Slate–Cork Laminate Enhanced with Silicone for Habitat Industry Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Slate and Cork Characterisation
2.2.1. Surface Treatment
2.2.2. Surface Energy and Roughness
2.3. Mechanical Properties of Slate and Silicone
2.3.1. Flexural Test
2.3.2. Charpy Impact Test
2.3.3. Tensile Test
2.4. Slate and Sandwich Structure Characterisation
2.4.1. Drop Weight Impact Test
2.4.2. Fire Test
3. Results
3.1. Surface Characterisation of Slate Panels and Cork Laminate
3.2. Mechanical Characterisation of Slate and Silicone Adhesive
3.3. Drop Weight Impact and Fire Tests for Slate and Sandwich Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parlamento Europeo de la, U.E. Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on Energy Efficiency and Amending Regulation (EU) 2023/955 (Recast) (Text with EEA Relevance). Off. J. Eur. Union 2023, L 231, 1–111. [Google Scholar]
- Debecker, B.; Vervoort, A. Experimental Observation of Fracture Patterns in Layered Slate. Int. J. Fract. 2009, 159, 51–62. [Google Scholar] [CrossRef]
- Gholami, R.; Rasouli, V. Mechanical and Elastic Properties of Transversely Isotropic Slate. Rock Mech. Rock Eng. 2014, 47, 1763–1773. [Google Scholar] [CrossRef]
- Stoeckhert, F.; Molenda, M.; Brenne, S.; Alber, M. Fracture Propagation in Sandstone and Slate—Laboratory Experiments, Acoustic Emissions and Fracture Mechanics. J. Rock Mech. Geotech. Eng. 2015, 7, 237–249. [Google Scholar] [CrossRef]
- Muñoz-Ibáñez, A.; Delgado-Martín, J.; Costas, M.; Rabuñal-Dopico, J.; Alvarellos-Iglesias, J.; Canal-Vila, J. Pure Mode I Fracture Toughness Determination in Rocks Using a Pseudo-Compact Tension (PCT) Test Approach. Rock Mech. Rock Eng. 2020, 53, 3267–3285. [Google Scholar] [CrossRef]
- Alejano, L.R.; González-Fernández, M.A.; Estévez-Ventosa, X.; Song, F.; Delgado-Martín, J.; Muñoz-Ibáñez, A.; González-Molano, N.; Alvarellos, J. Anisotropic Deformability and Strength of Slate from NW-Spain. Int. J. Rock Mech. Min. Sci. 2021, 148, 104923. [Google Scholar] [CrossRef]
- Li, E.; Wei, Y.; Chen, Z.; Zhang, L. Experimental and Numerical Investigations of Fracture Behavior for Transversely Isotropic Slate Using Semi-Circular Bend Method. Appl. Sci. 2023, 13, 2418. [Google Scholar] [CrossRef]
- Zhao, N.N.; Feng, J.L. Investigation on Fracture Mechanism of Layered Slate: Experiment and Beam-Particle Method. Environ. Earth Sci. 2021, 80, 1–28. [Google Scholar] [CrossRef]
- Kang, X.; Gan, Y.; Chen, R.; Zhang, C. Sustainable Eco-Friendly Bricks from Slate Tailings through Geopolymerization: Synthesis and Characterization Analysis. Constr. Build. Mater. 2021, 278, 122337. [Google Scholar] [CrossRef]
- Samper, M.D.; Petrucci, R.; Sánchez-Nacher, L.; Balart, R.; Kenny, J.M. New Environmentally Friendly Composite Laminates with Epoxidized Linseed Oil (ELO) and Slate Fiber Fabrics. Compos. Part B Eng. 2015, 71, 203–209. [Google Scholar] [CrossRef]
- Gwyn, D. Slate Production. In The Oxford Handbook of Industrial Archaeology; Colin Casella, E., Nevell, M., Steyne, H., Eds.; Oxford University Press: Oxford, UK, 2022; pp. 58–73. ISBN 9780199693962. [Google Scholar]
- Anderson, T.; Madenci, E. Experimental Investigation of Low-Velocity Impact Characteristics of Sandwich Composites. Compos. Struct. 2000, 50, 239–247. [Google Scholar] [CrossRef]
- Herzog, R.F.; Morrison, S.J.; Patnode, S.A.; Green, J.R. Ice Ball Impact Testing of Siding. In Proceedings of the Adressing the Building Envelope—27th RCI International Convention and Trade Show, Dallas, TX, USA, 15–20 March 2012; Haag Engineering Co.: Burnsville, MN, USA, 2012; pp. 141–146. [Google Scholar]
- Standard Test Method for Materials Attached to Vertical or Near Vertical Surfaces and Their Resistance to Horizontally Propelled Freezer Ice Balls; Debris Impact Facility: Lubbock, TX, USA, 2015.
