Comparing Observed and Projected Changes in Australian Fire Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Baseline FFDI
2.2. Measuring Regime Shifts
2.3. FFDI Projections
3. Results
3.1. Nationwide Comparisons
3.2. Comparisons with Regional Studies
3.2.1. Victoria
3.2.2. Eastern Australia
3.2.3. Tasmania
3.2.4. New South Wales
3.2.5. National
4. Discussion
4.1. Looking Back
- How the response of fire climates to radiative forcing, and climate more generally, is conceptualized;
- The capacity of climate models to accurately represent those responses;
- How projections of future change are constructed; and
- How those projections translate into an understanding of changing risk.
4.2. Looking Forward
4.3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, R.N.; Ricketts, J.H. Identifying and Attributing Regime Shifts in Australian Fire Climates. Climate 2023, 11, 121. [Google Scholar] [CrossRef]
- Jones, R.N.; Ricketts, J.H. Regime changes in atmospheric moisture under climate change. Atmosphere 2022, 13, 1577. [Google Scholar] [CrossRef]
- Allan, R.P.; Douville, H. An even drier future for the arid lands. Proc. Natl. Acad. Sci. USA 2024, 121, e2320840121. [Google Scholar] [CrossRef] [PubMed]
- Simpson, I.R.; McKinnon, K.A.; Kennedy, D.; Lawrence, D.M.; Lehner, F.; Seager, R. Observed humidity trends in dry regions contradict climate models. Proc. Natl. Acad. Sci. USA 2024, 121, e2302480120. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Pepler, A. Pyroconvection risk in Australia: Climatological changes in atmospheric stability and surface fire weather conditions. Geophys. Res. Lett. 2018, 45, 2005–2013. [Google Scholar] [CrossRef]
- Canadell, J.G.; Meyer, C.P.; Cook, G.D.; Dowdy, A.; Briggs, P.R.; Knauer, J.; Pepler, A.; Haverd, V. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 2021, 12, 6921. [Google Scholar] [CrossRef]
- Richardson, D.; Black, A.S.; Monselesan, D.P.; Risbey, J.S.; Squire, D.T.; Tozer, C.R.; Canadell, J.G. Increased extreme fire weather occurrence in southeast Australia and related atmospheric drivers. Weather. Clim. Extrem. 2021, 34, 100397. [Google Scholar] [CrossRef]
- McArthur, A.G. Fire Behaviour in Eucalypt Forests; Forestry and Timber Bureau: Canberra, Australia, 1967; p. 36.
- Luke, R.H.; McArthur, A.G. Bushfires in Australia; Australian Government Publishing Service: Canberra, Australia, 1978; p. 359.
- Noble, I.; Gill, A.; Bary, G. McArthur’s fire-danger meters expressed as equations. Aust. J. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Hennessy, K.; Lucas, C.; Nicholls, N.; Bathols, J.; Suppiah, R.; Ricketts, J. Climate Change Impacts on Fire-Weather in South-East Australia; CSIRO and Bureau of Meteorology: Melbourne, Australia, 2005; p. 88.
- Lucas, C.; Hennessy, K.; Mills, G.; Bathols, J. Bushfire Weather in Southeast Australia: Recent Trends and Projected Climate Change Impacts; Bushfire Cooperative Research Centre, Bureau of Meteorology, CSIRO: Melbourne, Australia, 2007; p. 80.
- Clarke, H.G.; Smith, P.L.; Pitman, A.J. Regional signatures of future fire weather over eastern Australia from global climate models. Int. J. Wildland Fire 2011, 20, 550–562. [Google Scholar] [CrossRef]
- Clarke, H.; Evans, J.P. Exploring the future change space for fire weather in southeast Australia. Theor. Appl. Clim. 2019, 136, 513–527. [Google Scholar] [CrossRef]
- CSIRO; Bureau of Meteorology. Climate Change in Australia. Information for Australia’s Natural Resource Management Regions: Technical Report; CSIRO and Bureau of Meteorology: Melbourne, Australia, 2015.
