Aerosol Emission Patterns from the February 2019 Karnataka Fire
Abstract
1. Introduction
2. Model and Observational Data Details
- Physical and chemistry parameterization modules.
- Static surface-level geographical fields from USGS and MODIS.
- Initial and boundary meteorological conditions from NCEP’s GDAS data (0.25° resolution).
- Gas-phase chemistry using MOZART-4 and aerosol processes using GOCART.
- Chemical boundary conditions from EDGAR’s monthly varying emissions inventory (0.1° resolution).
- Fire inventory data from NCAR for plume-rise module.
- Biogenic emissions from MEGAN inventory.
- Radiation processes using RRTM scheme and Fast-J photolysis.
- Cloud microphysics with the Thompson graupel scheme.
- Land surface and surface-layer physics with the Unified Noah model and Revised MM5 Monin–Obukhov scheme.
- Boundary layer processes using the Yonsei University PBL scheme.
2.1. Details of Observational Datasets
2.1.1. ERA5
2.1.2. IMD
2.1.3. Details of the Event
3. Result
3.1. Climatology of Mean Temperature
3.2. Impact of a Fire Event on Surface-Level Pollutants in Karnataka
3.3. Meteorological Conditions
3.4. Aerosol Optical Depth
3.5. Black Carbon Concentration
3.6. Change in Columnar PM2.5 and BC Mass Concentrations
3.7. Variability of Clouds
3.8. Radiative Perturbation Due to Karnataka Fire Event
3.9. Atmospheric Heating Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- Brandis, D. The Forest Flora of India; Government of India: Published under the Authority of the Secretary of State for India in Council; Wm H. Allen & Company: London, UK, 1874. [Google Scholar]
- Bahuguna, V.K.; Upadhyay, R. Forest fires in India: A review. J. For. Res. 2002, 7, 99–104. [Google Scholar]
- Chandra, K.; Arora, R. The impact of forest fires on wildlife and vegetation. For. Ecol. Manag. 2006, 223, 68–75. [Google Scholar]
- Badrinath, M.; Kumar, S.; Singh, R. Recent studies on forest fire hazards in India: A review. Environ. Sci. Policy 2011, 14, 559–570. [Google Scholar]
- Kumar, P.; Gupta, A.; Joshi, S. Consequences of fire hazards on forest ecosystems in India. Int. J. Wildland Fire 2022, 31, 231–245. [Google Scholar]
- Aoki, T.; Lee, J.; Tanaka, S. Development of models for forest fire prediction and management. For. Sci. 2011, 57, 481–490. [Google Scholar]
- Joseph, S.; Reddy, C.S.; Jha, C.S. Land cover and land use analysis in the Western Ghats of Karnataka. J. Environ. Manag. 2009, 90, 3376–3383. [Google Scholar]
- Sandeep, K.; Kumar, P.; Ghosh, S. Impact of human activities on forest fires in Karnataka: A remote sensing-based study. Remote Sens. Environ. 2014, 148, 1–10. [Google Scholar]
- Kumar, A.; Pandey, R.; Sharma, R. Impact of forest fires on biodiversity in the Western Ghats: A case study of Karnataka. Biodivers. Conserv. 2018, 27, 891–906. [Google Scholar]
- Khandekar, M.; Kulkarni, A.; Kumar, S. Changes in forest structure and species composition due to fire events in the Western Ghats, Karnataka. Ecol. Indic. 2020, 115, 106383. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ramachandran, S.; Gupta, P.; Mohan, M. Assessment of aerosol optical depth over India using ground-based measurements. Atmos. Environ. 2016, 130, 17–28. [Google Scholar]
- Levy, R.C.; Remer, L.A.; Tanré, D. A new method for retrieving aerosol optical thickness over land using MODIS data. Remote Sens. Environ. 2010, 114, 1030–1040. [Google Scholar]
- Sahu, L.K.; Beig, G.; Parkhi, N.S.; Yadav, R.; Rajeev, K. Impact of forest fires on aerosol properties over Karnataka region. J. Atmos. Chem. Phys. 2015, 16, 1012–1025. [Google Scholar]
- Bhawar, R.; Fadnavis, S.S.; Kumar, V.; Rahul, P.R.C.; Sinha, T.; Lolli, S. Radiative impacts of aerosols during COVID-19 lockdown period over the Indian region. Front. Environ. Sci. 2021, 411, 746090. [Google Scholar] [CrossRef]
- Kedia, S.; Ramesh, K.; Gupta, A. Aerosol particle production and its effect on atmospheric optical properties. Environ. Sci. Technol. 2018, 52, 8105–8114. [Google Scholar]