- Lemmos, L. Asphalt Magazine; Asphalt Institute: Lexington, KY, USA, 2022. [Google Scholar]
- Cárdenes, V.; Cnudde, J.P.; Wichert, J.; Large, D.; López-Mungira, A.; Cnudde, V. Roofing Slate Standards: A Critical Review. Constr. Build. Mater. 2016, 115, 93–104. [Google Scholar] [CrossRef]
- Garcia-Fernandez, C.C.; Alvarez-Fernandez, M.I.; Cardoso, R.; Gonzalez-Nicieza, C. Effect of Environmental Relative Humidity in the Tensile Strength of Layering in Slate Stone. Bull. Eng. Geol. Environ. 2020, 79, 1399–1411. [Google Scholar] [CrossRef]
- Sitzia, F.; Lisci, C.; Pires, V.; Alves, T.; Mirão, J. Laboratorial Simulation for Assessing the Performance of Slates as Construction Materials in Cold Climates. Appl. Sci. 2023, 13, 2761. [Google Scholar] [CrossRef]
- Sánchez-Soto, P.J.; Ruiz-Conde, A.; Bono, R.; Raigón, M.; Garzón, E. Thermal Evolution of a Slate. J. Therm. Anal. Calorim. 2007, 90, 133–141. [Google Scholar] [CrossRef]
- Cárdenes, V.; Rubio-Ordóñez, A.; García-Guinea, J. Fire Resistance of Roofing Slates: Mechanical, Mineralogical and Aesthetic Changes alongside Temperature Increase. Constr. Build. Mater. 2023, 368, 130376. [Google Scholar] [CrossRef]
- EN 12326:2015; Slate and Stone for Discontinuous Roofing and External Cladding—Part 1 and 2. European Committee for Standardization: Brussels, Belgium, 2015.
- Boutinguiza, M.; Lusquiños, F.; Pou, J.; Soto, R.; Quintero, F.; Comesaña, R. Thermal Properties Measurement of Slate Using Laser Flash Method. Opt. Lasers Eng. 2012, 50, 727–730. [Google Scholar] [CrossRef]
- APCOR Information Bureau 2019—Cork Sector in Numbers; APCOR: Doorwerth, The Netherlands, 2019.
