Effects of Prescribed Burns on Soil Respiration in Semi-Arid Grasslands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Prescribed Burning
2.3. Aboveground Biomass
2.4. CO2 Emissions from Combustion
2.5. Net Ecosystem Exchange of Carbon (NEE)
2.6. Fuel Load Simulation
2.7. Soil Respiration
2.8. Data Analysis
3. Results and Discussion
3.1. Aerial Biomass
3.2. Biomass Productivity After Prescribed Burning Treatments
3.3. Biomass Productivity After Prescribed Burns
3.4. Carbon Emissions from Combustion
3.5. Soil Energy Flux
3.6. Soil Respiration Response in Relation to Soil Temperature
3.7. Net Ecosystem Carbon Exchange (NEE)
3.8. Soil Respiration Response to Three Fire Intensities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Tans, P.; Keeling, R. Trends in Atmospheric Carbon Dioxide. National Oceanic and Atmospheric Administration, Global Monitoring Laboratory (NOAA/GML), Scripps Institution of Oceanography. 2023. Available online: https://gml.noaa.gov/ccgg/trends/ (accessed on 9 October 2023).
- Chapin, F.S., III; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Le Quéré, C. Trends in the land and ocean carbon uptake. Curr. Opin. Environ. Sustain. 2010, 2, 219–224. [Google Scholar] [CrossRef]
- Raza, T.; Qadir, M.F.; Khan, K.S.; Eash, N.S.; Yousuf, M.; Chatterjee, S.; Manzoor, R.; ur Rehman, S.; Oetting, J.N. Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. J. Environ. Manag. 2023, 344, 118529. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Kelley, D.I.; Burton, C.A.; Di Giuseppe, F.; Barbosa, M.L.F.; Brambleby, E.; Hartley, A.J.; Lombardi, A.; Mataveli, G.; McNorton, J.R.; et al. State of Wildfires 2023–2024. Earth Syst. Sci. Data 2024, 16, 3601–3685. [Google Scholar] [CrossRef]
- Allen, R.J.; Gomez, J.; Horowitz, L.W.; Shevliakova, E. Enhanced future vegetation growth with elevated carbon dioxide concentrations could increase fire activity. Commun. Earth Environ. 2024, 5, 54. [Google Scholar] [CrossRef]
- Dintwe, K.; Okin, G.S.; Xue, Y. Fire-induced albedo change and surface radiative forcing in sub-Saharan Africa savanna ecosystems: Implications for the energy balance. J. Geophys. Res. Atmos. 2017, 122, 6186–6201. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, L.; Chen, J.; Zheng, B.; Wei, X.; Gao, H.; Zhang, Y.; Cheng, J. Responses of plant biomass and nutrients to fire vary with functional group and slope aspect in a semiarid restored grassland on the Loess Plateau. J. Arid Environ. 2019, 171, 104008. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, L.; Hou, X.; Li, G.; Tian, Q.; Chan, E.; Ciais, P.; Yu, Q.; Yue, C. Fire regime impacts on postfire diurnal land surface temperature change over North American boreal forest. J. Geophys. Res. Atmos. 2021, 126, e2021JD035589. [Google Scholar] [CrossRef]
- Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manag. 2004, 33, 528–544. [Google Scholar] [CrossRef]
- Jarvis, P.; Rey, A.; Petsikos, C.; Wingate, L.; Rayment, M.; Pereira, J.; Banza, J.; David, J.; Miglietta, F.; Borghetti, M.; et al. Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: The “Birch effect”. Tree Physiol. 2007, 27, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Law, B.E.; Kelliher, F.M.; Baldocchi, D.D.; Anthoni, P.M.; Irvine, J.; Moore, D.; Van Tuyl, S. Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agric. For. Meteorol. 2001, 110, 27–43. [Google Scholar] [CrossRef]
- Prentice, I.C.; Farquhar, G.D.; Fasham, M.J.R.; Goulden, M.L.; Heimann, M.; Jaramillo, V.J.; Kheshgi, H.S.; Le Quéré, C.; Scholes, R.J.; Wallace, D.W.R.; et al. The Carbon Cycle and Atmospheric Carbon Dioxide. 2001. Available online: https://hal.archives-ouvertes.fr/hal-03333974 (accessed on 15 August 2024).
