Exploring Prescribed Fire Severity Effects on Ground Beetle (Coleoptera: Carabidae) Taxonomic and Functional Community Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Treatment
2.2. Fire Severity Metrics
2.3. Ground Beetle Sampling
2.4. Ground Beetle Traits
2.5. Data Analyses
3. Results
3.1. Summary Statistics
3.2. Taxonomic Community Composition
3.3. Functional Community Composition
4. Discussion
4.1. Fire Severity Sites
4.2. Dispersal Traits
4.3. Non-Dispersal Indicator Traits
4.4. Predictors (Covariates)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardoso, P.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, R.; Habel, J.C.; Hallmann, C.A.; et al. Scientists’ Warning to Humanity on Insect Extinctions. Biol. Conserv. 2020, 242, 108426. [Google Scholar] [CrossRef]
- van der Plas, F. Biodiversity and Ecosystem Functioning in Naturally Assembled Communities. Biol. Rev. 2019, 94, 1220–1245. [Google Scholar] [CrossRef] [PubMed]
- Román-Palacios, C.; Wiens, J.J. Recent Responses to Climate Change Reveal the Drivers of Species Extinction and Survival. Proc. Natl. Acad. Sci. USA 2020, 117, 4211–4217. [Google Scholar] [CrossRef] [PubMed]
- Winfree, R. How Does Biodiversity Relate to Ecosystem Functioning in Natural Ecosystems. In Unsolved Problems in Ecology; Princeton University Press: Princeton, NJ, USA, 2020; p. 393. [Google Scholar]
- He, T.; Lamont, B.B.; Pausas, J.G. Fire as a Key Driver of Earth’s Biodiversity. Biol. Rev. 2019, 94, 1983–2010. [Google Scholar] [CrossRef]
- Arkle, R.S.; Pilliod, D.S. Prescribed Fires as Ecological Surrogates for Wildfires: A Stream and Riparian Perspective. For. Ecol. Manag. 2010, 259, 893–903. [Google Scholar] [CrossRef]
- Knapp, E.E.; Estes, B.L.; Skinner, C.N. Ecological Effects of Prescribed Fire Season: A Literature Review and Synthesis for Managers; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2009; p. PSW-GTR-224.
- Sample, M.; Thode, A.E.; Peterson, C.; Gallagher, M.R.; Flatley, W.; Friggens, M.; Evans, A.; Loehman, R.; Hedwall, S.; Brandt, L.; et al. Adaptation Strategies and Approaches for Managing Fire in a Changing Climate. Climate 2022, 10, 58. [Google Scholar] [CrossRef]
- Eales, J.; Haddaway, N.R.; Bernes, C.; Cooke, S.J.; Jonsson, B.G.; Kouki, J.; Petrokofsky, G. What Is the Effect of Prescribed Burning in Temperate and Boreal Forest on Biodiversity, beyond Tree Regeneration, Pyrophilous and Saproxylic Species? A Systematic Review Protocol. Environ. Evid. 2016, 5, 24. [Google Scholar] [CrossRef]
- Mason, S.C.; Shirey, V.; Ponisio, L.C.; Gelhaus, J.K. Responses from Bees, Butterflies, and Ground Beetles to Different Fire and Site Characteristics: A Global Meta-Analysis. Biol. Conserv. 2021, 261, 109265. [Google Scholar] [CrossRef]
- Valkó, O.; Deák, B.; Magura, T.; Török, P.; Kelemen, A.; Tóth, K.; Horváth, R.; Nagy, D.D.; Debnár, Z.; Zsigrai, G.; et al. Supporting Biodiversity by Prescribed Burning in Grasslands—A Multi-Taxa Approach. Sci. Total Environ. 2016, 572, 1377–1384. [Google Scholar] [CrossRef]
- Nichols, E.; Spector, S.; Louzada, J.; Larsen, T.; Amezquita, S.; Favila, M.E. Ecological Functions and Ecosystem Services Provided by Scarabaeinae Dung Beetles. Biol. Conserv. 2008, 141, 1461–1474. [Google Scholar] [CrossRef]
- Schowalter, T.D. Decomposition and Pedogenesis. In Insect Ecology: An Ecosystem Approach, 4th Edition; Academic Press: Cambridge, MA, USA, 2016; pp. 477–510. [Google Scholar]
- Stewart, A.J.A.; New, T.R.; Lewis, O.T. Insect Conservation Biology; CAB International: Wallingford, UK, 2007; ISBN 978-1-84593-254-1. [Google Scholar]
- Waite, E.S.; Houseman, G.R.; Jensen, W.E.; Reichenborn, M.M.; Jameson, M.L. Ground Beetle (Coleoptera: Carabidae) Responses to Cattle Grazing, Grassland Restoration, and Habitat across a Precipitation Gradient. Insects 2022, 13, 696. [Google Scholar] [CrossRef] [PubMed]
