S.H.; Yoo, C.S.; Park, J.; Chung, S.H. Effect of Core Metal on Flame Spread and Extinction for Horizontal Electrical Wire with Applied AC Electric Fields. Proc. Combust. Inst. 2021, 38, 4747–4756. [Google Scholar] [CrossRef]
- Guibaud, A.; Consalvi, J.-L.; Citerne, J.-M.; Legros, G. Pressure Effects on the Soot Production and Radiative Heat Transfer of Non-Buoyant Laminar Diffusion Flames Spreading in Opposed Flow over Insulated Wires. Combust. Flame 2020, 222, 383–391. [Google Scholar] [CrossRef]
- An, W.; Tang, Y.; Liang, K.; Wang, T.; Zhou, Y.; Wen, Z. Experimental Study on Flammability and Flame Spread Characteristics of Polyvinyl Chloride (PVC) Cable. Polymers 2020, 12, 2789. [Google Scholar] [CrossRef]
- Guibaud, A.; Citerne, J.-M.; Consalvi, J.-L.; Legros, G. On the Effects of Opposed Flow Conditions on Non-Buoyant Flames Spreading over Polyethylene-Coated Wires—Part II: Soot Oxidation Quenching and Smoke Release. Combust. Flame 2020, 221, 544–551. [Google Scholar] [CrossRef]
- Guibaud, A.; Citerne, J.-M.; Consalvi, J.-L.; Legros, G. On the Effects of Opposed Flow Conditions on Non-Buoyant Flames Spreading over Polyethylene-Coated Wires—Part I: Spread Rate and Soot Production. Combust. Flame 2020, 221, 530–543. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, T.; Wei, R.; Wang, J. Experimental Study of Flame Spread over PE-insulated Single Copper Core Wire under Varying Pressure and Electric Current. Fire Mater. 2020, 44, 835–843. [Google Scholar] [CrossRef]
- Konno, Y.; Hashimoto, N.; Fujita, O. Role of Wire Core in Extinction of Opposed Flame Spread over Thin Electric Wires. Combust. Flame 2020, 220, 7–15. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Chen, X.; Sheng, Y.; Lu, S.; Luo, S.; Deng, J. Influence of High Atmospheric Pressure on Flame Spread over Electric Wire at Different Inclinations. Process Saf. Environ. Prot. 2020, 136, 66–75. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Q.; Tu, R.; Fang, J.; Wang, J.; Zhang, Y. Effects of Electric Current and Sample Orientation on Flame Spread over Electrical Wires. Fire Saf. J. 2020, 112, 102967. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, R.; He, J.; Wang, J. Melt Dripping Behavior in the Process of Flame Spread over Energized Electrical Wire at Different Pressures. Fire Mater. 2020, 44, 58–64. [Google Scholar] [CrossRef]
- Nagachi, M.; Mitsui, F.; Citerne, J.-M.; Dutilleul, H.; Guibaud, A.; Jomaas, G.; Legros, G.; Hashimoto, N.; Fujita, O. Effect of Ignition Condition on the Extinction Limit for Opposed Flame Spread over Electrical Wires in Microgravity. Fire Technol. 2020, 56, 149–168. [Google Scholar] [CrossRef]
- Konno, Y.; Kobayashi, Y.; Fernandez-Pello, C.; Hashimoto, N.; Nakaya, S.; Tsue, M.; Fujita, O. Opposed-Flow Flame Spread and Extinction in Electric Wires: The Effects of Gravity, External Radiant Heat Flux, and Wire Characteristics on Wire Flammability. Fire Technol. 2020, 56, 131–148. [Google Scholar] [CrossRef]
- Guibaud, A.; Citerne, J.-M.; Consalvi, J.-L.; Fujita, O.; Torero, J.; Legros, G. Experimental Evaluation of Flame Radiative Feedback: Methodology and Application to Opposed Flame Spread Over Coated Wires in Microgravity. Fire Technol. 2020, 56, 185–207. [Google Scholar] [CrossRef]
- Guibaud, A.; Consalvi, J.L.; Orlac’h, J.M.; Citerne, J.M.; Legros, G. Soot Production and Radiative Heat Transfer in Opposed Flame Spread over a Polyethylene Insulated Wire in Microgravity. Fire Technol. 2020, 56, 287–314. [Google Scholar] [CrossRef]
- Park, S.H.; Kang, M.S.; Cha, M.S.; Park, J.; Chung, S.H. Flame Spread over Twin Electrical Wires with Applied DC Electric Fields. Combust. Flame 2019, 210, 350–359. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, K.; Lu, Y.; Zhang, X. An Experimental Study on Flame Spread over Electrical Wire with High Conductivity Copper Core and Controlling Heat Transfer Mechanism under Sub-Atmospheric Pressures. Int. J. Therm. Sci. 2019, 141, 141–149. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, J.; Wang, J.; Zhao, L.; Zhang, Y. The Effects of Angular Orientation and Ultraviolet Aging on ETFE Wire Flame Spread. Fire Mater. 2019, 43, 393–400. [Google Scholar] [CrossRef]
- Park, S.H.; Lim, S.J.; Cha, M.S.; Park, J.; Chung, S.H. Effect of AC Electric Field on Flame Spread in Electrical Wire: Variation in Polyethylene Insulation Thickness and Di-Electrophoresis Phenomenon. Combust. Flame 2019, 202, 107–118. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Hu, L.; Fernandez-Pello, C. Concurrent Flame Spread and Blow-Off over Horizontal Thin Electrical Wires. Fire Technol. 2019, 55, 193–209. [Google Scholar] [CrossRef]
- Nagachi, M.; Mitsui, F.; Citerne, J.-M.; Dutilleul, H.; Guibaud, A.; Jomaas, G.; Legros, G.; Hashimoto, N.; Fujita, O. Can a Spreading Flame over Electric Wire Insulation in Concurrent Flow Achieve Steady Propagation in Microgravity? Proc. Combust. Inst. 2019, 37, 4155–4162. [Google Scholar] [CrossRef]
- Konno, Y.; Hashimoto, N.; Fujita, O. Downward Flame Spreading over Electric Wire under Various Oxygen Concentrations. Proc. Combust. Inst. 2019, 37, 3817–3824. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Konno, Y.; Huang, X.; Nakaya, S.; Tsue, M.; Hashimoto, N.; Fujita, O.; Fernandez-Pello, C. Effect of Insulation Melting and Dripping on Opposed Flame Spread over Laboratory Simulated Electrical Wires. Fire Saf. J. 2018, 95, 1–10. [Google Scholar] [CrossRef]