- Delgado-Balbuena, J.; Loescher, H.W.; Aguirre-Gutiérrez, C.A.; Alfaro-Reyna, T.; Pineda-Martínez, L.F.; Vargas, R.; Arredondo, T. Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland. Biogeosciences 2023, 20, 2369–2385. [Google Scholar] [CrossRef]
- Leal Filho, W.; Nagy, G.J.; Setti, A.F.F.; Sharifi, A.; Donkor, F.K.; Batista, K.; Djekic, I. Handling the impacts of climate change on soil biodiversity. Sci. Total Environ. 2023, 869, 161671. [Google Scholar] [CrossRef]
- Balbontín, C.; Cruz, C.O.; Paz, F.; Etchevers, J.D. Soil carbon sequestration in different ecoregions of Mexico. In Soil Carbon Sequestration and the Greenhouse Effect; Soil Science Society of America, Inc.: Madison, WI, USA, 2015; pp. 71–96. [Google Scholar] [CrossRef]
- Montaño, N.M.; Ayala, F.; Bullock, S.H.; Briones, O.; García, F.; García, R.; Maya, Y.; Perroni, Y.; Siebe, C.; Tapia, Y.; et al. Almacenes y flujos de carbono en ecosistemas áridos y semiáridos de México: Síntesis y perspectivas. Terra Latinoam. 2016, 34, 39–59. [Google Scholar]
- Li, T.; Cui, L.; Liu, L.; Chen, Y.; Liu, H.; Song, X.; Xu, Z. Advances in the study of global forest wildfires. J. Soils Sediments 2023, 23, 2654–2668. [Google Scholar] [CrossRef]
- Velázquez, A.; Mas, J.F.; Díaz-Gallegos, J.R.; Mayorga-Saucedo, R.; Alcántara, P.C.; Castro, R.; Fernández, T.; Bocco, G.; Ezcurra, E.; Palacio, J.L. Patrones y tasas de cambio de uso del suelo en México. Gaceta Ecológica 2002, 62, 21–37. [Google Scholar]
- Guevara-Gutierrez, R.D.; Palomera-Garcia, C.; Olguin-Lopez, J.L.; Mancilla-Villa, O.R.; Rosales-Almendra, M.P.; Barreto-Garcia, O.A. Effect of Blue Agave (Agave tequilana Weber) management on soil erosion. Air Soil Water Res. 2024, 17, 11786221241236632. [Google Scholar] [CrossRef]
- Rowell, A.; Moore, P.F. Global Review of Forest Fires; Forests for Life Programme Unit, WWF International: Gland, Switzerland, 2000. [Google Scholar]
- Rodríguez-Trejo, D.A.; Martínez-Muñoz, P.; Pulido-Luna, J.A.; Martínez-Lara, P.J.; Cruz-López, J.D. Instructivo de Quemas Prescritas Para el Manejo Integral del Fuego en el Municipio de Villaflores y la Reserva de la Biosfera La Sepultura, Chiapas. Fondo Mexicano para la Conservación de la Naturaleza, USDA FS, USAID, Biomasa, A.C.; Universidad Autónoma Chapingo, Ayuntamiento de Villaflores, SEMARNAT, CONAFOR, CONANP, Gobierno del Estado de Chiapas, ANCF. 2019. Available online: http://dicifo.chapingo.mx/pdf/publicaciones/Instructivo_de_quemas.pdf (accessed on 3 July 2024).
- Jardel-Peláez, E.J. Guía Para la Elaboración de Programas de Manejo del Fuego en Áreas Naturales Protegidas y Sitios de Interés (Guía Ligera). Conanp, Conafor, FMCN, USFS, CMF, GIZ. México. 60p. 2012. Available online: https://simec.conanp.gob.mx/Publicaciones2020/Publicaciones%20CONANP/Parte%202/Guias/2014%20Guia%20Elaboracion%20Programas%20de%20Manejo%20del%20Fuego.pdf (accessed on 27 October 2024).