- Kedia, S.; Ramesh, K.; Gupta, A. The contribution of biomass burning to aerosol optical depth. Atmos. Chem. Phys. 2019, 19, 1855–1867. [Google Scholar]
- Kim, H.; Lee, S.; Choi, Y. The radiative impacts of PM2.5 and black carbon in the atmosphere. J. Geophys. Res. Atmos. 2018, 123, 6484–6495. [Google Scholar]
- Chakraborty, A.; Gupta, T. Air quality and health impacts of biomass burning emissions during post-monsoon crop harvesting season over the Indo-Gangetic Plain. Sci. Total Environ. 2020, 729, 138747. [Google Scholar]
- Sahu, L.K.; Saxena, P.; Rajbhar, S.; Beig, G. Chemical composition and source apportionment of PM2.5 and PM10 at an urban site of North India. Atmos. Pollut. Res. 2019, 10, 1540–1554. [Google Scholar]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; De Angelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Gustafsson, Ö.; Kruså, M.; Zencak, Z.; Sheesley, R.J.; Granat, L.; Engström, E.; Praveen, P.S.; Rao, P.S.P.; Leck, C.; Rodhe, H. Brown clouds over South Asia: Biomass or fossil fuel combustion? Science 2009, 323, 495–498. [Google Scholar] [CrossRef]
- Lau WK, M.; Kim, K.M.; Wang, W. The role of aerosols in the onset of the Asian monsoon: Implications for the water cycle. J. Clim. 2006, 19, 579–590. [Google Scholar]
- Lawand, D.; Bhakare, S.; Fadnavis, S.; Bhawar, R.L.; Rahul, P.R.C.; Pallath, P.K.; Lolli, S. Variability of aerosols and clouds over North Indian and Myanmar during the COVID-19 lockdown period. Front. Environ. Sci. 2022, 10, 838778. [Google Scholar] [CrossRef]
- Kang, H.; Kim, H.; Choi, Y. Effects of black carbon aerosols on the onset of the Asian monsoon. Atmos. Chem. Phys. 2020, 20, 10735–10746. [Google Scholar]
- Ramanathan, V.; Crutzen, P.J.; Lelieveld, J. Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-S.; Bhawar, R.L.; Kim, M.-K.; Sang, J. Study of aerosol effect on accelerated snow melting over the Tibetan Plateau during boreal spring. Atmos. Environ. 2013, 75, 113–122. [Google Scholar] [CrossRef]
- Bian, H.; Tie, X.; Cao, J.; Ying, Z.; Han, S.; Xue, Y. Analysis of a severe dust storm event over China: Application of the WRF-dust model. Aerosol Air Qual. Res. 2011, 11, 419–428. [Google Scholar] [CrossRef]
- Dipu, S.; Prabha, T.V.; Pandithurai, G.; Dudhia, J.; Pfister, G.; Rajesh, K.; Goswami, B.N. Impact of elevated aerosol layer on the cloud macrophysical properties prior to monsoon onset. Atmos. Environ. 2013, 70, 454–467. [Google Scholar] [CrossRef]
- Kumar, R.; Barth, M.C.; Pfister, G.G.; Naja, M.; Brasseur, G.P. WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: Influences on aerosol optical properties and radiation budget. Atmos. Chem. Phys. 2014, 14, 2431–2446. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, N.; Lang, J.; Zhou, Y.; Wang, X.; Li, Y.; Zhao, Y.; Guo, X. Contribution of ship emissions to the concentration of PM2. 5: A comprehensive study using AIS data and WRF/Chem model in Bohai Rim Region, China. Sci. Total Environ. 2018, 610, 1476–1486. [Google Scholar] [CrossRef]
- Yuan, T.; Chen, S.; Huang, J.; Zhang, X.; Luo, Y.; Ma, X.; Zhang, G. Sensitivity of simulating a dust storm over Central Asia to different dust schemes using the WRF-Chem model. Atmos. Environ. 2019, 207, 16–29. [Google Scholar] [CrossRef]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.F.; Pfster, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T.J.G.M.D.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model. Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; Al-Saadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model. Dev. 2011, 4, 625–641. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Rajeevan, M.; Kshirsagar, S.R. Development of High Resolution Daily Gridded Temperature Data Set (1969–2005) for the Indian Region. Atmos. Sci. Let. 2009, 10, 249–254. [Google Scholar] [CrossRef]
- Bharath Setturu, M.; Malladi, U.K.; Reddy, K.K. Assessment of fire risk in Bandipur National Park, Karnataka, India. Ecol. Indic. 2017, 74, 245–252. [Google Scholar]