- Lim, S.J.; Park, S.H.; Park, J.; Fujita, O.; Keel, S.I.; Chung, S.H. Flame Spread over Inclined Electrical Wires with AC Electric Fields. Combust. Flame 2017, 185, 82–92. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Chen, X.; Lu, S. Pressure Effect on Flame Spread over Polyethylene-Insulated Copper Core Wire. Appl. Therm. Eng. 2017, 123, 1042–1049. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Huang, X.; Nakaya, S.; Tsue, M.; Fernandez-Pello, C. Flame Spread over Horizontal and Vertical Wires: The Role of Dripping and Core. Fire Saf. J. 2017, 91, 112–122. [Google Scholar] [CrossRef]
- Hu, L.; Lu, Y.; Yoshioka, K.; Zhang, Y.; Fernandez-Pello, C.; Chung, S.H.; Fujita, O. Limiting Oxygen Concentration for Extinction of Upward Spreading Flames over Inclined Thin Polyethylene-Insulated NiCr Electrical Wires with Opposed-Flow under Normal- and Micro-Gravity. Proc. Combust. Inst. 2017, 36, 3045–3053. [Google Scholar] [CrossRef]
- He, H.; Zhang, Q.; Tu, R.; Zhao, L.; Liu, J.; Zhang, Y. Molten Thermoplastic Dripping Behavior Induced by Flame Spread over Wire Insulation under Overload Currents. J. Hazard. Mater. 2016, 320, 628–634. [Google Scholar] [CrossRef]
- Citerne, J.-M.; Dutilleul, H.; Kizawa, K.; Nagachi, M.; Fujita, O.; Kikuchi, M.; Jomaas, G.; Rouvreau, S.; Torero, J.L.; Legros, G. Fire Safety in Space—Investigating Flame Spread Interaction over Wires. Acta Astronaut. 2016, 126, 500–509. [Google Scholar] [CrossRef]
- Lim, S.J.; Kim, M.; Park, J.; Fujita, O.; Chung, S. Flame Spread over Electrical Wire with AC Electric Fields: Internal Circulation, Fuel Vapor-Jet, Spread Rate Acceleration, and Molten Insulator Dripping. Combust. Flame 2015, 162, 1167–1175. [Google Scholar] [CrossRef]
- Nakamura, Y.; Azumaya, K.; Iwakami, J.; Wakatsuki, K. Scale Modeling of Flame Spread Over PE-Coated Electric Wires. In Progress in Scale Modeling; Saito, K., Ito, A., Nakamura, Y., Kuwana, K., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume II, pp. 275–292. ISBN 978-3-319-10307-5. [Google Scholar]
- Hu, L.; Zhang, Y.; Yoshioka, K.; Izumo, H.; Fujita, O. Flame Spread over Electric Wire with High Thermal Conductivity Metal Core at Different Inclinations. Proc. Combust. Inst. 2015, 35, 2607–2614. [Google Scholar] [CrossRef]
- Takahashi, S.; Ito, H.; Nakamura, Y.; Fujita, O. Extinction Limits of Spreading Flames over Wires in Microgravity. Combust. Flame 2013, 160, 1900–1902. [Google Scholar] [CrossRef]
- Takahashi, S.; Takeuchi, H.; Ito, H.; Nakamura, Y.; Fujita, O. Study on Unsteady Molten Insulation Volume Change during Flame Spreading over Wire Insulation in Microgravity. Proc. Combust. Inst. 2013, 34, 2657–2664. [Google Scholar] [CrossRef]
- Kim, M.K.; Chung, S.H.; Fujita, O. Effect of AC Electric Fields on Flame Spread over Electrical Wire. Proc. Combust. Inst. 2011, 33, 1145–1151. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yoshimura, N.; Ito, H.; Azumaya, K.; Fujita, O. Flame Spread over Electric Wire in Sub-Atmospheric Pressure. Proc. Combust. Inst. 2009, 32, 2559–2566. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yoshimura, N.; Matsumura, T.; Ito, H.; Fujita, O. Opposed-Wind Effect on Flame Spread of Electric Wire in Sub-Atmospheric Pressure. J. Therm. Sci. Technol. 2008, 3, 430–441. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yoshimura, N.; Matsumura, T.; Ito, H.; Fujita, O. Flame Spread over Polymer-Insulated Wire in Sub-Atmospheric Pressure: Similarity to Microgravity Phenomena. In Progress in Scale Modeling; Saito, K., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 17–27. ISBN 978-1-4020-8681-6. [Google Scholar]
- Umemura, A.; Uchida, M.; Hirata, T.; Sato, J. Physical Model Analysis of Flame Spreading along an Electrical Wire in Microgravity. Proc. Combust. Inst. 2002, 29, 2535–2543. [Google Scholar] [CrossRef]
- Fujita, O.; Nishizawa, K.; Ito, K. Effect of Low External Flow on Flame Spread over Polyethylene-Insulated Wire in Microgravity. Proc. Combust. Inst. 2002, 29, 2545–2552. [Google Scholar] [CrossRef]
- Fujita, O.; Kikuchi, M.; Ito, K.; Nishizawa, K. Effective Mechanisms to Determine Flame Spread Rate over Ethylene-Tetrafluoroethylene Wire Insulation: Discussion on Dilution Gas Effect Based on Temperature Measurements. Proc. Combust. Inst. 2000, 28, 2905–2911. [Google Scholar] [CrossRef]
- Kikuchi, M.; Fujita, O.; Ito, K.; Sato, A.; Sakuraya, T. Experimental Study on Flame Spread over Wire Insulation in Microgravity. Symp. Int. Combust. 1998, 27, 2507–2514. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, Z.; Gao, J.; Hu, J.; Wang, C.; Zhang, X. Effect of Copper Core Diameter on Heat Transfer and Horizontal Flame Spread Behaviors over Electrical Wire. Case Stud. Therm. Eng. 2021, 27, 101296. [Google Scholar] [CrossRef]
- Tang, K.; Wu, S.; Zhang, H.; Li, C.; Yuan, B.; Zhang, Y. Analysis of Heat Transfer during Flame Spread over Energized-Wire under High Currents. Int. J. Therm. Sci. 2022, 171, 107191. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, Z.; Hu, J.; Shao, Y.; Liu, Z.; Liu, Y. Experimental Study on Flame Spread Characteristics of Double PE-Insulated Wires with Different Spacing Distances. Case Stud. Therm. Eng. 2022, 31, 101822. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, L.; Jia, S.; Lv, J.; Xiong, S. Analysis of Upward- and Downward Flame Spread over Vertical Installed Polyethylene-Insulated Electrical Wires. Combust. Flame 2022, 238, 111896. [Google Scholar] [CrossRef]
- Kang, M.S.; Park, J.; Chung, S.H.; Yoo, C.S. Effect of the Thickness of Polyethylene Insulation on Flame Spread over Electrical Wire with Cu-Core under AC Electric Fields. Combust. Flame 2022, 240, 112017. [Google Scholar] [CrossRef]