- INEGI. Conjunto de Datos Vectoriales de la Carta Edafológica F14-7 (Guanajuato) Escala 1:250 000 Serie I. 2019. Available online: https://datos.gob.mx/busca/dataset/conjunto-de-datos-vectoriales-de-la-carta-edafologica-1-250-000-serie-l-san-luis-potosi/resource/0d05f3ee-85c9-4f41-bac5-816b7ba2cb75 (accessed on 1 July 2024).
- Baldocchi, D.D.; Hicks, B.B.; Meyers, T.P. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 1988, 69, 1331–1340. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Aubinet, M.; Chermanne, B.; Vandenhaute, M.; Longdoz, B.; Yernaux, M.; Laitat, E. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric. For. Meteorol. 2001, 108, 293–315. [Google Scholar] [CrossRef]
- Britton, C.M.; Wright, H.A. A portable burner for evaluating effects of fire on plants. Rangel. Ecol. Manag./Range Manag. Arch. 1979, 32, 475–476. [Google Scholar] [CrossRef]
- Luna, M. Burning Season Effect on Four Southern Chihuahuan Desert. Ph.D. Thesis, Texas Tech University, Lubbock, TX, USA, 2009. Available online: https://ttu-ir.tdl.org/items/d40524b6-a50a-4881-927f-9c9e12a06a38 (accessed on 15 August 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org (accessed on 3 July 2024).
- Aguado-Santacruz, G.A.; García-Moya, E.; Creque, J.A.; Meyer, S.; Flores-Flores, J.L. Environmental factors and community dynamics at the southernmost part of the North American Graminetum. Plant Ecol. 2002, 158, 49–63. [Google Scholar] [CrossRef]
- Bock, J.H.; Bock, C.E.; McKnight, J.R. A study of the effects of grassland fires at the Research Ranch in Southeastern Arizona. J. Ariz. Acad. Sci. 1976, 11, 49. [Google Scholar] [CrossRef]
- Flores Ancira, E.; Luna Luna, M.; Haubi Segura, C.; Díaz Romo, A.; Luna Ruiz, J.d.J. Efecto del fuego en producción y calidad de zacate rosado en Aguascalientes. Rev. Mex. Cienc. Agrícolas 2017, 7, 1271–1281. [Google Scholar] [CrossRef]
- Johnson, L.C.; Matchett, J.R. Fire and grazing regulate belowground processes in tallgrass prairie. Ecology 2001, 82, 3377–3389. [Google Scholar] [CrossRef]
- Jones, M.W.; Santín, C.; van der Werf, G.R.; Doerr, S.H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 2019, 12, 742–747. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Anca-Couce, A.; Hagemann, N.; Werner, C.; Gerten, D.; Lucht, W.; Kammann, C. Pyrogenic carbon capture and storage. GCB Bioenergy 2019, 11, 573–591. [Google Scholar] [CrossRef]
- Linares, M.; Ni-Meister, W. Impact of Wildfires on Land Surface Cold Season Climate in the Northern High-Latitudes: A Study on Changes in Vegetation, Snow Dynamics, Albedo, and Radiative Forcing. Remote Sens. 2024, 16, 1461. [Google Scholar] [CrossRef]
- Wang, B.; Zha, T.S.; Jia, X.; Wu, B.; Zhang, Y.Q.; Qin, S.G. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem. Biogeosciences 2014, 11, 259–268. [Google Scholar] [CrossRef]
- Lasslop, G.; Migliavacca, M.; Bohrer, G.; Reichstein, M.; Bahn, M.; Ibrom, A.; Jacobs, C.; Kolari, P.; Papale, D.; Vesala, T.; et al. On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning. Biogeosciences 2012, 9, 5243–5259. [Google Scholar] [CrossRef]
- Phillips, C.L.; Nickerson, N.; Risk, D.; Bond, B.J. Interpreting diel hysteresis between soil respiration and temperature. Glob. Chang. Biol. 2011, 17, 515–527. [Google Scholar] [CrossRef]
- Baldocchi, D. “Breathing” of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 2008, 56, 1–26. [Google Scholar] [CrossRef]
- Carbone, M.S.; Winston, G.C.; Trumbore, S.E. Soil respiration in perennial grass and shrub ecosystems: Linking environmental controls with plant and microbial sources on seasonal and diel timescales. J. Geophys. Res. Biogeosci. 2008, 113, G02022. [Google Scholar] [CrossRef]
- Anderson, R.C. The historic role of fire in the North American grassland. In Fire in North American Tallgrass Prairies; Collins, S.L., Wallace, L.L., Eds.; University of Oklahoma Press: Norman, OK, USA, 1990; p. 8. Available online: https://www.oupress.com/9780806123158/fire-in-north-american-tallgrass-prairies/ (accessed on 27 October 2024).