- New, T. Insects, Fire, and Conservation; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Bargmann, T.; Hatteland, B.A.; Grytnes, J.-A. Effects of Prescribed Burning on Carabid Beetle Diversity in Coastal Anthropogenic Heathlands. Biodivers. Conserv. 2015, 24, 2565–2581. [Google Scholar] [CrossRef]
- Campbell, J.W.; Hanula, J.L.; Waldrop, T.A. Effects of Prescribed Fire and Fire Surrogates on Floral Visiting Insects of the Blue Ridge Province in North Carolina. Biol. Conserv. 2007, 134, 393–404. [Google Scholar] [CrossRef]
- Gongalsky, K.; Midtgaard, F.; Overgaard, H. Effects of Prescribed Forest Burning on Carabid Beetles (Coleoptera: Carabidae): A Case Study in South-Eastern Norway. Entomol. Fenn. 2006, 17, 325–333. [Google Scholar] [CrossRef]
- Hyvärinen, E.; Kouki, J.; Martikainen, P. Prescribed Fires and Retention Trees Help to Conserve Beetle Diversity in Managed Boreal Forests despite Their Transient Negative Effects on Some Beetle Groups. Insect Conserv. Divers. 2009, 2, 93–105. [Google Scholar] [CrossRef]
- Moylett, H.; Youngsteadt, E.; Sorenson, C. The Impact of Prescribed Burning on Native Bee Communities (Hymenoptera: Apoidea: Anthophila) in Longleaf Pine Savannas in the North Carolina Sandhills. Environ. Entomol. 2019, 49, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Bohls, P.A.; Nelson, M.T.; Cooper, K.N.; Clark, J.M. Short-Term Effects of a Prescribed Burn on Butterfly Abundance and Diversity in a Restored Northeastern Ohio Prairie. Ohio Biol. Surv. Notes 2016, 6, 7–13. [Google Scholar]
- Brand, R.H. The Effect of Prescribed Burning on Epigeic Springtails (Insecta: Collembola) of Woodland Litter. Am. Midl. Nat. 2002, 148, 383. [Google Scholar] [CrossRef]
- Iglay, R.B.; Miller, D.A.; Leopold, B.D.; Wang, G. Carabid Beetle Response to Prescribed Fire and Herbicide in Intensively Managed, Mid-Rotation Pine Stands in Mississippi. For. Ecol. Manag. 2012, 281, 41–47. [Google Scholar] [CrossRef]
- Tooker, J.F.; Hanks, L.M. Impact of Prescribed Burning on Endophytic Insect Communities of Prairie Perennials (Asteraceae: Silphium Spp.). Biodivers. Conserv. 2004, 13, 1875–1888. [Google Scholar] [CrossRef]
- Underwood, E.C.; Quinn, J.F. Response of Ants and Spiders to Prescribed Fire in Oak Woodlands of California. J. Insect Conserv. 2010, 14, 359–366. [Google Scholar] [CrossRef]
- Verble, R.M.; Yanoviak, S.P. Short-Term Effects of Prescribed Burning on Ant (Hymenoptera: Formicidae) Assemblages in Ozark Forests. Ann. Entomol. Soc. Am. 2013, 106, 198–203. [Google Scholar] [CrossRef]
- Arnan, X.; Cerdá, X.; Rodrigo, A.; Retana, J. Response of Ant Functional Composition to Fire. Ecography 2013, 36, 1182–1192. [Google Scholar] [CrossRef]
- Moretti, M.; Legg, C. Combining Plant and Animal Traits to Assess Community Functional Responses to Disturbance. Ecography 2009, 32, 299–309. [Google Scholar] [CrossRef]
- Glasier, J.R.N.; Nielsen, S.E.; Acorn, J.H. The Real “Fire Ants”: Colony Size and Body Size of Workers Influence the Fate of Boreal Sand Hill Ants (Hymenoptera: Formicidae) after Wildfires in Alberta, Canada. Can. Entomol. 2015, 147, 396–404. [Google Scholar] [CrossRef]
- Lazarina, M.; Sgardelis, S.P.; Tscheulin, T.; Kallimanis, A.S.; Devalez, J.; Petanidou, T. Bee Response to Fire Regimes in Mediterranean Pine Forests: The Role of Nesting Preference, Trophic Specialization, and Body Size. Basic Appl. Ecol. 2016, 17, 308–320. [Google Scholar] [CrossRef]
- Fountain-Jones, N.M.; Baker, S.C.; Jordan, G.J. Moving beyond the Guild Concept: Developing a Practical Functional Trait Framework for Terrestrial Beetles. Ecol. Entomol. 2015, 40, 1–13. [Google Scholar] [CrossRef]