- Li, C.; Chen, J.; Zhang, W.; Hu, L.; Cao, J.; Liu, J.; Zhu, Z.; Wu, S. Influence of Arc Size on the Ignition and Flame Propagation of Cable Fire. Energies 2021, 14, 5675. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Li, K.; Tang, K.; Liu, Z. Dripping Behavior Effects on Flame Propagation along Electrical Wires under High Currents. Fire Saf. J. 2021, 123, 103368. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J. Experimental Study on Flame Propagation over Horizontal Electrical Wires under Varying Pressure. Int. J. Therm. Sci. 2020, 156, 106492. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J. A Comprehensive Study on the Flame Propagation of the Horizontal Laboratory Wires and Flame-Retardant Cables at Different Thermal Circumstances. Process Saf. Environ. Prot. 2020, 139, 325–333. [Google Scholar] [CrossRef]
- He, H.; Zhang, Q.X.; Zhao, L.Y.; Liu, J.; Wang, J.J.; Zhang, Y.M. Flame Propagation Over Energized PE-Insulated Wire Under Low Pressure. Int. J. Comput. Methods Exp. Meas. 2017, 5, 87–95. [Google Scholar] [CrossRef]
- Wang, X.; He, H.; Zhao, L.; Fang, J.; Wang, J.; Zhang, Y. Ignition and Flame Propagation of Externally Heated Electrical Wires with Electric Currents. Fire Technol. 2016, 52, 533–546. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, Y.; Huang, X.; Xue, Y.; Wang, J.; Zhao, S.; He, X.; Zhao, L. Dripping and Fire Extinction Limits of Thin Wire: Effect of Pressure and Oxygen. Combust. Sci. Technol. 2021, 193, 437–452. [Google Scholar] [CrossRef]
- Huang, X. Critical Drip Size and Blue Flame Shedding of Dripping Ignition in Fire. Sci. Rep. 2018, 8, 16528. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Gong, T.; Huang, X. Fire Zone Diagram of Flame-Retardant Cables: Ignition and Upward Flame Spread. Fire Technol. 2021, 57, 2643–2659. [Google Scholar] [CrossRef]
- Lee, J.; Kim, B.; Jung, Y.H.; Lee, S.; Shin, W.G. Numerical Study to Reproduce a Real Cable Tray Fire Event in a Nuclear Power Plant. Nucl. Eng. Technol. 2023, 55, 157–1584. [Google Scholar] [CrossRef]
- Pretrel, H.; Zavaleta, P.; Suard, S. Experimental Investigation of the Effects of a Sidewall and Cable Arrangement on a Horizontal Cable Tray Fire in an Open Atmosphere. Fire Mater. 2022, 47, 718–732. [Google Scholar] [CrossRef]
- Zavaleta, P.; Suard, S.; Audouin, L. Cable Tray Fire Tests with Halogenated Electric Cables in a Confined and Mechanically Ventilated Facility. Fire Mater. 2019, 43, 543–560. [Google Scholar] [CrossRef]
- Suard, S.; Van Hees, P.; Roewekamp, M.; Tsuchino, S.; Gonzalez, R. Fire Development in Multi-Compartment Facilities: PRISME 2 Project. Fire Mater. 2019, 43, 433–435. [Google Scholar] [CrossRef]
- Bascou, S.; Zavaleta, P.; Babik, F. Cable Tray FIRE Tests Simulations in Open Atmosphere and in Confined and Mechanically Ventilated Compartments with the CALIF3S/ISIS CFD Software. Fire Mater. 2019, 43, 448–465. [Google Scholar] [CrossRef]
- Klein-Heßling, W. Validation of the Lumped Parameter Code COCOSYS against Large-scale OECD PRISME 2 Fire Experiments. Fire Mater. 2019, 43, 591–609. [Google Scholar] [CrossRef]
- Plumecocq, W.; Audouin, L.; Zavaleta, P. Horizontal Cable Tray Fire in a Well-confined and Mechanically Ventilated Enclosure Using a Two-zone Model. Fire Mater. 2019, 43, 530–542. [Google Scholar] [CrossRef]
- Zavaleta, P.; Hanouzet, R.; Beji, T. Improved Assessment of Fire Spread over Horizontal Cable Trays Supported by Video Fire Analysis. Fire Technol. 2019, 55, 233–255. [Google Scholar] [CrossRef]
- Pelzer, M.; Klein-Heßling, W. Validation of COCOSYS Pyrolysis Models on OECD PRISME Fire Experiments. Fire Saf. J. 2013, 62, 174–191. [Google Scholar] [CrossRef]
- Audouin, L.; Rigollet, L.; Prétrel, H.; Le Saux, W.; Röwekamp, M. OECD PRISME Project: Fires in Confined and Ventilated Nuclear-Type Multi-Compartments—Overview and Main Experimental Results. Fire Saf. J. 2013, 62, 80–101. [Google Scholar] [CrossRef]
- Tang, K.; Zhang, Y.; Jiang, S.; Li, C.; Ma, C.; Liu, G.; Zhang, H.; Yuan, B. A Comparative Study on Fire Hazards of Cables Used in Nuclear Power Plants Based on Small- and Large-Scale Experiments. J. Therm. Anal. Calorim. 2022, 147, 14659–14671. [Google Scholar] [CrossRef]
- Yang, H.; Zou, L.; Song, Z.; Wang, X.; Sun, Y.; Duan, Y. Identification of the Ignition Point of High Voltage Cable Trenches Based on Ceiling Temperature Distribution. Symmetry 2022, 14, 1417. [Google Scholar] [CrossRef]
- Huang, P.; Ye, S.; Qin, L.; Huang, Y.; Yang, J.; Yu, L.; Wu, D. Experimental Study on the Maximum Excess Ceiling Gas Temperature Generated by Horizontal Cable Tray Fires in Urban Utility Tunnels. Int. J. Therm. Sci. 2022, 172, 107341. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, H.; He, L.; Peng, L.; Cheng, C.; Chow, W. Improved Model for Estimating Sidewall Effect on the Fire Heat Release Rate of Horizontal Cable Tray. Process Saf. Environ. Prot. 2021, 149, 831–838. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Ren, Z.; Li, Z.; Cheng, C.; Chow, W. Experimental Investigation on Maximum Ceiling Jet Temperature Generated by a Vertically Spreading Cable Fire. Fire Saf. J. 2021, 120, 103125. [Google Scholar] [CrossRef]
- An, W.; Wang, T.; Liang, K.; Tang, Y.; Wang, Z. Effects of Interlayer Distance and Cable Spacing on Flame Characteristics and Fire Hazard of Multilayer Cables in Utility Tunnel. Case Stud. Therm. Eng. 2020, 22, 100784. [Google Scholar] [CrossRef]
- Ke, G.; Zimeng, L.; Jinzhang, J.; Zeyi, L.; Yisimayili, A.; Zhipeng, Q.; Yaju, W.; Shengnan, L. Study on Flame Spread Characteristics of Flame-Retardant Cables in Mine. Adv. Polym. Technol. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Lin, Y.; Fu, M.; Chen, Y. New Approaches to Determine the Interface Height of Fire Smoke Based on a Three-layer Zone Model and Its Verification in Large Confined Space. Fire Mater. 2020, 44, 130–138. [Google Scholar] [CrossRef]