- Song, J.; Liu, Z.; Zhang, Y.; Yan, T.; Shen, Z.; Piao, S. Effects of wildfire on soil respiration and its heterotrophic and autotrophic components in a montane coniferous forest. J. Plant Ecol. 2019, 12, 336–345. [Google Scholar] [CrossRef]
- Gui, H.; Wang, J.; Hu, M.; Zhou, Z.; Wan, S. Impacts of fire on soil respiration and its components: A global meta-analysis. Agric. For. Meteorol. 2023, 336, 109496. [Google Scholar] [CrossRef]
- Zhou, Y.; Biro, A.; Wong, M.Y.; Batterman, S.A.; Staver, A.C. Fire decreases soil enzyme activities and reorganizes microbially mediated nutrient cycles: A meta-analysis. Ecology 2022, 103, e3807. [Google Scholar] [CrossRef]
- Yáñez Díaz, M.I.; Cantú Silva, I.; González Rodríguez, H.; Marmolejo Monsiváis, J.G.; Jurado, E.; Gómez Meza, M.V. Respiración del suelo en cuatro sistemas de uso de la tierra. Rev. Mex. Cienc. For. 2017, 8, 123–149. [Google Scholar]
- Glassman, S.I.; Randolph, J.W.; Saroa, S.S.; Capocchi, J.K.; Walters, K.E.; Pulido-Chavez, M.F.; Larios, L. Prescribed versus wildfire impacts on exotic plants and soil microbes in California grasslands. Appl. Soil Ecol. 2023, 185, 104795. [Google Scholar] [CrossRef]
- Pressler, Y.; Moore, J.C.; Cotrufo, M.F. Belowground community responses to fire: Meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 2019, 128, 309–327. [Google Scholar] [CrossRef]
- Palmer, B.; Hernandez, R.; Lipson, D.T. The fate of biological soil crusts after fire: A meta-analysis. Glob. Ecol. Conserv. 2020, 24, e01380. [Google Scholar] [CrossRef]
- Barreiro, A.; Díaz-Raviña, M. Fire impacts on soil microorganisms: Mass, activity, and diversity. Environ. Sci. Health 2021, 22, 100264. [Google Scholar] [CrossRef]
- Anderson, R. An Evolutionary Model Summarizing the Roles of Fire, Climate, and Grazing Animals in the Origin and Maintenance of Grasslands: An End Paper; Cairo University, Faculty of Agriculture: Giza, Egypt, 1982. [Google Scholar]
- Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J.L.; Reyes-Agüero, J.A.; Escudero, A.; Belnap, J. Biological soil crusts across disturbance-recovery scenarios: Effect of grazing regime on community dynamics. Ecol. Appl. 2014, 24, 1863–1877. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Reyna, T.; Díaz-Chavero, E.; Aguirre-Gutierrez, C.A.O.; Flores-Rentería, D.Y.; Delgado-Balbuena, J. Prescribed burns to reduce early-stage shrub encroachment in semiarid grasslands. J. Arid Environ. 2024; submitted. [Google Scholar]
