Impact of Seasonal Heating on PM10 and PM2.5 Concentrations in Sučany, Slovakia: A Temporal and Spatial Analysis
Abstract
:1. Introduction
- PM10 are particulate matter smaller than 10 μm in diameter.
- PM2.5 are fine particulate matter smaller than 2.5 μm in diameter.
- PM1 are categorised as very fine particles that are smaller than 1 μm in diameter.
- PM0.1 are ultrafine particles below 0.1 μm in diameter.
2. Materials and Methods
2.1. Measurement Location
- MS1 is located in the centre of the village near the central square. In the vicinity are parking spaces, local roads, civic amenities (shops, administration), and family houses.
- MS2 is located near the Class I road I/18 with a considerable 24-h traffic volume of 11,359 vehicles/24 h (weekly average).
- MS3 was chosen in the northern part of the village at the water channel of the river Váh. A large portion consists of family houses. To the south stands a light industrial production facility.
- MS4 is located southernmost of Sučany next to apartment buildings, while on the south side is an open space with agricultural production. To the north is the industrial production of building materials.
- MS5 is located in a part of the village with family houses.
2.2. Metodology of Measurements
2.3. Data Analysis
3. Results
3.1. Measurements during the Non-Heating Season
3.2. Measurements during the Heating Season
3.3. Correlation of PM Measurements with Ambient Temperature
3.4. Pollution Rose of PM Concentrations
- Promote Clean Heating: Incentivise adoption of electric heating, heat pumps, and biomass boilers to replace fossil fuel systems, reducing particulate matter emissions.
- Enforce Air Quality Regulations: Impose strict regulations on industrial emissions, requiring pollution controls and adherence to emission limits to reduce PM pollution.
- Raise Public Awareness: Educate residents and students on health impacts of PM pollution and promote actions like using clean heating fuels and reducing unnecessary heating during heating season.
3.5. Time Visualisation of PM Concentrations between Work Days and Weekends
3.6. Impact of Traffic Volume
3.7. Polar Graphs of Particulate Pollution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreno-Ríos, A.L.; Tejeda-Benítez, L.P.; Bustillo-Lecompte, C.F. Sources, characteristics, toxicity, and control of ultrafine particles: An overview. Geosci. Front. 2022, 13, 101147. [Google Scholar] [CrossRef]
- Makkonen, U.; Vestenius, M.; Huy, L.N.; Anh, N.T.N.; Linh, P.T.V.; Thuy, P.T.; Phuong, H.T.M.; Nguyen, H.; Thuy, L.T.; Aurela, M.; et al. Chemical composition and potential sources of PM2.5 in Hanoi. Atmos. Environ. 2023, 299, 119650. [Google Scholar] [CrossRef]
- Bieliatynskyi, A.; Yang, S.; Pershakov, V.; Akmaldinova, O.; Krayushkina, K. Pollution of the roadside environment with dust from road surface repairs. Civ. Environ. Eng. 2022, 18, 715–725. [Google Scholar] [CrossRef]
- Bouh, H.A.; Bounakhla, M.; Benyaich, F.; Noack, Y.; Tahri, M.; Foudeil, S. Seasonal variation of mass concentration and chemical composition of PM2.5 and PM10, source identification and human health risk assessment in Meknes City in Morocco. Aerosol Sci. Eng. 2022, 7, 151–168. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D.; Cibula, R. Concentration and inorganic elemental analysis of particulate matter in a road tunnel environment (žilina, Slovakia): Contribution of non-exhaust sources. Front. Environ. Sci. 2022, 10, 952577. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D. Seasonal variation, chemical composition, and PMF-derived sources identification of traffic-related PM1, PM2.5, and PM2.5–10 in the air quality management region of žilina, Slovakia. Int. J. Environ. Res. Public Health 2021, 18, 10191. [Google Scholar] [CrossRef] [PubMed]
- EEA. Čo Sú Tuhé Častice a Aké Majú Účinky Na Zdravie Ľudí? Available online: https://www.eea.europa.eu/sk/help/casto-kladene-otazky/co-su-tuhe-castice-a (accessed on 7 March 2024).