- Hehnen, T.; Arnold, L.; Mendola, S.L. Numerical Fire Spread Simulation Based on Material Pyrolysis—An Application to the CHRISTIFIRE Phase 1 Horizontal Cable Tray Tests. Fire 2020, 3, 33. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, H.; Peng, L.; Zheng, Z.; Zeng, W.; Bi, K.; Cheng, C.; Chow, W. Thermal Characteristics of Vertically Spreading Cable Fires in Confined Compartments. Fire Technol. 2019, 55, 1849–1875. [Google Scholar] [CrossRef]
- Siemon, M.; Riese, O.; Forell, B.; Krönung, D.; Klein-Heßling, W. Experimental and Numerical Analysis of the Influence of Cable Tray Arrangements on the Resulting Mass Loss Rate and Fire Spreading. Fire Mater. 2019, 43, 497–513. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, K.; Duan, H.; Niu, Y.; Huang, X.; Chen, B.; Liu, Z.; Chen, Y. Modified Carbon-Dioxide Measurement to Predict the Heat Release Rate of Fire Burning in a Compartment Based on the Three-Zone Model. Fire Mater. 2019, 43, 256–265. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, H.; Peng, L.; Zheng, Z.; Zeng, W.; Bi, K.; Cheng, C.; Chow, W. Burning Behavior of Cable Tray Located on a Wall with Different Cable Arrangements. Fire Mater. 2019, 43, 64–73. [Google Scholar] [CrossRef]
- Huang, X.; Ren, Z.; Zhu, H.; Peng, L.; Cheng, C.; Chow, W. A Modified Zone Model on Vertical Cable Tray Fire in a Confined Compartment in the Nuclear Power Plant. J. Fire Sci. 2018, 36, 472–493. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, H.; Peng, L.; Zheng, Z.; Zeng, W.; Cheng, C.; Chow, W. An Improved Model for Estimating Heat Release Rate in Horizontal Cable Tray Fires in Open Space. J. Fire Sci. 2018, 36, 275–290. [Google Scholar] [CrossRef]
- Zavaleta, P.; Audouin, L. Cable Tray Fire Tests in a Confined and Mechanically Ventilated Facility. Fire Mater. 2018, 42, 28–43. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Bi, K.; Liu, X. An Enhanced Fire Hazard Assessment Model and Validation Experiments for Vertical Cable Trays. Nucl. Eng. Des. 2016, 301, 32–38. [Google Scholar] [CrossRef]
- Beji, T.; Verstockt, S.; Zavaleta, P.; Merci, B. Flame Spread Monitoring and Estimation of the Heat Release Rate from a Cable Tray Fire Using Video Fire Analysis (VFA). Fire Technol. 2016, 52, 611–621. [Google Scholar] [CrossRef]
- Passalacqua, R.; Cortes, P.; Taylor, N.; Beltran, D.; Zavaleta, P.; Charbaut, S. Experimental Characterisation of ITER Electric Cables in Postulated Fire Scenarios. Fusion Eng. Des. 2013, 88, 2650–2654. [Google Scholar] [CrossRef]
- McGrattan, K.; Lock, A.; Marsh, N.; Nyden, M.; Dreisbach, J.; Stroup, D. Understanding the hazards of grouped electrical cables. In Proceedings of the 2010 14th International Heat Transfer Conference, Washington, DC, USA, 8–13 August 2010. [Google Scholar]
- McGrattan, K.B. Evaluation of Fire Models for Nuclear Power Plant Applications: Benchmark Exercise #3: International Panel Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007; p. NIST IR 7338. [Google Scholar]
- Khan, M.M.; Bill, R.G.; Alpert, R.L. Screening of Plenum Cables Using a Small-Scale Fire Test Protocol. Fire Mater. 2006, 30, 65–76. [Google Scholar] [CrossRef]
- Hees, P.V.; Axelsson, J.; Green, A.M.; Grayson, S.J. Mathematical Modelling of Fire Development in Cable Installations. Fire Mater. 2001, 25, 169–178. [Google Scholar] [CrossRef]
- Alvares, N.; Fernandez-Pello, A.C. Fire Initiation and Spread in Overloaded Communication System Cable Trays. Exp. Therm. Fluid Sci. 2000, 21, 51–57. [Google Scholar] [CrossRef]
- Quintiere, J. Fundamentals of Fire Phenomena; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-470-09113-5. [Google Scholar]
- Ge, F.; Qiu, T.; Zhang, M.; Ji, J. Experimental Research on the Thermal Characteristic of Low-Voltage Alternating Current (AC) Arc Faults. Fire Saf. J. 2023, 136, 103732. [Google Scholar] [CrossRef]
- Gong, T.; Xie, Q.; Huang, X. Fire Behaviors of Flame-Retardant Cables Part I: Decomposition, Swelling and Spontaneous Ignition. Fire Saf. J. 2018, 95, 113–121. [Google Scholar] [CrossRef]
- Miyamoto, K.; Huang, X.; Hashimoto, N.; Fujita, O.; Fernandez-Pello, C. Limiting Oxygen Concentration (LOC) of Burning Polyethylene Insulated Wires under External Radiation. Fire Saf. J. 2016, 86, 32–40. [Google Scholar] [CrossRef]
- Huang, X.; Nakamura, Y. A Review of Fundamental Combustion Phenomena in Wire Fires. Fire Technol. 2020, 56, 315–360. [Google Scholar] [CrossRef]
- Merzhanov, A.G.; Sirignano, W.A.; De Luca, L. Advances in Combustion Science: In Honor of Ya. B. Zel’Dovich; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1997. [Google Scholar]
- Buckmaster, J. The Mathematical Theory of Combustion and Explosions. Combust. Flame 1987, 67, 185. [Google Scholar] [CrossRef]
- Guo, F.; Kawaguchi, S.; Hashimoto, N.; Fujita, O. Identifying Two Ignition Modes of Polymer Insulated Wires with Continuous Excess Current in Microgravity. Fire Saf. J. 2023, 141, 103925. [Google Scholar] [CrossRef]
- Kong, W.; Lao, S.-Q.; Zhang, P.-Y.; Zhang, X.-Q. Study on Wire Insulation Flammability at Microgravity by Functional Simulation Method. Ranshao Kexue Yu Jishu J. Combust. Sci. Technol. 2006, 12, 1–4. [Google Scholar]
- Wang, K.; Wang, B.; Ai, Y.; Kong, W. Study on the Pre-Ignition Characteristics of Wire Insulation in the Narrow Channel Setup. Sci. China Technol. Sci. 2012, 55, 2132–2139. [Google Scholar] [CrossRef]
- Wang, K.; Wang, B.; Kong, W.; Liu, F. Study on the Pre-Ignition Temperature Variations of Wire Insulation under Overload Conditions in Microgravity by the Functional Simulation Method. J. Fire Sci. 2014, 32, 257–280. [Google Scholar] [CrossRef]