- Ananth, S.; Manjula, T.R.; Niranjan, G.S.; Kumar, S.; Raghuveer, A.; Raju, G. Mapping of Burnt area and Burnt Severity using Landsat 8 Images: A Case Study of Bandipur forest Fire Region of Karnataka state India. In Proceedings of the IEEE Recent Advances in Geoscience and Remote Sensing: Technologies, Standards and Applications (TENGARSS), Kochi, India, 17–20 October 2019; pp. 146–147. [Google Scholar] [CrossRef]
- Preethi Konkathi, K.; Chandrashekar, K.; Babu, M. Diversity and distribution of biomass in Bandipur National Park. For. Ecol. Manag. 2019, 451, 117551. [Google Scholar]
- Kandya, A.; Tripathi, R.S.; Bhanarkar, A.D. Impact of annual fires on vegetation growth and soil erosion in Bandipur National Park, India. Indian J. Environ. Prot. 1998, 18, 595–600. [Google Scholar]
- Kothawale, D.R.; Revadekar, J.V.; Rupa Kumar, K. Recent trends in pre-monsoon daily temperature extremes over India. J. Earth Syst. Sci. 2010, 119, 51–65. [Google Scholar] [CrossRef]
- Kothawale, D.R.; Rupa Kumar, K. On the recent changes in surface temperature trends over India. Geophys. Res. Lett. 2005, 32, L18714. [Google Scholar] [CrossRef]
- Satheesh, S.K.; Moorthy, K.K. Radiative effects of natural aerosols: A review. Atmos. Environ. 2005, 39, 2089–2110. [Google Scholar] [CrossRef]
- Murakami, D.; Yoshimura, K.; Sato, T.; Saito, K.; Oikawa, S. A global nonhydrostatic model for global climate simulation. J. Clim. 2017, 30, 5865–5890. [Google Scholar]
- Gadgil, S.; Rupa Kumar, K. The role of the Western Ghats in modulating Indian climate. Curr. Sci. 2018, 115, 1004–1011. [Google Scholar]
- Indian Institute of Tropical Meteorology. Climate Change in Southern India: Trends and Impacts; Indian Institute of Tropical Meteorology: Pune, India, 2020. [Google Scholar]
- Srinivasan, J.; Nair, V.R. Impact of climate change on temperature extremes in South India. Atmos. Sci. Lett. 2019, 20, e918. [Google Scholar]
- Soni, M.; Payra, S.; Verma, S. Particulate matter estimation over a semi arid region Jaipur, India using satellite AOD and meteorological parameters. Atmos. Pollut. Res. 2018, 9, 949–958. [Google Scholar] [CrossRef]
- Kedia, S.; Das, S.K.; Islam, S.; Hazra, A.; Kumar, N. Aerosols impact on the convective and non-convective rain distribution over the Indian region: Results from WRF-Chem simulation. Atmos. Environ. 2019, 202, 64–74. [Google Scholar] [CrossRef]
- Ganguly, D.; Rasch, P.J.; Wang, H.; Yoon, J.H. Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys. Res. Lett. 2012, 39, L18804. [Google Scholar] [CrossRef]
- Bhawar, R.; Rahul, P.R.C. Aerosol-Cloud-Interaction Variability Induced by Atmospheric Brown Clouds during the 2009 Indian Summer Monsoon Drought. Aerosol Air Qual. Res. 2013, 13, 1384–1391. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Zhang, Y. Impacts of forest fires on local climate: A review. Environ. Res. Lett. 2016, 11, 123004. [Google Scholar]
- Wang, S.; Chen, Y.; Yang, X. Forest fire effects on aerosol properties and cloud formation. J. Geophys. Res. Atmos. 2017, 122, 5341–5355. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhawar, R.L.; Kumar, V.; Lawand, D.; Kedia, S.; Naik, M.; Modale, S.; Reddy, P.R.C.; Islam, S.; Khare, M. Aerosol Emission Patterns from the February 2019 Karnataka Fire. Fire 2024, 7, 424. https://doi.org/10.3390/fire7120424
Bhawar RL, Kumar V, Lawand D, Kedia S, Naik M, Modale S, Reddy PRC, Islam S, Khare M. Aerosol Emission Patterns from the February 2019 Karnataka Fire. Fire. 2024; 7(12):424. https://doi.org/10.3390/fire7120424
Chicago/Turabian StyleBhawar, Rohini L., Vinay Kumar, Divyaja Lawand, Sumita Kedia, Mrunal Naik, Shripriya Modale, P. R. C. Reddy, Sahidul Islam, and Manoj Khare. 2024. "Aerosol Emission Patterns from the February 2019 Karnataka Fire" Fire 7, no. 12: 424. https://doi.org/10.3390/fire7120424
APA StyleBhawar, R. L., Kumar, V., Lawand, D., Kedia, S., Naik, M., Modale, S., Reddy, P. R. C., Islam, S., & Khare, M. (2024). Aerosol Emission Patterns from the February 2019 Karnataka Fire. Fire, 7(12), 424. https://doi.org/10.3390/fire7120424