- Pereira, H. Variability of the Chemical Composition of Cork. BioResources 2013, 8, 2246–2256. [Google Scholar] [CrossRef]
- Knapic, S.; Oliveira, V.; Machado, J.S.; Pereira, H. Cork as a Building Material: A Review. Eur. J. Wood Wood Prod. 2016, 74, 775–791. [Google Scholar] [CrossRef]
- Castro, O.; Silva, J.M.; Devezas, T.; Silva, A.; Gil, L. Cork Agglomerates as an Ideal Core Material in Lightweight Structures. Mater. Des. 2010, 31, 425–432. [Google Scholar] [CrossRef]
- Sergi, C.; Sarasini, F.; Russo, P.; Vitiello, L.; Barbero, E.; Sanchez-Saez, S.; Tirillò, J. Effect of Temperature on the Low-Velocity Impact Response of Environmentally Friendly Cork Sandwich Structures. J. Sandw. Struct. Mater. 2022, 24, 1099–1121. [Google Scholar] [CrossRef]
- Sergi, C.; Sarasini, F.; Tirillò, J. The Compressive Behavior and Crashworthiness of Cork: A Review. Polymers 2022, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Mahalle, L. A Comparative Life Cycle Assessment of Canadian Hardwood Flooring with Alternative Flooring Types; FP Innovations: Vancouver, BC, Canada, 2011. [Google Scholar]
- Demertzi, M.; Garrido, A.; Dias, A.C.; Arroja, L. Environmental Performance of a Cork Floating Floor. Mater. Des. 2015, 82, 317–325. [Google Scholar] [CrossRef]
- Pargana, N.; Pinheiro, M.D.; Silvestre, J.D.; De Brito, J. Comparative Environmental Life Cycle Assessment of Thermal Insulation Materials of Buildings. Energy Build. 2014, 82, 466–481. [Google Scholar] [CrossRef]
- Sierra-Pérez, J.; Boschmonart-Rives, J.; Dias, A.C.; Gabarrell, X. Environmental Implications of the Use of Agglomerated Cork as Thermal Insulation in Buildings. J. Clean. Prod. 2016, 126, 97–107. [Google Scholar] [CrossRef]
- Mestre, A.; Vogtlander, J. Eco-Efficient Value Creation of Cork Products: An LCA-Based Method for Design Intervention. J. Clean. Prod. 2013, 57, 101–114. [Google Scholar] [CrossRef]
- Mestre, A. A Design Action Intervention Approach in the Cork Industry towards Sustainable Product Innovation. J. Des. Res. 2015, 13, 185–235. [Google Scholar] [CrossRef]
- Demertzi, M.; Paulo, J.A.; Faias, S.P.; Arroja, L.; Dias, A.C. Evaluating the Carbon Footprint of the Cork Sector with a Dynamic Approach Including Biogenic Carbon Flows. Int. J. Life Cycle Assess. 2018, 23, 1448–1459. [Google Scholar] [CrossRef]
- Tártaro, A.S.; Mata, T.M.; Martins, A.A.; Esteves da Silva, J.C.G. Carbon Footprint of the Insulation Cork Board. J. Clean. Prod. 2017, 143, 925–932. [Google Scholar] [CrossRef]
- Rives, J.; Fernandez-Rodriguez, I.; Rieradevall, J.; Gabarrell, X. Environmental Analysis of the Production of Natural Cork Stoppers in Southern Europe (Catalonia-Spain). J. Clean. Prod. 2011, 19, 259–271. [Google Scholar] [CrossRef]
- Reis, S.F.; Lopes, P.; Roseira, I.; Cabral, M.; Mateus, N.; Freitas, V. Recovery of Added Value Compounds from Cork Industry By-Products. Ind. Crops Prod. 2019, 140, 111599. [Google Scholar] [CrossRef]
- Ramos, A.; Berzosa, J.; Clarens, F.; Marin, M.; Rouboa, A. Environmental and Socio-Economic Assessment of Cork Waste Gasification: Life Cycle and Cost Analysis. J. Clean. Prod. 2020, 249, 119316. [Google Scholar] [CrossRef]
- Novais, R.M.; Carvalheiras, J.; Senff, L.; Lacasta, A.M.; Cantalapiedra, I.R.; Giro-Paloma, J.; Seabra, M.P.; Labrincha, J.A. Multifunctional Cork—Alkali-Activated Fly Ash Composites: A Sustainable Material to Enhance Buildings’ Energy and Acoustic Performance. Energy Build. 2020, 210, 109739. [Google Scholar] [CrossRef]