- Wang, K.; Xia, W.; Wang, B.; Ai, Y.; Kong, W. Study on Fire Initiation of Wire Insulation by a Narrow Channel at Low Pressure. Microgravity Sci. Technol. 2016, 28, 155–163. [Google Scholar] [CrossRef]
- Wang, W.; Lu, C.; Ji, X.; Zhao, X.; Lyu, H. Research on Overcurrent Heating Characteristics of Copper Wires at Different Inclination Angles. J. Therm. Anal. Calorim. 2023, 148, 4833–4842. [Google Scholar] [CrossRef]
- Incropera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 978-0-471-45728-2. [Google Scholar]
- Fernandez-Pello, A.C. The Solid Phase. Combust. Fundam. Fire 1995, 2, 31–100. [Google Scholar]
- Babrauskas, V. Research on Electrical Fires: The State of the Art. Fire Saf. Sci. 2009, 9, 3–18. [Google Scholar] [CrossRef]
- Noto, F.; Kawamura, K. Tracking and Ignition Phenomena of Polyvinyl Chloride Resin under Wet Polluted Conditions. IEEE Trans. Electr. Insul. 1978, EI-13, 418–425. [Google Scholar] [CrossRef]
- Fisher, R.P.; Stoliarov, S.I.; Keller, M.R. A Criterion for Thermally-Induced Failure of Electrical Cable. Fire Saf. J. 2015, 72, 33–39. [Google Scholar] [CrossRef]
- Babrauskas, V. Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science; Fire Science Publishers: Issaquah, WA, USA, 2003; ISBN 978-0-9728111-3-2. [Google Scholar]
- Kang, N.; Zhao, Z.; Lin, J.; Lu, S. Ignition of Silicone Rubber Sheaths by Series Arcs at Different Currents and Durations. Fire Saf. J. 2023, 136, 103753. [Google Scholar] [CrossRef]
- Du, J.-H.; Tu, R.; Zeng, Y.; Pan, L.; Zhang, R.-C. An Experimental Study on the Thermal Characteristics and Heating Effect of Arc-Fault from Cu Core in Residential Electrical Wiring Fires. PLoS ONE 2017, 12, e0182811. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Lin, Q.-W.; Li, Y.; Wang, H.-B.; Wang, C.-P.; Zhao, Y.-H.; Lyu, H.-F.; Shu, C.-M. Ignition and Flame Spreading Features of Excessively Overloaded Polyvinyl Chloride Copper Wires. Fire Technol. 2023, 59, 3589–3607. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Gao, Y.; Sun, J.; Lyu, H.-F.; Yu, T.; Yang, S.; Wang, Y. Analysis of Overload Induced Arc Formation and Beads Characteristics in a Residential Electrical Cable. Fire Saf. J. 2022, 131, 103626. [Google Scholar] [CrossRef]
- Courty, L.; Garo, J.P. External Heating of Electrical Cables and Auto-Ignition Investigation. J. Hazard. Mater. 2017, 321, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.E. Engineering Guide for Estimating Material Pyrolysis Properties for Fire Modeling; Worcester Polytechnic Institute: Worcester, MA, USA, 2012. [Google Scholar]
- Ogawa, S.; Mizukami, H.; Bando, Y.; Nakamura, M. The Pyrolysis Characteristics of Each Component in Municipal Solid Waste and Thermal Degradation of Its Gases. J. Chem. Eng. Jpn. 2005, 38, 373–384. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, R.; Soni, P.K.; Singh, V. Investigation of the Effect of Diisocyanate on the Thermal Degradation Behavior and Degradation Kinetics of Polyether-Based Polyurethanes. J. Macromol. Sci. B Phys. 2020, 59, 775–795. [Google Scholar] [CrossRef]
- Balme, Q.; Rozaini, M.T.; Marias, F.; Lemont, F.; Charvin, P.; Sedan, J. Modeling the Rate of Batch-Mode Thermal Degradation of Polyethylene Suspended in an Oven. Waste Biomass Valoriz. 2021, 12, 4549–4566. [Google Scholar] [CrossRef]
- Suraci, S.V.; Spinazzola, C.; Fabiani, D. Analysis on the Impact of Additives on Space Charge Behavior of Thermally Aged XLPE Plaques. In Proceedings of the 2022 IEEE Conference on Electrical Insulation and Dielectric Phenomena (IEEE CEIDP 2022), Auburn, AL, USA, 6–9 October 2022; IEEE: New York, NY, USA, 2022; pp. 41–44. [Google Scholar]
- Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A. Charging Kinetics of XLPE Insulation Cables Under E-Beam Irradiation in SEM: Effect of Thermal Aging. In Proceedings of the 2017 5th International Conference on Electrical Engineering—Boumerdes (ICEE-B), Boumerdes, Algeria, 29–31 August 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Salivon, T.; Colin, X.; Salivon, T.; Comte, R. Degradation of XLPE and PVC Cable Insulators. In Proceedings of the 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 18–21 October 2015; IEEE: New York, NY, USA, 2015; pp. 656–659. [Google Scholar]
- Zeng, D.W.; Born, M.; Wambach, K. Pyrolysis of EVA and Its Application in Recycling of Photovoltaic Modules. J. Environ. Sci. 2004, 16, 889–893. [Google Scholar]
- Soudais, Y.; Moga, L.; Blazek, J.; Lemort, F. Comparative Study of Pyrolytic Decomposition of Polymers Alone or in EVA/PS, EVA/PVC and EVA/Cellulose Mixtures. J. Anal. Appl. Pyrolysis 2007, 80, 36–52. [Google Scholar] [CrossRef]
- Coralli, I.; Gossmann, I.; Fabbri, D.; Scholz-Boettcher, B.M. Determination of Polyurethanes within Microplastics in Complex Environmental Samples by Analytical Pyrolysis. Anal. Bioanal. Chem. 2023, 415, 2891–2905. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Yu, S.; Su, W.; Wu, D.; Liu, J.; Wu, W.; Tang, J. Probing the Combustion and Pyrolysis Behaviors of Polyurethane Foam from Waste Refrigerators. J. Therm. Anal. Calorim. 2020, 141, 1137–1148. [Google Scholar] [CrossRef]
- Lapcikova, B.; Lapcik, L. TG and DTG Study of Decomposition of Commercial PUR Cellular Materials. J. Polym. Mater. 2011, 28, 353–366. [Google Scholar]
- Jakic, M.; Vrandecic, N.S.; Klaric, I. Thermal Degradation of Poly(Vinyl Chloride)/Poly(Ethylene Oxide) Blends: Thermogravimetric Analysis. Polym. Degrad. Stab. 2013, 98, 1738–1743. [Google Scholar] [CrossRef]
