A Preliminary Case Study on the Compounding Effects of Local Emissions and Upstream Wildfires on Urban Air Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Period
2.3. Instrumentation
3. Results
3.1. Pollutant Timeseries
3.2. Pollutant Comparison
4. Discussion
Pollutant Interplay
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Vansintjan, A. The Anthropocene debate: Why is such a useful concept starting to fall apart? Entitle Blog, 26 June 2015. [Google Scholar]
- Chasek, P.S. Global Environmental Politics; Routledge: Boca Raton, FL, USA, 2018. [Google Scholar]
- Steg, L.; Bolderdijk, J.W.; Keizer, K.; Perlaviciute, G. An Integrated Framework for Encouraging Pro-environmental Behaviour: The role of values, situational factors and goals. J. Environ. Psychol. 2014, 38, 104–115. [Google Scholar] [CrossRef]
- Hysa, A. Indexing the vegetated surfaces within WUI by their wildfire ignition and spreading capacity, a comparative case from developing metropolitan areas. Int. J. Disaster Risk Reduct. 2021, 63, 102434. [Google Scholar] [CrossRef]
- Benney, T.M.; Cantwell, D.; Singer, P.; Derhak, L.; Bey, S.; Saifee, Z. Understanding Perceptions of Health Risk and Behavioral Responses to Air Pollution in the State of Utah (USA). Atmosphere 2021, 12, 1373. [Google Scholar] [CrossRef]
- Juráň, S.; Grace, J.; Urban, O. Temporal changes in ozone concentrations and their impact on vegetation. Atmosphere 2021, 12, 82. [Google Scholar] [CrossRef]
- Mallia, D.V.; Lin, J.C.; Urbanski, S.; Ehleringer, J.; Nehrkorn, T. Impacts of upwind wildfire emissions on CO, CO2, and PM2.5 concentrations in Salt Lake City, Utah. J. Geophys. Res. Atmos. 2015, 120, 147–166. [Google Scholar] [CrossRef]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [PubMed]
- Lassman, W.; Ford, B.; Gan, R.W.; Pfister, G.; Magzamen, S.; Fischer, E.V.; Pierce, J.R. Spatial and temporal estimates of population exposure to wildfire smoke during the Washington state 2012 wildfire season using blended model, satellite, and in situ data. GeoHealth 2017, 1, 106–121. [Google Scholar] [CrossRef]
- Wu, Y.; Nehrir, A.R.; Ren, X.; Dickerson, R.R.; Huang, J.; Stratton, P.R.; Gronoff, G.; Kooi, S.A.; Collins, J.E.; Berkoff, T.A. Synergistic aircraft and ground observations of transported wildfire smoke and its impact on air quality in New York City during the summer 2018 LISTOS campaign. Sci. Total Environ. 2021, 773, 145030. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.D.; Bajracharya, A.; Dickinson, G.N.; Durbin, T.A.; McGarry, J.K.; Moser, E.P.; Nuñez, L.A.; Pukkila, E.J.; Scott, P.S.; Sutton, P.J. Diffusive uptake rates for passive air sampling: Application to volatile organic compound exposure during FIREX-AQ campaign. Chemosphere 2022, 287, 131808. [Google Scholar] [CrossRef]
- Buysse, C.E.; Kaulfus, A.; Nair, U.; Jaffe, D.A. Relationships between particulate matter, ozone, and nitrogen oxides during urban smoke events in the western US. Environ. Sci. Technol. 2019, 53, 12519–12528. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.R.; Lee, K.; Santos, G.; Abbatt, J.P. Air quality data approach for defining wildfire influence: Impacts on PM2.5, NO2, CO, and O3 in Western Canadian cities. Environ. Sci. Technol. 2021, 55, 13709–13717. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-M.; Wang, P.; Wagner, J.; Kumagai, K. Impacts on Urban VOCs and PM2.5 during a Wildfire Episode. Environments 2024, 11, 63. [Google Scholar] [CrossRef]
- Rice, R.B.; Boaggio, K.; Olson, N.E.; Foley, K.M.; Weaver, C.P.; Sacks, J.D.; McDow, S.R.; Holder, A.L.; LeDuc, S.D. Wildfires Increase Concentrations of Hazardous Air Pollutants in Downwind Communities. Environ. Sci. Technol. 2023, 57, 21235–21248. [Google Scholar] [CrossRef] [PubMed]
- McClure, C.D.; Jaffe, D.A. Investigation of high ozone events due to wildfire smoke in an urban area. Atmos. Environ. 2018, 194, 146–157. [Google Scholar] [CrossRef]