- Samuel, D.M.; Inumerable, N.; Stumpf, A.; Kriven, W.M. Thermal Conductivity of Several Geopolymer Composites and Discussion of Their Formulation. Int. J. Appl. Ceram. Technol. 2023, 20, 475–486. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Ivañez, I.; Sánchez-Saez, S.; Garcia-Castillo, S.K.; Barbero, E. The High-Velocity Impact Behaviour of Kevlar Composite Laminates Filled with Cork Powder. Appl. Sci. 2020, 10, 6108. [Google Scholar] [CrossRef]
- Barbosa, A.Q.; da Silva, L.F.M.; Abenojar, J.; Figueiredo, M.; Öchsner, A. Toughness of a Brittle Epoxy Resin Reinforced with Micro Cork Particles: Effect of Size, Amount and Surface Treatment. Compos. Part B Eng. 2017, 114, 299–310. [Google Scholar] [CrossRef]
- Pereira, H. The Rationale behind Cork Properties: A Review of Structure and Chemistry. BioResources 2015, 10, 6207–6229. [Google Scholar] [CrossRef]
- Moreira, R.A.S.; De Melo, F.J.Q.; Dias Rodrigues, J.F. Static and Dynamic Characterization of Composition Cork for Sandwich Beam Cores. J. Mater. Sci. 2010, 45, 3350–3366. [Google Scholar] [CrossRef]
- Ptak, M.; Kaczynski, P.; Fernandes, F.A.O.; de Sousa, R.J.A. Assessing Impact Velocity and Temperature Effects on Crashworthiness Properties of Cork Material. Int. J. Impact Eng. 2017, 106, 238–248. [Google Scholar] [CrossRef]
- Sanchez-Saez, S.; García-Castillo, S.K.; Barbero, E.; Cirne, J. Dynamic Crushing Behaviour of Agglomerated Cork. Mater. Des. 2015, 65, 743–748. [Google Scholar] [CrossRef]
- Arteiro, A.; Reis, A.L.M.A.; Nóvoa, P.J.R.O.; Silva, L.F.M.; Zupan, M.; Marques, A.T. Low Velocity Impact and Flexural Performance of Sandwich Structures with Cork and Polymer Foam Cores. Cienc. Tecnol. Mater. 2013, 25, 79–84. [Google Scholar] [CrossRef]
- EN 13501-1:2019; Fire Classification of Construction Products and Building Elements—Part 1: Classification Using Data from Reaction to Fire Tests. European Committee for Standardization: Brussels, Belgium, 2019.
- Silva, S.P.; Sabino, M.A.; Fernandas, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, Capabilities and Applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef]
- Ma, W.; Elkin, R. Sandwich Structural Composites: Theory and Practice, 1st ed.; Ma, W., Elkin, R., Eds.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-0-367-44172-2. [Google Scholar]
- Fu, H.; Ding, Y.; Li, M.; Li, H.; Huang, X.; Wang, Z. Research on Thermal Performance and Hygrothermal Behavior of Timber-Framed Walls with Different External Insulation Layer: Insulation Cork Board and Anti-Corrosion Pine Plate. J. Build. Eng. 2020, 28, 101069. [Google Scholar] [CrossRef]
- Akok, J.Y.; Prakask, O. Modular Construction Technique. Int. J. Eng. Sci. Res. Technol. 2017, 6, 207–209. [Google Scholar] [CrossRef]
- Senninger, S.; Breakah, T. Analyzing Methods of Prefabrication and Their Application in the Construction of Habitat for Humanity Housing. J. Archit. Civ. Eng. 2019, 4, 42–49. [Google Scholar]
- Tavares, V.; Lacerda, N.; Freire, F. Embodied Energy and Greenhouse Gas Emissions Analysis of a Prefabricated Modular House: The “Moby” Case Study. J. Clean. Prod. 2019, 212, 1044–1053. [Google Scholar] [CrossRef]
- Orhon, A.V.; Altin, M. Utilization of Alternative Building Materials for Sustainable Construction; Dincer, I., Colpan, C.O., Ezan, M.A., Eds.; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-20636-9. [Google Scholar]
- Cárdenes, V.; Rubio-Ordóñez, A.; López-Munguira, A.; De la Horra, R.; Monterroso, C.; Paradelo, R.; Calleja, L. Mineralogy and Modulus of Rupture of Roofing Slate: Applications in the Prospection and Quarrying of Slate Deposits. Eng. Geol. 2010, 114, 191–197. [Google Scholar] [CrossRef]
- HSP, (Propection Fire) Fire Ratings Explained. Passive Fire Protection, Testing, and Standards. Available online: https://hspfireprotection.co.uk/information-and-advice/4_fire-ratings-explained.html (accessed on 30 March 2024).