- Pellegrini, A.F.; McLauchlan, K.K.; Hobbie, S.E.; Mack, M.C.; Marcotte, A.L.; Nelson, D.M.; Perakis, S.S.; Reich, P.B.; Whittinghill, K. Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. J. Ecol. 2020, 108, 1426–1441. [Google Scholar] [CrossRef]
Kg DM | Temperature (°C) | Pressure (PSI) | Time (S) |
---|---|---|---|
800 | 112.48 | 10 | 5.58 |
1500 | 142.28 | 10 | 10.8 |
2500 | 184.83 | 10 | 18.24 |
Treatment Intensity | Regenerated Biomass | Level (0–15) | Level (15–30) |
---|---|---|---|
Low | 215.32 | 0.17 | 0.16 |
Medium | 191.64 | 0.17 | 0.15 |
High | 173.64 | 0.17 | 0.12 |
Control | 284.60 | 0.17 | 0.16 |
Treatment | Average | Standard Error | Degrees of Freedom | |
---|---|---|---|---|
Intensity | ||||
Morning | ||||
Low | 3.85 | 0.409 | 26.7 | a |
Medium | 3.72 | 0.408 | 26.7 | a |
High | 3.5 | 0.41 | 24.1 | a |
Control | 6.15 | 0.41 | 23.9 | b |
Afternoon | ||||
Low | 4.6 | 0.409 | 26.7 | a |
Medium | 4.46 | 0.413 | 26.7 | a |
High | 4.08 | 0.42 | 24.1 | a |
Control | 6.83 | 0.419 | 23.9 | b |
Treatment | Rb | k | Q10 |
---|---|---|---|
Morning | |||
Low | 1.44 ± 0.23 | 3.82 × 10−2 ± 6.20 × 10−3 | 1.47 |
Medium | 1.24 ± 0.23 | 4.87 × 10−2 ± 7.25 × 10−3 | 1.63 |
High | 1.72 ± 0.24 | 3.45 × 10−2 ± 5.61 × 10−3 | 1.41 |
Control | 3.90 ± 0.68 | 1.95 × 10−2 ± 7.04 × 10−3 | 1.22 |
Afternoon | |||
Low | 3.65 ± 0.62 | 4.29 × 10−3 ± 6.36 × 10−3 | 1.04 |
Medium | 3.18 ± 0.51 | 1.31 × 10−2 ± 5.67 × 10−3 | 1.14 |
High | 3.02 ± 0.52 | 1.51 × 10−2 ± 6.11 × 10−3 | 1.16 |
Control | 5.22 ± 0.93 | 9.91 × 10−3 ± 6.31 × 10−3 | 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Cruz Domínguez, J.C.; Alfaro Reyna, T.; Aguirre Gutierrez, C.A.; Rodríguez Moreno, V.M.; Delgado Balbuena, J. Effects of Prescribed Burns on Soil Respiration in Semi-Arid Grasslands. Fire 2024, 7, 450. https://doi.org/10.3390/fire7120450
De la Cruz Domínguez JC, Alfaro Reyna T, Aguirre Gutierrez CA, Rodríguez Moreno VM, Delgado Balbuena J. Effects of Prescribed Burns on Soil Respiration in Semi-Arid Grasslands. Fire. 2024; 7(12):450. https://doi.org/10.3390/fire7120450
Chicago/Turabian StyleDe la Cruz Domínguez, Juan Carlos, Teresa Alfaro Reyna, Carlos Alberto Aguirre Gutierrez, Víctor Manuel Rodríguez Moreno, and Josué Delgado Balbuena. 2024. "Effects of Prescribed Burns on Soil Respiration in Semi-Arid Grasslands" Fire 7, no. 12: 450. https://doi.org/10.3390/fire7120450
APA StyleDe la Cruz Domínguez, J. C., Alfaro Reyna, T., Aguirre Gutierrez, C. A., Rodríguez Moreno, V. M., & Delgado Balbuena, J. (2024). Effects of Prescribed Burns on Soil Respiration in Semi-Arid Grasslands. Fire, 7(12), 450. https://doi.org/10.3390/fire7120450