- Krongauz, V.V.V.; DePolo, W. Kinetics of Poly(Vinyl Chloride) Thermal and Thermo-Mechanical Degradation in the Presence of Epoxidized Plasticizer. Induction Effect. J. Appl. Polym. Sci. 2023, 140, e53482. [Google Scholar] [CrossRef]
- Krongauz, V.V.; Lee, Y.-P.; Bourassa, A. Kinetics of Thermal Degradation of Poly(Vinyl Chloride). J. Therm. Anal. Calorim. 2011, 106, 139–149. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Hu, L.; Fernandez-Pello, C. The Interaction between Fuel Inclination and Horizontal Wind: Experimental Study Using Thin Wire. Proc. Combust. Inst. 2019, 37, 3809–3816. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Ohlemiller, T.J.; Werner, K. Effects of External Radiant Flux and Ambient Oxygen Concentration on Nonflaming Gasification Rates and Evolved Products of White Pine. Combust. Flame 1987, 69, 331–345. [Google Scholar] [CrossRef]
- Fujita, O. Solid Combustion Research in Microgravity as a Basis of Fire Safety in Space. Proc. Combust. Inst. 2015, 35, 2487–2502. [Google Scholar] [CrossRef]
- Osorio, A.F.; Mizutani, K.; Fernandez-Pello, C.; Fujita, O. Microgravity Flammability Limits of ETFE Insulated Wires Exposed to External Radiation. Proc. Combust. Inst. 2015, 35, 2683–2689. [Google Scholar] [CrossRef]
- Olson, S.L. Piloted Ignition Delay Times of Opposed and Concurrent Flame Spread over a Thermally-Thin Fuel in a Forced Convective Microgravity Environment. Proc. Combust. Inst. 2011, 33, 2633–2639. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, K.; Liu, Z.; Chen, Y. Experimental Study on Thermal and Fire Behaviors of Energized PE-Insulated Wires under Overload Currents. J. Therm. Anal. Calorim. 2021, 145, 345–351. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Lee, H.J.; Kang, B.H. Sliding of Liquid Drops Down an Inclined Solid Surface. J. Colloid Interface Sci. 2002, 247, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Matheson, A.F.; Charge, R.; Corneliussen, T. Properties of PVC Compounds with Improved Fire Performance for Electrical Cables. Fire Saf. J. 1992, 19, 55–72. [Google Scholar] [CrossRef]
- Barnes, M.A.; Briggs, P.J.; Hirschler, M.M.; Matheson, A.F.; O’Neill, T.J. A Comparative Study of the Fire Performance of Halogenated and Non-Halogenated Materials for Cable Applications. Part II Tests on Cable. Fire Mater. 1996, 20, 17–37. [Google Scholar] [CrossRef]
- Barnes, M.A.; Briggs, P.J.; Hirschler, M.M.; Matheson, A.F.; O’Neill, T.J. A Comparative Study of the Fire Performance of Halogenated and Non-Halogenated Materials for Cable Applications. Part I Tests on Materials and Insulated Wires. Fire Mater. 1996, 20, 1–16. [Google Scholar] [CrossRef]
- Yang, H.; Fu, Q.; Cheng, X.; Yuen, R.K.K.; Zhang, H. Investigation of the Flammability of Different Cables Using Pyrolysis Combustion Flow Calorimeter. Procedia Eng. 2013, 62, 778–785. [Google Scholar] [CrossRef]
- Meinier, R.; Sonnier, R.; Zavaleta, P.; Suard, S.; Ferry, L. Fire Behavior of Halogen-Free Flame Retardant Electrical Cables with the Cone Calorimeter. J. Hazard. Mater. 2018, 342, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Zhang, H.; Tong, L. Experimental Study on the Fire Protection Properties of PVC Sheath for Old and New Cables. J. Hazard. Mater. 2010, 179, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Li, J.M.; Zhang, J.Q.; Li, Q.; Guo, Z.D. Thermal Aging Effects on Fire Performance of the Cross-Linked Polyethylene Insulated Cable. Mater. Sci. Forum 2017, 898, 2399–2404. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Li, Q.; Wang, L.; Xie, H.; Fan, M. Effects of Insulating Material Ageing on Ignition Time and Heat Release Rate of the Flame Retardant Cables. Procedia Eng. 2018, 211, 972–978. [Google Scholar] [CrossRef]
- Kim, M.H.; Seo, H.J.; Lee, S.K.; Lee, M.C. Influence of Thermal Aging on the Combustion Characteristics of Cables in Nuclear Power Plants. Energies 2021, 14, 2003. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, J.; Wang, J.; Zhao, L.; Zhang, Y. Ignition and Flame Spread over Thermal Aging Electrical Wires in Subatmospheric Pressure. J. Thermoplast. Compos. Mater. 2021, 34, 1428–1439. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J. Comparative Thermal Decomposition Characteristics and Fire Behaviors of Commercial Cables. J. Therm. Anal. Calorim. 2021, 144, 1209–1218. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J. An Experimental Study on the Fire Characteristics of New and Aged Building Wires Using a Cone Calorimeter. J. Therm. Anal. Calorim. 2019, 135, 3115–3122. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, R.; Ning, X.; Xie, T.; Wang, J. Thermal Degradation Properties of LDPE Insulation for New and Aged Fine Wires. J. Therm. Anal. Calorim. 2019, 137, 461–471. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, R.; Ouyang, D.; Wang, J. Investigation on Thermal Stability and Flame Spread Behavior of New and Aged Fine Electrical Wires. J. Therm. Anal. Calorim. 2020, 140, 157–165. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, T.; Ning, X.; Liu, Y.; Wang, J. Thermal Degradation Kinetics Study of Polyvinyl Chloride (PVC) Sheath for New and Aged Cables. Waste Manag. 2019, 99, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wei, R.; Wang, X.; He, J.; Wang, J. Pyrolysis and Combustion of Polyvinyl Chloride (PVC) Sheath for New and Aged Cables via Thermogravimetric Analysis-Fourier Transform Infrared (TG-FTIR) and Calorimeter. Materials 2018, 11, 1997. [Google Scholar] [CrossRef]
- BS EN 50200:2015; Method of Test for Resistance to Fire of Unprotected Small Cables for Use in Emergency Circuits. British Standards Institution: London, UK, 2015.