- Abenojar, J.; Torregrosa-Coque, R.; Martínez, M.A.; Martín-Martínez, J.M. Surface Modifications of Polycarbonate (PC) and Acrylonitrile Butadiene Styrene (ABS) Copolymer by Treatment with Atmospheric Plasma. Surf. Coat. Technol. 2009, 203, 2173–2180. [Google Scholar] [CrossRef]
- Owens, D.K. Some Thermodynamic Aspects of Polymer Adhesion. J. Appl. Polym. Sci. 1970, 14, 1725–1730. [Google Scholar] [CrossRef]
- EN 828:2013; Adhesives—Wettability—Determination by Measurement of Contact Angle and Surface Free Energy of Solid Surface. European Committee for Standardization: Brussels, Belgium, 2013.
- Owens, D.K.; Wendt, R. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- ISO 178:2019; Plastics—Determination of Flexural Propertiese. ISO: Geneva, Switzerland, 2019.
- ISO 179-1:2023; Plastics—Determination of Charpy Impact Properties—Part 1: Non-Instrumented Impact Test. ISO: Geneva, Switzerland, 2023.
- ISO 527-1:2019; Determination of Tensile Properties—Part 1: General Principles. ISO: Geneva, Switzerland, 2019.
- ASTM D7136:2020; Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM: West Conshohocken, PA, USA, 2020.
- Encinas, N.; Díaz-Benito, B.; Abenojar, J.; Martínez, M.A. Extreme Durability of Wettability Changes on Polyolefin Surfaces by Atmospheric Pressure Plasma Torch. Surf. Coat. Technol. 2010, 205, 396–402. [Google Scholar] [CrossRef]
- Abenojar, J.; Colera, I.; Martínez, M.A.; Velasco, F. Study by XPS of an Atmospheric Plasma-Torch Treated Glass: Influence on Adhesion. J. Adhes. Sci. Technol. 2010, 24, 1841–1854. [Google Scholar] [CrossRef]
- Abenojar, J.; Martínez, M.Á.; Encinas, N.; Velasco, F. Modification of Glass Surfaces Adhesion Properties by Atmospheric Pressure Plasma Torch. Int. J. Adhes. Adhes. 2013, 44, 1–8. [Google Scholar] [CrossRef]
- Díaz-Benito, B.; Velasco, F. Atmospheric Plasma Torch Treatment of Aluminium: Improving Wettability with Silanes. Appl. Surf. Sci. 2013, 287, 263–269. [Google Scholar] [CrossRef]
- Rodríguez-Villanueva, C.; Encinas, N.; Abenojar, J.; Martínez, M.A. Assessment of Atmospheric Plasma Treatment Cleaning Effect on Steel Surfaces. Surf. Coat. Technol. 2013, 236, 450–456. [Google Scholar] [CrossRef]
- Alomayri, T. Experimental Study of the Microstructural and Mechanical Properties of Geopolymer Paste with Nano Material (Al2O3). J. Build. Eng. 2019, 25, 100788. [Google Scholar] [CrossRef]
- Soltani, A.; Tarighat, A.; Rostami, R.; Tavakoli, D.; Moradi, A. Investigation of Mechanical Properties of Concrete with Clinoptilolite and Silica Fume Using Taguchi Method. Innov. Infrastruct. Solut. 2024, 9, 1–23. [Google Scholar] [CrossRef]
- Cho, E.; Chiu, L.L.Y.; Lee, M.; Naila, D.; Sadanand, S.; Waldman, S.D.; Sussman, D. Characterization of Mechanical and Dielectric Properties of Silicone Rubber. Polymers 2021, 13, 1831. [Google Scholar] [CrossRef] [PubMed]
- Muslov, S.A.; Panin, S.V.; Zolotnitsky, I.V.; Pivovarov, A.A.; Anischenko, A.P.; Arutyunov, S.D. Mapping of Elastic and Hyperelastic Properties of the Periodontal Ligament. Mech. Compos. Mater. 2023, 59, 469–478. [Google Scholar] [CrossRef]
- Li, Y.T.; Liu, W.J.; Shen, F.X.; Zhang, G.D.; Gong, L.X.; Zhao, L.; Song, P.; Gao, J.F.; Tang, L.C. Processing, Thermal Conductivity and Flame Retardant Properties of Silicone Rubber Filled with Different Geometries of Thermally Conductive Fillers: A Comparative Study. Compos. Part B Eng. 2022, 238, 109907. [Google Scholar] [CrossRef]
- Silicones Solutions. Available online: https://siliconesolutions.com/silicone-foams.html (accessed on 4 April 2024).