- Wong, M.K.L.; Guénard, B.; Lewis, O.T. Trait-based Ecology of Terrestrial Arthropods. Biol. Rev. 2019, 94, 999–1022. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage. Int. J. Wildland Fire 2009, 18, 116. [Google Scholar] [CrossRef]
- Galbraith, S.M.; Cane, J.H.; Moldenke, A.R.; Rivers, J.W. Wild Bee Diversity Increases with Local Fire Severity in a Fire-prone Landscape. Ecosphere 2019, 10, e02668. [Google Scholar] [CrossRef]
- Gongalsky, K.B.; Wikars, L.-O.; Persson, T.; Ãîíãàëüñêèé, Ê.Á. Ground Beetle (Coleoptera: Carabidae) Responses to a Forest Wildfire in Northern Europe. Russ. Entomol. J. 2008, 17, 273–282. [Google Scholar]
- Jung, J.-K.; Kim, M.; Nam, Y.; Koh, S.-H. Changes in Spatial and Temporal Distributions of Monochamus Beetles along the Fire Severity in Burned Pinus Densiflora Forests. J. Asia-Pac. Entomol. 2020, 23, 404–410. [Google Scholar] [CrossRef]
- Kim, J.W.; Jung, C. Abundance of Soil Microarthropods Associated with Forest Fire Severity in Samcheok, Korea. J. Asia-Pac. Entomol. 2008, 11, 77–81. [Google Scholar] [CrossRef]
- Lazarina, M.; Devalez, J.; Neokosmidis, L.; Sgardelis, S.P.; Kallimanis, A.S.; Tscheulin, T.; Tsalkatis, P.; Kourtidou, M.; Mizerakis, V.; Nakas, G.; et al. Moderate Fire Severity Is Best for the Diversity of Most of the Pollinator Guilds in Mediterranean Pine Forests. Ecology 2019, 100, e02615. [Google Scholar] [CrossRef] [PubMed]
- Malmström, A. The Importance of Measuring Fire Severity—Evidence from Microarthropod Studies. For. Ecol. Manag. 2010, 260, 62–70. [Google Scholar] [CrossRef]
- Simanonok, M.P.; Burkle, L.A. High-Severity Wildfire Limits Available Floral Pollen Quality and Bumble Bee Nutrition Compared to Mixed-Severity Burns. Oecologia 2020, 192, 489–499. [Google Scholar] [CrossRef]
- Johnson, N.; Triplehorn, C.A. Borror and DeLong’s Introduction to the Study of Insects, 7th ed.; Brooks/Cole: Pacific Grove, CA, USA, 2004. [Google Scholar]
- Samu, F.; Kádár, F.; Ónodi, G.; Kertész, M.; Szirányi, A.; Szita, É.; Fetykó, K.; Neidert, D.; Botos, E.; Altbäcker, V. Differential Ecological Responses of Two Generalist Arthropod Groups, Spiders and Carabid Beetles (Araneae, Carabidae), to the Effects of Wildfire. Community Ecol. 2010, 11, 129–139. [Google Scholar] [CrossRef]
- Barber, N.A.; Lamagdeleine-Dent, K.A.; Willand, J.E.; Jones, H.P.; McCravy, K.W. Species and Functional Trait Re-Assembly of Ground Beetle Communities in Restored Grasslands. Biodivers. Conserv. 2017, 26, 3481–3498. [Google Scholar] [CrossRef]
- Bargmann, T.; Heegaard, E.; Hatteland, B.A.; Chipperfield, J.D.; Grytnes, J.-A. Species Trait Selection along a Prescribed Fire Chronosequence. Insect Conserv. Divers. 2016, 9, 446–455. [Google Scholar] [CrossRef]
- Koivula, M.; Cobb, T.; Déchêne, A.; Jacobs, J.; Spence, J. Responses of Two Sericoda Kirby, 1837 (Coleoptera: Carabidae) Species to Forest Harvesting, Wildfire, and Burn Severity. Entomol. Fenn. 2006, 17, 315–324. [Google Scholar] [CrossRef]
- Ruchin, A.B.; Alekseev, S.K.; Ecological Club «Stenus»; Khapugin, A.A. Joint Directorate of the Mordovia State Nature Reserve and National Park "Smolny"; Tyumen State University. Post-Fire Fauna of Carabid Beetles (Coleoptera, Carabidae) in Forests of the Mordovia State Nature Reserve (Russia). Nat. Conserv. Res. 2019, 4, 11–20. [Google Scholar] [CrossRef]
- Kwon, T.-S.; Park, Y.K.; Lim, J.-H.; Ryou, S.H.; Lee, C.M. Change of Arthropod Abundance in Burned Forests: Different Patterns According to Functional Guilds. J. Asia-Pac. Entomol. 2013, 16, 321–328. [Google Scholar] [CrossRef]
- Larochelle, A.; Lariviere, M.C. A Natural History of the Ground-Beetles (Coleoptera: Carabidae) of America North of Mexico; Pensoft: Newport News, VA, USA, 2003. [Google Scholar]
- Office of the New Jersey State Climatologist. Available online: https://climate.rutgers.edu/stateclim/ (accessed on 1 June 2021).