- Casotti Rienda, I.; Alves, C.A.; Nunes, T.; Soares, M.; Amato, F.; Sánchez de la Campa, A.; Kováts, N.; Hubai, K.; Teke, G. PM10 resuspension of road dust in different types of parking lots: Emissions, chemical characterisation and ecotoxicity. Atmosphere 2023, 14, 305. [Google Scholar] [CrossRef]
- The Impact of Residential Heating and Cooking on Air Quality in Europe, the Impact of Residential Heating and Cooking on Air Quality in Europe, March 2022. Available online: http://epha.org/wp-content/uploads/2022/03/epha-position-paper-clean-heating.pdf (accessed on 9 March 2024).
- Houthuijs, D.; Breugelmans, O.; Hoek, G.; Vaskövi, E.; Miháliková, E.; Pastuszka, J.S.; Jirik, V.; Sachelarescu, S.; Lolova, D.; Meliefste, K.; et al. PM10 and PM2.5 concentrations in Central and Eastern Europe: Results from the Cesar study. Atmos. Environ. 2001, 35, 2757–2771. [Google Scholar] [CrossRef]
- Braniš, M.; Domasová, M.; Řezáčová, P. Particulate Air Pollution in a small settlement: The effect of local heating. Appl. Geochem. 2007, 22, 1255–1264. [Google Scholar] [CrossRef]
- Hassani, A.; Bykuć, S.; Schneider, P.; Zawadzki, P.; Chaja, P.; Castell, N. Low-cost sensors and machine learning aid in identifying environmental factors affecting particulate matter emitted by household heating. Atmos. Environ. 2023, 314, 120108. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Xu, X.; Li, X.; He, P.; Qiao, Y.; Chen, Y. The diminishing effects of winter heating on air quality in northern China. J. Environ. Manag. 2023, 325, 116536. [Google Scholar] [CrossRef] [PubMed]
- Koval, S.; Vytisk, J.; Ruzickova, J.; Raclavska, H.; Skrobankova, H.; Hellebrandova, L. The impact of solid fuel residential boilers exchange on Particulate Matter Air Pollution. Appl. Sci. 2021, 11, 5400. [Google Scholar] [CrossRef]
- Li, H.; You, S.; Zhang, H.; Zheng, W.; Zou, L. Analysis of the impacts of heating emissions on the environment and human health in North China. J. Clean. Prod. 2019, 207, 728–742. [Google Scholar] [CrossRef]
- Bodor, Z.; Bodor, K.; Keresztesi, Á.; Szép, R. Major air pollutants seasonal variation analysis and long-range transport of PM10 in an urban environment with specific climate condition in Transylvania (Romania). Environ. Sci. Pollut. Res. 2020, 27, 38181–38199. [Google Scholar] [CrossRef] [PubMed]
- Krecl, P.; Targino, A.C.; Lara, C.; Oukawa, G.Y.; Soares, J.; Mollinedo, E.M. Detecting local and regional air pollution from biomass burning at a suburban site. Atmos. Environ. 2023, 297, 119591. [Google Scholar] [CrossRef]
- Potočár, R. Drevo, Uhlie, Pelety a Brikety Používa 190-Tisíc Domácností. Shmú Zmapoval Vykurovanie. Available online: https://www.energie-portal.sk/Dokument/vykurovanie-domacnosti-paliva-drevo-uhlie-pelety-brikety-emisie-109934.aspx (accessed on 7 March 2024).
- Holubčík, M.; Jandačka, J. Produkcia Emisii. Available online: https://vytapeni.tzb-info.cz/vytapime-pevnymi-palivy/17230-produkcia-emisii-pri-spalovani-dreva-v-zavislosti-na-jeho-vlhkosti (accessed on 7 March 2024).