- Cárdenes, V.; Ponce de León, M.; Rodríguez, X.A.; Rubio-Ordoñez, A. Roofing Slate Industry in Spain: History, Geology, and Geoheritage. Geoheritage 2019, 11, 19–34. [Google Scholar] [CrossRef]
- Ma, H.; Yue, C.; Yu, H.; Mei, Q.; Chen, L.; Zhang, J.; Zhang, Y.; Jiang, X. Experimental Study and Numerical Simulation of Impact Compression Mechanical Properties of High Strength Coral Aggregate Seawater Concrete. Int. J. Impact Eng. 2020, 137, 103466. [Google Scholar] [CrossRef]
Material | Treatment | Total Surface Energy (mN/m) | Dispersive Component (mN/m) | Polar Component (mN/m) |
---|---|---|---|---|
Slate | Untreated | 57 ±3 | 35 ± 2 | 22 ± 2 |
APPT | 66 ± 2 | 21 ± 1 | 45 ± 2 | |
Cork | Untreated | 17 ± 2 | 16 ± 2 | 1 ± 0 |
APPT | 44 ± 2 | 21 ± 2 | 23 ± 1 |
Material | Treatment | Average Roughness Sa (µm2) |
---|---|---|
Slate | Untreated | 3.9 ± 0.6 |
APPT | 3.6 ± 0.2 | |
Cork | Untreated | 12.5 ± 4.9 |
APPT | 11.3 ± 2.2 |
Material | Flexural Strength (MPa) | Flexural Strain (%) | Flexural Modulus (GPa) |
---|---|---|---|
Slate | 56 ± 13 | 0.22 ± 0.08 | 27 ± 5 |
Material | Tensile Strength (kPa) | Tensile Strain (%) | Young’s Modulus (MPa) |
---|---|---|---|
Silicone | 597 ± 56 | 267 ± 73 | 54 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abenojar, J.; López de Armentia, S.; Martínez, M.A. Slate–Cork Laminate Enhanced with Silicone for Habitat Industry Application. Fire 2024, 7, 166. https://doi.org/10.3390/fire7050166
Abenojar J, López de Armentia S, Martínez MA. Slate–Cork Laminate Enhanced with Silicone for Habitat Industry Application. Fire. 2024; 7(5):166. https://doi.org/10.3390/fire7050166
Chicago/Turabian StyleAbenojar, Juana, Sara López de Armentia, and Miguel Angel Martínez. 2024. "Slate–Cork Laminate Enhanced with Silicone for Habitat Industry Application" Fire 7, no. 5: 166. https://doi.org/10.3390/fire7050166
APA StyleAbenojar, J., López de Armentia, S., & Martínez, M. A. (2024). Slate–Cork Laminate Enhanced with Silicone for Habitat Industry Application. Fire, 7(5), 166. https://doi.org/10.3390/fire7050166