- Selimovic, V.; Yokelson, R.J.; McMeeking, G.R.; Coefield, S. Aerosol mass and optical properties, smoke influence on O3, and high NO3 production rates in a western US city impacted by wildfires. J. Geophys. Res. Atmos. 2020, 125, e2020JD032791. [Google Scholar] [CrossRef]
- Childs, M.L.; Li, J.; Wen, J.; Heft-Neal, S.; Driscoll, A.; Wang, S.; Gould, C.F.; Qiu, M.; Burney, J.; Burke, M. Daily Local-Level Estimates of Ambient Wildfire Smoke PM2.5 for the Contiguous US. Environ. Sci. Technol. 2022, 56, 13607–13621. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Kolden, C.A.; Williams, A.P.; Lutz, J.A.; Smith, A.M. Climatic influences on interannual variability in regional burn severity across western US forests. Int. J. Wildland Fire 2017, 26, 269–275. [Google Scholar] [CrossRef]
- Wasserman, T.N.; Mueller, S.E. Climate influences on future fire severity: A synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecol. 2023, 19, 43. [Google Scholar] [CrossRef]
- Ninneman, M.; Jaffe, D.A. The impact of wildfire smoke on ozone production in an urban area: Insights from field observations and photochemical box modeling. Atmos. Environ. 2021, 267, 118764. [Google Scholar] [CrossRef]
- Selimovic, V.; Yokelson, R.J.; McMeeking, G.R.; Coefield, S. In situ measurements of trace gases, PM, and aerosol optical properties during the 2017 NW US wildfire smoke event. Atmos. Chem. Phys. 2019, 19, 3905–3926. [Google Scholar] [CrossRef]
- Baklanov, A.; Chew, B.N.; Frassoni, A.; Gan, C.; Goldammer, J.; Keywood, M.; Mangeon, S.; Manseau, P.M.; Pavlovic, R. The WMO Vegetation Fire and Smoke Pollution Warning Advisory and Assessment System (VFSP-WAS): Concept, current capabilities, research and development challenges and the way ahead. Biodivers. Bras. BioBras. 2021, 11, 179–201. [Google Scholar] [CrossRef]
- de Groot, W.J.; Goldammer, J.G.; Keenan, T.; Brady, M.A.; Lynham, T.J.; Justice, C.O.; Csiszar, I.A.; O’Loughlin, K. Developing a global early warning system for wildland fire. For. Ecol. Manag. 2006, 234, S10. [Google Scholar] [CrossRef]
- Mendoza, D.L.; Benney, T.M.; Olson, C.S.; Crosman, E.T.; Gonzales, S.A.; Chaudhari, M.; Anderson, C. Pollution hot spots and the impact of drive-through COVID-19 testing sites on urban air quality. Environ. Res. Health 2023, 1, 045001. [Google Scholar] [CrossRef]
- Gately, C.K.; Hutyra, L.R.; Peterson, S.; Wing, I.S. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data. Environ. Pollut. 2017, 229, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, C.D.; Hoch, S.W.; Horel, J.D.; Charland, A. Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmos. Environ. 2014, 94, 742–753. [Google Scholar] [CrossRef]
- Lareau, N.P.; Crosman, E.; Whiteman, C.D.; Horel, J.D.; Hoch, S.W.; Brown, W.O.J.; Horst, T.W. The Persistent Cold-Air Pool Study. Bull. Am. Meteorol. Soc. 2013, 94, 51–63. [Google Scholar] [CrossRef]
- Mendoza, D.L.; Buchert, M.P.; Lin, J.C. Modeling net effects of transit operations on vehicle miles traveled, fuel consumption, carbon dioxide, and criteria air pollutant emissions in a mid-size US metro area: Findings from Salt Lake City, UT. Environ. Res. Commun. 2019, 1, 091002. [Google Scholar] [CrossRef]
- Bares, R.; Lin, J.C.; Hoch, S.W.; Baasandorj, M.; Mendoza, D.L.; Fasoli, B.; Mitchell, L.; Catharine, D.; Stephens, B.B. The Wintertime Covariation of CO2 and Criteria Pollutants in an Urban Valley of the Western United States. J. Geophys. Res. Atmos. 2018, 123, 2684–2703. [Google Scholar] [CrossRef]
- Baasandorj, M.; Hoch, S.W.; Bares, R.; Lin, J.C.; Brown, S.S.; Millet, D.B.; Martin, R.; Kelly, K.; Zarzana, K.J.; Whiteman, C.D.; et al. Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool Conditions: Evolution of Wintertime PM2.5 Pollution Events and N2O5 Observations in Utah’s Salt Lake Valley. Environ. Sci. Technol. 2017, 51, 5941–5950. [Google Scholar] [CrossRef] [PubMed]
- Call, B. Understanding Utah’s Air Quality; Utah Department of Environmental Quality Division of Air Quality: Salt Lake City, UT, USA, 2018; Volume 11, p. 2020.