- Clarke, H.; Pitman, A.J.; Kala, J.; Carouge, C.; Haverd, V.; Evans, J.P. An investigation of future fuel load and fire weather in Australia. Clim. Chang. 2016, 139, 591–605. [Google Scholar] [CrossRef]
- Fox-Hughes, P.; Harris, R.; Lee, G.; Grose, M.; Bindoff, N. Future fire danger climatology for Tasmania, Australia, using a dynamically downscaled regional climate model. Int. J. Wildland Fire 2014, 23, 309–321. [Google Scholar] [CrossRef]
- Timbal, B.; Ekström, M.; Fiddes, S.; Grose, M.; Kirono, D.G.; Lim, E.-P.; Lucas, C.; Wilson, L. Climate Change Science and Victoria; Bureau of Meteorology: Melbourne, Australia, 2016.
- Clarke, H.; Lucas, C.; Smith, P. Changes in Australian fire weather between 1973 and 2010. Int. J. Clim. 2013, 33, 931–944. [Google Scholar] [CrossRef]
- Lucas, C. On developing a historical fire weather data-set for Australia. Aust. Meteorol. Oceanogr. J. 2010, 60, 1–14. [Google Scholar] [CrossRef]
- Harris, S.; Lucas, C. Understanding the variability of Australian fire weather between 1973 and 2017. PLoS ONE 2019, 14, e0222328. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.; Harris, S. Seasonal McArthur Forest Fire Danger Index (FFDI) Data for Australia: 1973–2017. 2; Mendeley Data. 2019. Available online: https://data.mendeley.com/datasets/xf5bv3hcvw/2 (accessed on 7 February 2020). [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Maronna, R.; Yohai, V.J. A bivariate test for the detection of a systematic change in mean. J. Am. Stat. Assoc. 1978, 73, 640–645. [Google Scholar] [CrossRef]
- Potter, K. Illustration of a new test for detecting a shift in mean in precipitation series. Mon. Weather Rev. 1981, 109, 2040–2045. [Google Scholar] [CrossRef]
- Bücher, A.; Dessens, J. Secular trend of surface temperature at an elevated observatory in the Pyrenees. J. Clim. 1991, 4, 859–868. [Google Scholar] [CrossRef]
- Kirono, D.; Jones, R. A bivariate test for detecting inhomogeneities in pan evaporation time series. Aust. Meteorol. Mag. 2007, 56, 93–103. [Google Scholar]
- Sahin, S.; Cigizoglu, H.K. Homogeneity analysis of Turkish meteorological data set. Hydrol. Process. 2010, 24, 981–992. [Google Scholar] [CrossRef]
- Jones, R.N.; Young, C.K.; Handmer, J.; Keating, A.; Mekala, G.D.; Sheehan, P. Valuing Adaptation under Rapid Change; National Climate Change Adaptation Research Facility: Gold Coast, Australia, 2013; p. 182. [Google Scholar]
- Vivès, B.; Jones, R.N. Detection of Abrupt Changes in Australian Decadal Rainfall (1890–1989); CSIRO Atmospheric Research: Melbourne, Australia, 2005; p. 54. [Google Scholar]
- Jones, R.N. Detecting and attributing nonlinear anthropogenic regional warming in southeastern Australia. J. Geophys. Res. 2012, 117, D04105. [Google Scholar] [CrossRef]
- Buishand, T. Tests for detecting a shift in the mean of hydrological time series. J. Hydrol. 1984, 73, 51–69. [Google Scholar] [CrossRef]
- Boucharel, J.; Dewitte, B.; Penhoat, Y.; Garel, B.; Yeh, S.-W.; Kug, J.-S. ENSO nonlinearity in a warming climate. Clim. Dyn. 2011, 37, 2045–2065. [Google Scholar] [CrossRef]
- Jones, R.N.; Ricketts, J.H. Reconciling the signal and noise of atmospheric warming on decadal timescales. Earth Syst. Dyn. 2017, 8, 177–210. [Google Scholar] [CrossRef]
- Dowdy, A.J. Seamless climate change projections and seasonal predictions for bushfires in Australia. J. South. Hemisph. Earth Syst. Sci. 2020, 70, 120–138. [Google Scholar] [CrossRef]
- Moss, R.; Babiker, W.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.; Hibbard, K. Towards New Scenarios for the Analysis of Emissions: Climate Change, Impacts and Response Strategies; Intergovernmental Panel on Climate Change Secretariat (IPCC): Geneva, Switzerland, 2008. [Google Scholar]
- Clark, S.; Mills, G.; Brown, T.; Harris, S.; Abatzoglou, J.T. Downscaled GCM climate projections of fire weather over Victoria, Australia. Part 1*: Evaluation of the MACA technique. Int. J. Wildland Fire 2021, 30, 585–595. [Google Scholar] [CrossRef]
- Brown, T.; Mills, G.; Harris, S.; Podnar, D.; Reinbold, H.; Fearon, M. A bias corrected WRF mesoscale fire weather dataset for Victoria, Australia 1972-2012. J. South. Hemisph. Earth Syst. Sci. 2016, 66, 281–313. [Google Scholar] [CrossRef]