- EN 50399; Common Test Methods for Cables under Fire Conditions—Heat Release and Smoke Production Measurement on Cables during Flame Spread Test—Test Apparatus, Procedures, Results. CENELEC: Brussels, Belgium, 2022.
- IEC 60331-1:2018; Tests for Electric Cables under Fire Conditions—Circuit Integrity—Part 1: Test Method for Fire with Dhock at a Temperature of at least 830 °C for Cables of Rated Voltage up to and Including 0.6/1.0 kV and with an Overall Diameter Exceeding 20 mm. IEC: Geneva, Switzerland, 2018.
- IEC 60331-2:2018; Tests for Electric Cables under Fire Conditions—Circuit Integrity—Part 2: Test Method for Fire with Shock at a Temperature of at least 830 °C for Cables of Rated Voltage up to and Including 0.6/1.0 kV and with an Overall Diameter not Exceeding 20 mm. IEC: Geneva, Switzerland, 2018.
- IEC 60331-3:2018; Tests for Electric Cables under Fire Conditions—Circuit Integrity—Part 3: Test Method for Fire with Shock at a Temperature of at least 830 °C for Cables of Rated Voltage up to and Including 0.6/1.0 kV Tested in a Metal Enclosure. IEC: Geneva, Switzerland, 2018.
- IEC 60332-1-2:2004; Tests on Electric and Optical Fibre Cables under Fire Conditions—Part 1–2: Test for Vertical Flame Propagation for a Single Insulated Wire or Cable—Procedure for 1 kW Pre-Mixed Flame. IEC: Geneva, Switzerland, 2018.
- McGrattan, K.B.; Lock, A.J.; Marsh, N.D.; Nyden, M.R. Cable Heat Release, Ignition, and Spread in Tray Installations during Fire (CHRISTIFIRE): Phase 1—Horizontal Trays; NIST: Gaithersburg, MD, USA, 2012. [Google Scholar]
- McGrattan, K.B.; Bareham, S.D. Cable Heat Release, Ignition, and Spread in Tray Installations During Fire (CHRISTIFIRE) Phase 2: Vertical Shafts and Corridors; NIST: Gaithersburg, MD, USA, 2013. [Google Scholar]
- Nowlen, S.P. A Summary of Nuclear Power Plant Fire Safety Research at Sandia National Laboratories 1975–1987; US Nuclear Regulatory Commission (NRC): Washington, DC, USA; Div. of Engineering; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 1989. [Google Scholar]
- Grayson, S.J.; Van Hees, P.; Green, A.M.; Breulet, H.; Vercellotti, U. Assessing the Fire Performance of Electric Cables (FIPEC). Fire Mater. 2001, 25, 49–60. [Google Scholar] [CrossRef]
- NUREG/CR-6931 Volume 1, “CAROLFIRE Test Report Volume 1: General Test Descriptions and the Analysis of Circuit Response Data, Draft for Public Comment,” and NUREG/CR-6931 Volume 2, “CAROLFIRE Test Report Volume 2: Cable Fire Response Data for Fire Model Improvement, Draft for Public Comment-Revision 1”, 30645 [E7-10611]. Available online: https://regulations.justia.com/regulations/fedreg/2007/06/01/E7-10611.html (accessed on 19 April 2024).
- Tang, Z.; Gao, K.; Shan, Y.; Zhu, C.; Liu, Z.; Liu, Z. Study of the Fire Behavior of Multilayer Cables in a Mine Tunnel. Energies 2022, 15, 2059. [Google Scholar] [CrossRef]
- Ferng, Y.M.; Liu, C.H. Investigating the Burning Characteristics of Electric Cables Used in the Nuclear Power Plant by Way of 3-D Transient FDS Code. Nucl. Eng. Des. 2011, 241, 88–94. [Google Scholar] [CrossRef]
- Lin, C.-H.; Ferng, Y.-M.; Pei, B.-S. Development of CFD Fire Models for Deterministic Analyses of the Cable Issues in the Nuclear Power Plant. Nucl. Eng. Des. 2009, 239, 338–345. [Google Scholar] [CrossRef]
- Qu, B.; Xiang, X.; Wu, S.; Li, K.; Li, X.; Zheng, Z. Simulation Analysis of Electromagnetic-Fluid-Temperature Field in Cable Shafts of High-Rise Buildings. Math. Probl. Eng. 2023, 2023, e7825964. [Google Scholar] [CrossRef]
- Hay, W.; Seguillon, J.; Boyer, G. Numerical Simulations of a PVC Cable Fire on Long Cable-Trays in a Mechanically Ventilated Large Scale Facility. Fire Saf. J. 2023, 138, 103799. [Google Scholar] [CrossRef]
- Tyas, D.; Bagshaw, D.; Plummer, J.; Nyogeri, L. Modelling the Heat Release Rate of PRISME Experimental Cable Fires in a Confined, Ventilation Controlled, Environment Using FLASH-CAT and FDS. Fire Saf. J. 2023, 139, 103828. [Google Scholar] [CrossRef]
- Verma, N.; Hostikka, S.; Vaari, J.; Korhonen, T. Adapted FLASHCAT Methodology to Model Horizontal Cable Tray Fires Using Computational Fluid Dynamics. Fire Saf. J. 2023, 138, 103814. [Google Scholar] [CrossRef]
- Beji, T.; Merci, B. Numerical Simulations of a Full-Scale Cable Tray Fire Using Small-Scale Test Data. Fire Mater. 2019, 43, 486–496. [Google Scholar] [CrossRef]
- Alonso, A.; Lázaro, D.; Lázaro, M.; Alvear, D. Numerical Prediction of Cables Fire Behaviour Using Non-Metallic Components in Cone Calorimeter. Combust. Sci. Technol. 2023, 195, 1509–1525. [Google Scholar] [CrossRef]
- Pitts, W.M. Toxic Yield; NIST: Gaithersburg, MD, USA, 2001. [Google Scholar]
- Blomqvist, P.; Rosell, L.; Simonson, M. Emissions from Fires Part I: Fire Retarded and Non-Fire Retarded TV-Sets. Fire Technol. 2004, 40, 39–58. [Google Scholar] [CrossRef]
- Blomqvist, P.; Rosell, L.; Simonson, M. Emissions from Fires Part II: Simulated Room Fires. Fire Technol. 2004, 40, 59–73. [Google Scholar] [CrossRef]
- DIN 53436; Producing Thermal Decomposition Products from Materials in an Air Stream and Their Toxicological Testing. DIN: Berlin, Germany, 2015.