- United States Environmental Protection Agency. 2020 National Emissions Inventory (NEI) Data; United States Environmental Protection Agency: Washington, DC, USA, 2021.
- Silcox, G.D.; Kelly, K.E.; Crosman, E.T.; Whiteman, C.D.; Allen, B.L. Wintertime PM2.5 concentrations during persistent, multi-day cold-air pools in a mountain valley. Atmos. Environ. 2012, 46, 17–24. [Google Scholar] [CrossRef]
- Google Maps. Available online: https://www.google.com/maps (accessed on 12 December 2023).
- United States Geological Survey. Elevation Point Query Service; United States Geological Survey: Washington, DC, USA, 2024.
- Bush, S.; Hopkins, F.; Randerson, J.; Lai, C.-T.; Ehleringer, J. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species. Atmos. Meas. Tech. 2015, 8, 3481–3492. [Google Scholar] [CrossRef]
- Hopkins, F.M.; Kort, E.A.; Bush, S.E.; Ehleringer, J.R.; Lai, C.T.; Blake, D.R.; Randerson, J.T. Spatial patterns and source attribution of urban methane in the Los Angeles Basin. J. Geophys. Res. Atmos. 2016, 121, 2490–2507. [Google Scholar] [CrossRef]
- Mendoza, D.L.; Benney, T.M.; Bares, R.; Fasoli, B.; Anderson, C.; Gonzales, S.A.; Crosman, E.T.; Bayles, M.; Forrest, R.T.; Contreras, J.R.; et al. Air Quality and Behavioral Impacts of Anti-Idling Campaigns in School Drop-Off Zones. Atmosphere 2022, 13, 706. [Google Scholar] [CrossRef]
- Wilkinson, J.; Bors, C.; Burgis, F.; Lorke, A.; Bodmer, P. Measuring CO2 and CH4 with a portable gas analyzer: Closed-loop operation, optimization and assessment. PLoS ONE 2018, 13, e0193973. [Google Scholar] [CrossRef]
- Mitchell, L.E.; Crosman, E.T.; Jacques, A.A.; Fasoli, B.; Leclair-Marzolf, L.; Horel, J.; Bowling, D.R.; Ehleringer, J.R.; Lin, J.C. Monitoring of greenhouse gases and pollutants across an urban area using a light-rail public transit platform. Atmos. Environ. 2018, 187, 9–23. [Google Scholar] [CrossRef]
- Yver Kwok, C.; Laurent, O.; Guemri, A.; Philippon, C.; Wastine, B.; Rella, C.; Vuillemin, C.; Truong, F.; Delmotte, M.; Kazan, V. Comprehensive laboratory and field testing of cavity ring-down spectroscopy analyzers measuring H2O, CO2, CH4 and CO. Atmos. Meas. Tech. 2015, 8, 3867–3892. [Google Scholar] [CrossRef]
- 2B Technologies Inc. Ozone Monitor Operation Manual Model 205. 2024. Available online: https://2btech.io/wp-content/uploads/docs/manuals/model_205_revE-6.pdf (accessed on 1 May 2024).
- 2B Technologies Inc. NO2/NO/NOx Monitor Operation Manual Model 405 nm. 2024. Available online: https://2btech.io/wp-content/uploads/docs/manuals/model_405nm_revJ-4.pdf (accessed on 1 May 2024).