- Harris, S.; Mills, G.; Brown, T. Victorian fire weather trends and variability. In Proceedings of the MODSIM2019, 23rd International Congress on Modelling and Simulation, Canberra, Australia, 1–6 December 2019; ACT: Canberra, Australia, 2019; pp. 747–753. [Google Scholar]
- Clark, S.; Mills, G.; Brown, T.; Harris, S.; Abatzoglou, J.T. Downscaled GCM climate projections of fire weather over Victoria, Australia. Part 2*: A multi-model ensemble of 21st century trends. Int. J. Wildland Fire 2021, 30, 596–610. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Fox-Hughes, P. A fire danger climatology for Tasmania. Aust. Meteorol. Mag. 2008, 57, 109–120. [Google Scholar]
- Grose, M.R.; Fox-Hughes, P.; Harris, R.M.B.; Bindoff, N.L. Changes to the drivers of fire weather with a warming climate—a case study of southeast Tasmania. Clim. Chang. 2014, 124, 255–269. [Google Scholar] [CrossRef]
- Evans, J.; Ji, F.; Lee, C.; Smith, P.; Argüeso, D.; Fita, L. Design of a regional climate modelling projection ensemble experiment–NARCliM. Geosci. Model. Dev. 2014, 7, 621–629. [Google Scholar] [CrossRef]
- Dowdy, A.; Ye, H.; Tory, K.; Jones, D.; Evans, A.; Lavender, S.; Thatcher, M.; Rafter, T.; Osbrough, S.; Walsh, K. Extreme weather: Improved data products on bushfires, thunderstorms, tropical cyclones and east coast lows. In Proceedings of the Bushfire and Natural Hazards CRC & AFAC Conference; Rumsewicz, I.M., Ed.; Bushfire and Natural Hazards CRC: Sydney, Australia, 2017. [Google Scholar]
- Dowdy, A.J. Climatological Variability of Fire Weather in Australia. J. Appl. Meteorol. Climatol. 2018, 57, 221–234. [Google Scholar] [CrossRef]
- Jones, D.A.; Wang, W.; Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Ocean. J. 2009, 58, 233–248. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Ye, H.; Pepler, A.; Thatcher, M.; Osbrough, S.L.; Evans, J.P.; Di Virgilio, G.; McCarthy, N. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 2019, 9, 10073. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Bradstock, R.A.; Cary, G.J.; Dovey, L.; Enright, N.J.; Gill, A.M.; Handmer, J.; Hennessy, K.J.; Liedloff, A.C.; Lucas, C. Current Fire Regimes, Impacts and the Likely Changes–VII: Australian Fire Regimes under Climate Change: Impacts, Risks and Mitigation. In Vegetation Fires and Global Change; Goldammer, J.G., Ed.; Kessel Publishing House: Eifelweg, Germany, 2013; pp. 133–142. [Google Scholar]
- Harris, S.; Nicholls, N.; Tapper, N.; Mills, G. The sensitivity of fire activity to interannual climate variability in Victoria, Australia. J. South. Hemisph. Earth Syst. Sci. 2019, 69, 146–160. [Google Scholar] [CrossRef]
- Sharples, J.J.; Cary, G.J.; Fox-Hughes, P.; Mooney, S.; Evans, J.P.; Fletcher, M.-S.; Fromm, M.; Grierson, P.F.; McRae, R.; Baker, P. Natural hazards in Australia: Extreme bushfire. Clim. Chang. 2016, 139, 85–99. [Google Scholar] [CrossRef]
- Willett, K.; Dunn, R.; Thorne, P.; Bell, S.; De Podesta, M.; Parker, D.; Jones, P.; Williams, C., Jr. HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Clim. Past. 2014, 10, 2717–2766. [Google Scholar] [CrossRef]
- Willett, K.M.; Dunn, R.J.; Kennedy, J.J.; Berry, D.I. Development of the HadISDH marine humidity climate monitoring dataset. Earth Syst. Sci. Data 2020, 12, 2853–2880. [Google Scholar] [CrossRef]
- Corney, S.; Grose, M.; Bennett, J.C.; White, C.; Katzfey, J.; McGregor, J.; Holz, G.; Bindoff, N.L. Performance of downscaled regional climate simulations using a variable-resolution regional climate model: Tasmania as a test case. J. Geophys. Res. Atmos. 2013, 118, 11,936–11,950. [Google Scholar] [CrossRef]
- Reisen, F.; Meyer, C.P.; Keywood, M.D. Impact of biomass burning sources on seasonal aerosol air quality. Atmos. Environ. 2013, 67, 437–447. [Google Scholar] [CrossRef]
- Syktus, J.; Trancoso, R.; Ahrens, D.; Toombs, N.; Wong, K. Queensland Future Climate Dashboard: Downscaled CMIP5 Climate Projections for Queensland. 2020. Available online: https://www.longpaddock.qld.gov.au/qld-future-climate/ (accessed on 10 February 2024).