- NES713; Determination of the Toxicity Index of the Products of Combustion from Small Specimens of Materials. NES: Washington, DC, USA, 1990.
- BS 7990:2003; Tube Furnace Method for the Determination of Toxic Product Yields in Fire Effluents. British Standard: London, UK, 2003.
- BS ISO 19703:2018; Generation and Analysis of Toxic Gases in Fire. Calculation of Species Yields, Equivalence Ratios and Combustion Efficiency in Experimental Fires. British Standard: London, UK, 2018.
- GSO IEC/TS 60695-7-51:2015; Fire Hazard Testing—Part 7-51: Toxicity of Fire Effluent—Estimation of Toxic Potency: Calculation and Interpretation of Test Results. IEC: Geneva, Switzerland, 2015.
- Hull, T.R.; Lebek, K.; Pezzani, M.; Messa, S. Comparison of Toxic Product Yields of Burning Cables in Bench and Large-Scale Experiments. Fire Saf. J. 2008, 43, 140–150. [Google Scholar] [CrossRef]
- IEC/TS 60695-7-50: 2002; Fire Hazard Testing Part 7-50: Toxicity of Fire Effluent Estimation of Toxic Potency Apparatus and Test Method (Inactive). IEC: Geneva, Switzerland, 2002.
- NF X70-100; Fire Behavior Tests—Analysis of Pyrolysis and Combustion Gases—Pipe Still Method. NF: La Plaine Saint-Denis, France, 2006.
- Kaczorek-Chrobak, K.; Fangrat, J. PVC-Based Copper Electric Wires under Various Fire Conditions: Toxicity of Fire Effluents. Materials 2020, 13, 1111. [Google Scholar] [CrossRef] [PubMed]
- Porowski, R.; Kowalik, R.; Ramiączek, P.; Bąk-Patyna, P.; Stępień, P.; Zielecka, M.; Popielarczyk, T.; Ludynia, A.; Chyb, A.; Gawdzik, J. Application Assessment of Electrical Cables during Smoldering and Flaming Combustion. Appl. Sci. 2023, 13, 3766. [Google Scholar] [CrossRef]
- Seo, H.J.; Kim, N.K.; Lee, M.C.; Lee, S.K.; Moon, Y.S. Investigation into the Toxicity of Combustion Products for CR/EPR Cables Based on Aging Period. J. Mech. Sci. Technol. 2020, 34, 1785–1794. [Google Scholar] [CrossRef]
- Kim, M.H.; Lee, S.H.; Jeong, S.Y.; Lee, S.K.; Lee, J.E.; Kwark, J.H.; Lee, M.C. Investigation of Combustion, Smoke, and Toxicity Characteristics of Flame-Retardant and Fiber-Optic Cables Used in Nuclear Power Plants. J. Mech. Sci. Technol. 2023, 37, 987–999. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, M.H.; Jeong, S.Y.; Lee, S.K.; Lee, J.E.; Lee, M.C. Fire Dynamics Simulation in a Cable Spreading Room of a Nuclear Power Plant Using Fire Test Results of Heat Release and Toxic Gas Emission. J. Mech. Sci. Technol. 2024, 38, 1517–1532. [Google Scholar] [CrossRef]
- ISO 5660-1:2015; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate. ISO: Geneva, Switzerland, 2015.
Title | Content |
---|---|
EN 50200:2015 [175] | Method of test for resistance to fire of unprotected small cables for use in emergency circuits. |
EN 50399 [176] | Methods of test for the assessment of vertical flame spread, heat release, smoke production, and the occurrence of flaming droplets/particles of vertically mounted electric cables under defined conditions. |
IEC 60331 [177,178,179] | Tests for electric cables under fire conditions—circuit integrity— Part 1: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0.6/1.0 kV and with an overall diameter exceeding 20 mm. Part 2: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0.6/1.0 kV and with an overall diameter not exceeding 20 mm. Part 3: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0.6/1.0 kV tested in a metal enclosure. |
EN 60332-1-2 [180] | Test for vertical flame propagation for a single insulated wire or cable—Procedure for 1 kW pre-mixed flame. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.; Wang, S.; Tang, K.; Lin, Y.; Wang, S.; Zhang, Y. Research Progress on the Fire Characteristics of Electric Cables and Wires. Fire 2024, 7, 186. https://doi.org/10.3390/fire7060186
Yu F, Wang S, Tang K, Lin Y, Wang S, Zhang Y. Research Progress on the Fire Characteristics of Electric Cables and Wires. Fire. 2024; 7(6):186. https://doi.org/10.3390/fire7060186
Chicago/Turabian StyleYu, Feiyang, Shijie Wang, Kaixuan Tang, Yifan Lin, Shasha Wang, and Ying Zhang. 2024. "Research Progress on the Fire Characteristics of Electric Cables and Wires" Fire 7, no. 6: 186. https://doi.org/10.3390/fire7060186
APA StyleYu, F., Wang, S., Tang, K., Lin, Y., Wang, S., & Zhang, Y. (2024). Research Progress on the Fire Characteristics of Electric Cables and Wires. Fire, 7(6), 186. https://doi.org/10.3390/fire7060186