- Křůmal, K.; Mikuška, P.; Horák, J.; Hopan, F.; Kuboňová, L. Influence of boiler output and type on gaseous and particulate emissions from the combustion of coal for residential heating. Chemosphere 2021, 278, 130402. [Google Scholar] [CrossRef] [PubMed]
- Křůmal, K.; Mikuška, P.; Horák, J.; Jaroch, M.; Hopan, F.; Kuboňová, L. Gaseous and particulate emissions from the combustion of hard and soft wood for household heating: Influence of boiler type and heat output. Atmos. Pollut. Res. 2023, 14, 101801. [Google Scholar] [CrossRef]
- Alves, C.; Evtyugina, M.; Vicente, E.; Vicente, A.; Rienda, I.C.; de la Campa, A.S.; Tomé, M.; Duarte, I. PM2.5 chemical composition and health risks by inhalation near a chemical complex. J. Environ. Sci. 2023, 124, 860–874. [Google Scholar] [CrossRef]
- Poláčik, J.; Sitek, T.; Pospíšil, J.; Šnajdárek, L.; Lisý, M. Emission of fine particles from residential combustion of wood: Comparison of automatic boiler, Manual Log Feed Stove and Thermo-gravimetric analysis. J. Clean. Prod. 2021, 279, 1. [Google Scholar] [CrossRef]
- Tzbportal. Porovnanie Produkcie Znečisťujúcich Látok a SKLENÍKOVÉHO Plynu v Rodinnom Dome O Plyne. Available online: https://oplyne.info/porovnanie-produkcie-znecistujucich-latok-a-sklenikoveho-plynu-v-rodinnom-dome/ (accessed on 7 March 2024).
- Kaivosoja, T.; Jalava, P.I.; Lamberg, H.; Virén, A.; Tapanainen, M.; Torvela, T.; Tapper, U.; Sippula, O.; Tissari, J.; Hillamo, R.; et al. Comparison of emissions and toxicological properties of fine particles from wood and oil boilers in small (20–25 kW) and medium (5–10 MW) scale. Atmos. Environ. 2013, 77, 193–201. [Google Scholar] [CrossRef]
- Samoli, E.; Peng, R.; Ramsay, T.; Pipikou, M.; Touloumi, G.; Dominici, F.; Burnett, R.; Cohen, A.; Krewski, D.; Samet, J.; et al. Acute effects of ambient particulate matter on mortality in Europe and North America: Results from the APHENA study. Environ. Health Perspect. 2008, 116, 1480–1486. [Google Scholar] [CrossRef] [PubMed]
- WHO. Health Effects of Particulate Matter, 2013. Available online: https://unece.org/DAM/env/documents/2013/air/Health-effects-of-particulate-matter-final-Eng.pdf (accessed on 14 March 2024).
- Beelen, R.; Hoek, G.; van den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-Air Study). Environ. Health Perspect. 2008, 116, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Krewski, D.; Jerrett, M.; Burnett, R.T. Extended Follow-Up and Spatial Analysis of the American Cancer Society Linking Particulate Air Pollution and Mortality; Research Report; Health Effects Institute: Boston, MA, USA, 2009; Volume 140. [Google Scholar]
- Pope, C.A., III. Lung cancer, cardiopulmonary mortality, and long-term exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132. [Google Scholar] [CrossRef] [PubMed]
- WWF. Environmental Assessment Report for the Lokichar Oil Fields in Turkana County and Lamu Marine Crude Oil Terminal. Available online: https://wwfke.awsassets.panda.org/downloads/environmental_baseline_assessment_in_lokichar_and_lamu_marine_terminal.pdf (accessed on 7 March 2024).
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Ohlwein, S.; Kappeler, R.; Kutlar Joss, M.; Künzli, N.; Hoffmann, B. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public Health 2019, 64, 547–559. [Google Scholar] [CrossRef] [PubMed]
- WHO. Air Quality Guidelines Global Update. Available online: https://www.who.int/publications/i/item/WHO-SDE-PHE-OEH-06.02 (accessed on 7 March 2024).