- DELWP. Victoria’s Climate Science Report 2019; Department of Environment, Land, Water and Planning: East Melbourne, Australia, 2019; p. 47. ISBN 978-1-76077-853-8.
- Di Virgilio, G.; Evans, J.P.; Blake, S.A.P.; Armstrong, M.; Dowdy, A.J.; Sharples, J.; McRae, R. Climate Change Increases the Potential for Extreme Wildfires. Geophys. Res. Lett. 2019, 46, 8517–8526. [Google Scholar] [CrossRef]
- Van Oldenborgh, G.J.; Krikken, F.; Lewis, S.; Leach, N.J.; Lehner, F.; Saunders, K.R.; van Weele, M.; Haustein, K.; Li, S.; Wallom, D. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 2021, 21, 941–960. [Google Scholar] [CrossRef]
- Kelly, L.T.; Fletcher, M.-S.; Menor, I.O.; Pellegrini, A.F.A.; Plumanns-Pouton, E.S.; Pons, P.; Williamson, G.J.; Bowman, D.M.J.S. Understanding Fire Regimes for a Better Anthropocene. Annu. Rev. Environ. Resour. 2023, 48, 207–235. [Google Scholar] [CrossRef]
- Krebs, P.; Pezzatti, G.B.; Mazzoleni, S.; Talbot, L.M.; Conedera, M. Fire regime: History and definition of a key concept in disturbance ecology. Theory Biosci. 2010, 129, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Sanderson, B.M.; Fisher, R.A. A fiery wake-up call for climate science. Nat. Clim. Chang. 2020, 10, 175–177. [Google Scholar] [CrossRef]
- Greenslade, D.J.M.; Majewski, L.; Ashcroft, L.; Brown, J.; Chung, C.; Donnelly, C.; Freeman, F.; Griffiths, D.; Jemmeson, V.; Smith, I. Forecasting for the Future: New Science for Improved Weather, Water, Ocean and Climate Services—Abstracts of the Bureau of Meteorology Annual R&D Workshop, 25–28 November 2019, Melbourne, Australia; National Library of Australia: Parkes, Australia, 2019. [Google Scholar]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
Period | MFFDI/ΣFFDI | 97FFDI/Days VHi+ | P | Tmax |
---|---|---|---|---|
1971−2016 | 0.88 | 0.79 | 0.82 | 0.93 |
2011−2016 | 0.95 | 0.85 | 0.88 | 0.97 |
ΣFFDI | Days Sev+ | |||||
---|---|---|---|---|---|---|
Region | Regime 2 | 2030 Median | 2090 Median | Regime 2 | 2030 Median | 2090 Median |
Victoria | 339.3 | 243.5 | 360.4 | 1.0 | 0.7 | 1.2 |
New South Wales | 333.5 | 344.8 | 437.4 | 1.3 | 0.9 | 1.2 |
Tasmania | 141.0 | 84.0 | 209.0 | |||
South Australia | 292.6 | 362.0 | 444.9 | 1.0 | 1.5 | 2.2 |
SW Western Australia | 302.2 | 211.7 | 447.5 | 1.0 | 0.3 | 1.0 |
SE Australia | 266.9 | 231.2 | 335.4 | 1.1 | 0.5 | 0.9 |
Queensland | 552.5 | 251.2 | 394.1 | 1.9 | 0.7 | 1.5 |
Western Australia | 281.5 | 486.5 | 616.3 | 1.6 | 2.4 | 3.1 |