- Met One Instruments Inc. ES-642 Dust Monitor Operation Manual. 2013. Available online: https://metone.com/wp-content/uploads/2019/05/ES-642-9800-Rev-F.pdf (accessed on 1 May 2024).
- Utah Division of Air Quality. Utah Division of Air Quality 2020 Annual Report. 2021. Available online: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2021-000768.pdf (accessed on 1 May 2024).
- Rickly, P.S.; Coggon, M.M.; Aikin, K.C.; Alvarez, R.J.; Baidar, S.; Gilman, J.B.; Gkatzelis, G.I.; Harkins, C.; He, J.; Lamplugh, A. Influence of wildfire on urban ozone: An observationally constrained box modeling study at a site in the Colorado front range. Environ. Sci. Technol. 2023, 57, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Frausto-Vicencio, I.; Heerah, S.; Meyer, A.G.; Parker, H.A.; Dubey, M.; Hopkins, F.M. Ground solar absorption observations of total column CO, CO2, CH4, and aerosol optical depth from California’s Sequoia Lightning Complex Fire: Emission factors and modified combustion efficiency at regional scales. Atmos. Chem. Phys. 2023, 23, 4521–4543. [Google Scholar] [CrossRef]
- Bento-Gonçalves, A.; Vieira, A. Wildfires in the wildland-urban interface: Key concepts and evaluation methodologies. Sci. Total Environ. 2020, 707, 135592. [Google Scholar] [CrossRef] [PubMed]
- Taccaliti, F.; Marzano, R.; Bell, T.L.; Lingua, E. Wildland–urban interface: Definition and physical fire risk mitigation measures, a systematic review. Fire 2023, 6, 343. [Google Scholar] [CrossRef]
- Mendoza, D.L.; Hill, L.D.; Blair, J.; Crosman, E.T. A Long-Term Comparison between the AethLabs MA350 and Aerosol Magee Scientific AE33 Black Carbon Monitors in the Greater Salt Lake City Metropolitan Area. Sensors 2024, 24, 965. [Google Scholar] [CrossRef]
- Young, O. Navigating the sustainability transition: Governing complex and dynamic socio-ecological systems. In Global Environmental Commons: Analytical and Political Challenges in Building Governance Mechanisms; Oxford Academic: Oxford, UK, 2012; pp. 80–104. [Google Scholar] [CrossRef]
- Betsill, M.M.; Benney, T.M.; Gerlak, A.K. Agency in Earth System Governance; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
Measurement Site | Pollutants Measured | Location Relative to COVID-19 Testing Site |
---|---|---|
Mobile Van | CO, NOx, PM2.5, O3, CO2, CH4 | 5 m west |
UDAQ Rose Park | CO, NOx, PM2.5, O3 | 1.5 km northwest |
UDAQ Hawthorne | CO, NOx, PM2.5, O3 | 4.5 km southeast |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, D.L.; Crosman, E.T.; Benney, T.M.; Anderson, C.; Gonzales, S.A. A Preliminary Case Study on the Compounding Effects of Local Emissions and Upstream Wildfires on Urban Air Pollution. Fire 2024, 7, 184. https://doi.org/10.3390/fire7060184
Mendoza DL, Crosman ET, Benney TM, Anderson C, Gonzales SA. A Preliminary Case Study on the Compounding Effects of Local Emissions and Upstream Wildfires on Urban Air Pollution. Fire. 2024; 7(6):184. https://doi.org/10.3390/fire7060184
Chicago/Turabian StyleMendoza, Daniel L., Erik T. Crosman, Tabitha M. Benney, Corbin Anderson, and Shawn A. Gonzales. 2024. "A Preliminary Case Study on the Compounding Effects of Local Emissions and Upstream Wildfires on Urban Air Pollution" Fire 7, no. 6: 184. https://doi.org/10.3390/fire7060184
APA StyleMendoza, D. L., Crosman, E. T., Benney, T. M., Anderson, C., & Gonzales, S. A. (2024). A Preliminary Case Study on the Compounding Effects of Local Emissions and Upstream Wildfires on Urban Air Pollution. Fire, 7(6), 184. https://doi.org/10.3390/fire7060184