- Zhu, M.; Han, J.; Wang, F.; Shao, W.; Xiong, R.; Zhang, Q.; Pan, H.; Yang, Y.; Samal, S.K.; Zhang, F.; et al. Electrospun nanofibers membranes for effective air filtration. Macromol. Mater. Eng. 2016, 302, 1600353. [Google Scholar] [CrossRef]
- Odat, S.; Abu-Allaban, M.; AL-Trawneh, B. Study on the impact of weather on air quality at Aqaba. Nat. Environ. Pollut. Technol. 2018, 17, 359–366. [Google Scholar]
- ISO 10473:2000; Ambient Air. Measurement of the Mass of Particulate Matter on a Filtrer Madium. Beta-Ray Absorption Method. International Organization for Standardization, ISO Central Secretariat: Geneva, Switzerland, 2000.
- Carslaw, D.C.; Beevers, S.D.; Ropkins, K.; Bell, M.C. Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmos. Environ. 2006, 40, 5424–5434. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Platt, S.M.; El Haddad, I.; Pieber, S.M.; Zardini, A.A.; Suarez-Bertoa, R.; Clairotte, M.; Daellenbach, K.R.; Huang, R.-J.; Slowik, J.G.; Hellebust, S.; et al. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Sci. Rep. 2017, 7, 4926. [Google Scholar] [CrossRef]
- Tiwari, S.; Bisht, D.S.; Srivastava, A.K.; Pipal, A.S.; Taneja, A.; Srivastava, M.K.; Attri, S.D. Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, India. Atmos. Res. 2014, 145–146, 45–56. [Google Scholar] [CrossRef]
- Pio, C.A.; Cardoso, J.G.; Cerqueira, M.A.; Calvo, A.; Nunes, T.V.; Alves, C.A.; Custódio, D.; Almeida, S.M.; Almeida-Silva, M. Seasonal variability of aerosol concentration and size distribution in cape verde using a continuous aerosol optical spectrometer. Front. Environ. Sci. 2014, 2, 15. [Google Scholar] [CrossRef]
- Chan, L.Y.; Kwok, W.S. Roadside suspended particulates at heavily trafficked urban sites of Hong Kong—Seasonal variation and dependence on meteorological conditions. Atmos. Environ. 2001, 35, 3177–3182. [Google Scholar] [CrossRef]
- Batterman, S.; Ganguly, R.; Harbin, P. High resolution spatial and temporal mapping of traffic-related air pollutants. Int. J. Environ. Res. Public Health 2015, 12, 3646–3666. [Google Scholar] [CrossRef] [PubMed]
- Bamola, S.; Goswami, G.; Dewan, S.; Goyal, I.; Agarwal, M.; Dhir, A.; Lakhani, A. Characterising temporal variability of PM2.5/PM10 ratio and its correlation with meteorological variables at a sub-urban site in the Taj City. Urban Clim. 2024, 53, 101763. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, T.; Hu, W.; Shao, L.; Sun, Y.; Xue, F.; Niu, H. Evolution in physicochemical properties of fine particles emitted from residential coal combustion based on Chamber Experiment. Gondwana Res. 2022, 110, 252–263. [Google Scholar] [CrossRef]
- SHMÚ. Limitné Hodnoty Pre Hodnotenie Kvality Ovzdušia. Available online: https://www.shmu.sk/sk/?page=2657 (accessed on 7 March 2024).
- EurLEX. Smernica—2009/125—en—EUR-lex. Available online: https://eur-lex.europa.eu/legal-content/SK/ALL/?uri=CELEX%3A32009L0125 (accessed on 7 March 2024).
- Holubčík, M.; Čajová Kantová, N.; Jandačka, J.; Čaja, A. The Performance and Emission Parameters Based on the Redistribution of the Amount of Combustion Air of the Wood Stove. Processes 2022, 10, 1570. [Google Scholar] [CrossRef]
- Gregorovičová, E.; Pospíšil, J.; Sitek, T. The Bulk Density and Cohesion of Submicron Particles Emitted by a Residential Boiler When Burning Solid Fuels. Fire 2023, 6, 445. [Google Scholar] [CrossRef]
- Latosińska J, Gawdzik J, Honus S, Orman ŁJ and Radek N Waste for building material production as a method of reducing environmental load and energy recovery. Front. Energy Res. 2023, 11, 1279337. [CrossRef]
- European Commision. Climate Strategies & Targets. Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets_en (accessed on 7 March 2024).