Source | Melbourne | Laverton | Sale | Bendigo | Mildura | Mt Gambier | Victoria |
---|---|---|---|---|---|---|---|
This paper | 15.7 | 11.6 | 6.0 | 15.5 | 52.9 | 12.1 | 19 |
Lucas 2007 | 14.8 | 11.8 | 5.4 | 13.9 | 56.6 | 11.5 | 19 |
1997–2010 | 22.7 | 15.1 | 8.6 | 28.9 | 77.2 | 15.5 | 28 |
1997–2010 (%) | 45 | 30 | 43 | 86 | 46 | 28 | 47 |
2020 low % | 6–7 | 2–4 | 1–7 | 12–16 | 5–7 | 1–3 | 5–7 |
2020 high % | 15–19 | 9–15 | 10–32 | 26–32 | 16–18 | 7–12 | 14–21 |
2050 low % | 9–12 | 5–9 | 18–50 | 20–13 | 10–13 | 5–7 | 11–32 |
2050 high % | 43–59 | 42–63 | 50–107 | 81–106 | 50–60 | 22–34 | 48–72 |
Catastrophic | |||||||
2050 highest | 0.4 | 0.4 | 0.2 | 0.1 | 1.2 | 0.2 | 0.4 |
Melbourne | Laverton | Sale | Orbost | Omeo | Bendigo | Mildura | Nhill | Mt Gambier | State Average | |
---|---|---|---|---|---|---|---|---|---|---|
1972–2001 | 14 | 11 | 5 | 2 | 2 | 13 | 47 | 32 | 11 | 19 |
2002–2009 | 26 | 18 | 10 | 4 | 5 | 34 | 89 | 60 | 17 | 36 |
Change | 81% | 65% | 78% | 87% | 154% | 171% | 88% | 85% | 50% | 89% |
1972–2009 | 17 | 12 | 6 | 3 | 3 | 17 | 56 | 38 | 12 | 23 |
Melb. Airport | Bairnsdale | Wangaratta | Walpeup | Mortlake | ||||||
1973–2016 | 12.5 | 3.5 | 17 | 58 | 12 | |||||
RCP8.5 2045–2060 | 70% | 120% | 59% | 34% | 40% | |||||
RCP8.5 2085–2100 | 117% | 216% | 103% | 65% | 71% |
Western | North-East | Central Plateau | East Coast | Upper Derwent | Midlands | |
---|---|---|---|---|---|---|
Baseline (1961–80) | 345 | 932 | 883 | 1521 | 1741 | 1817 |
1961–80 to 1999–2019 | ||||||
Low | 9.7% | 4.3% | 8.6% | 3.2% | 3.6% | 4.4% |
Mid | 12.1% | 5.9% | 10.6% | 4.6% | 5.1% | 5.8% |
High | 14.8% | 7.4% | 12.8% | 6.0% | 6.6% | 7.3% |
1961–80 to 2081–2100 | ||||||
Low | 30% | 13% | 26% | 10% | 11% | 14% |
Mid | 37% | 18% | 33% | 14% | 16% | 18% |
High | 45% | 23% | 39% | 18% | 20% | 22% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, R.N.; Ricketts, J.H. Comparing Observed and Projected Changes in Australian Fire Climates. Fire 2024, 7, 113. https://doi.org/10.3390/fire7040113
Jones RN, Ricketts JH. Comparing Observed and Projected Changes in Australian Fire Climates. Fire. 2024; 7(4):113. https://doi.org/10.3390/fire7040113
Chicago/Turabian StyleJones, Roger N., and James H. Ricketts. 2024. "Comparing Observed and Projected Changes in Australian Fire Climates" Fire 7, no. 4: 113. https://doi.org/10.3390/fire7040113
APA StyleJones, R. N., & Ricketts, J. H. (2024). Comparing Observed and Projected Changes in Australian Fire Climates. Fire, 7(4), 113. https://doi.org/10.3390/fire7040113