Pollutant | Exposure Time | Health Impact |
---|---|---|
PM | Long-term | Bronchitis, cardiovascular diseases |
SO2 | Short-term | High blood pressure, impaired lung function |
NO2 | Long-term | High blood pressure |
VOC | Short-term | Skin irritation, respiratory tract, death (>100 ppm) |
Location | Location of Monitoring Station | Monitoring Period |
---|---|---|
MS1 | SNP Square (49°05′57.7″ N, 18°59′30.8″ E) | 14/08–20/08/2018 |
MS2 | Hlavná street (49°05′51.1″ N, 18°59′08.7″) | 22/08–28/08/2018 |
MS3 | Vážska street (49°06′33.3″ N, 19°00′02.0″ E) | 04/09–10/09/2018 |
MS4 | Pod Breziny street (49°05′45.9″ N 19°00′14.7″ E) | 12/09–18/09/2018 |
MS5 | Sládkovičova street (49°06′08.5″ N 18°58′57.7″ E) | 22/09–28/09/2018 |
Measuring Period | Measurement Station | Parameters | ||||||
---|---|---|---|---|---|---|---|---|
PM10 [μg/m3] | PM2.5 [µg/m3] | Temp. [°C] | Humidity [%] | Pressure [hPa] | Wind Speed [m/s] | Wind Direction [°] | ||
2018 | MS 1 | 24.11 | 19.63 | 21.4 | 63.2 | 972.0 | 1.6 | 127 |
MS 2 | 21.60 | 16.60 | 18.1 | 71.4 | 970.3 | 1.2 | 151 | |
MS 3 | 22.52 | 19.40 | 16.7 | 73.9 | 969.6 | 1.6 | 127 | |
MS 4 | 23.19 | 19.32 | 16.6 | 71.1 | 975.1 | 0.8 | 161 | |
MS 5 | 23.77 | 21.29 | 9.1 | 74.0 | 979.7 | 1.4 | 183 | |
Average over the measuring period | 23.04 | 19.25 | 16.4 | 70.7 | 973.3 | 1.3 | 150 | |
2019 | MS 1 | 88.08 | 86.37 | −6.2 | 81.1 | 967.5 | 1.8 | 203 |
MS 2 | 70.33 | 69.94 | −2.6 | 91.5 | 958.4 | 0.7 | 147 | |
MS 3 | 34.22 | 34.82 | −0.1 | 80.2 | 969.9 | 1.8 | 170 | |
MS 4 | 39.56 | 38.49 | 1.5 | 80.5 | 979.8 | 0.7 | 159 | |
MS 5 | 37.18 | 34.55 | 2.7 | 60.3 | 982.5 | 2.0 | 154 | |
Average over the measuring period | 53.87 | 52.83 | −0.9 | 78.7 | 971.6 | 1.4 | 167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jandacka, D.; Durcanska, D.; Nicolanska, M.; Holubcik, M. Impact of Seasonal Heating on PM10 and PM2.5 Concentrations in Sučany, Slovakia: A Temporal and Spatial Analysis. Fire 2024, 7, 150. https://doi.org/10.3390/fire7040150
Jandacka D, Durcanska D, Nicolanska M, Holubcik M. Impact of Seasonal Heating on PM10 and PM2.5 Concentrations in Sučany, Slovakia: A Temporal and Spatial Analysis. Fire. 2024; 7(4):150. https://doi.org/10.3390/fire7040150
Chicago/Turabian StyleJandacka, Dusan, Daniela Durcanska, Miriam Nicolanska, and Michal Holubcik. 2024. "Impact of Seasonal Heating on PM10 and PM2.5 Concentrations in Sučany, Slovakia: A Temporal and Spatial Analysis" Fire 7, no. 4: 150. https://doi.org/10.3390/fire7040150