- Forman, R.T.T. Pine Barrens Ecosystem and Landscape; Revised; Rutgers University Press: New Brunswick, NJ, USA, 1998. [Google Scholar]
- Forman, R.T.T.; Boerner, R.E. Fire Frequency and the Pine Barrens of New Jersey. Bull. Torrey Bot. Club 1981, 108, 34. [Google Scholar] [CrossRef]
- Givnish, T.J. Serotiny, Geography, and Fire in the Pine Barrens of New Jersey. Evolution 1981, 35, 101. [Google Scholar] [CrossRef]
- Little, S. Fire and Plant Succession in the New Jersey Pine Barrens. In Pine Barrens: Ecosystem and Landscape; Academic Press: New York, NY, USA, 1979; pp. 297–314. ISBN 0-12-263450-0. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Noss, R.F.; Platt, W.J.; Sorrie, B.A.; Weakley, A.S.; Means, D.B.; Costanza, J.; Peet, R.K. How Global Biodiversity Hotspots May Go Unrecognized: Lessons from the North American Coastal Plain. Divers. Distrib. 2015, 21, 236–244. [Google Scholar] [CrossRef]
- Critical Ecosystem Partnership Fund. Available online: https://www.cepf.net/node/1996 (accessed on 8 November 2022).
- Moscovici, D.; Clarke, C. Planning, Conservation, and Education in the Pinelands National Reserve. Case Stud. Environ. 2019, 3, 1–10. [Google Scholar] [CrossRef]
- Mason, S.C., Jr. Butterflies & Skippers (Lepidoptera: Papilionoidea, Hesperioidea) of the Franklin Parker Preserve, Burlington County, New Jersey. Trans. Am. Entomol. Soc. 2015, 141, 351–368. [Google Scholar] [CrossRef]
- Buffington, J.D. Soil Arthropod Populations of the New Jersey Pine Barrens as Affected by Fire1. Ann. Entomol. Soc. Am. 1967, 60, 530–535. [Google Scholar] [CrossRef]
- Belcher, C.M.; New, S.L.; Gallagher, M.R.; Grosvenor, M.J.; Clark, K.; Skowronski, N.S. Bark Charcoal Reflectance May Have the Potential to Estimate the Heat Delivered to Tree Boles by Wildland Fires. Int. J. Wildland Fire 2021, 30, 391. [Google Scholar] [CrossRef]
- Zen, S.; Thomas, J.C.; Mueller, E.V.; Dhurandher, B.; Gallagher, M.; Skowronski, N.; Hadden, R.M. Development of a Field Deployable Firebrand Flux and Condition Measurement System. Fire Technol. 2021, 57, 1401–1424. [Google Scholar] [CrossRef]
- Thomas, J.C.; Mueller, E.V.; Gallagher, M.R.; Clark, K.L.; Skowronski, N.; Simeoni, A.; Hadden, R.M. Coupled Assessment of Fire Behavior and Firebrand Dynamics. Front. Mech. Eng. 2021, 7, 650580. [Google Scholar] [CrossRef]
- Clark, K.L.; Heilman, W.E.; Skowronski, N.S.; Gallagher, M.R.; Mueller, E.; Hadden, R.M.; Simeoni, A. Fire Behavior, Fuel Consumption, and Turbulence and Energy Exchange during Prescribed Fires in Pitch Pine Forests. Atmosphere 2020, 11, 242. [Google Scholar] [CrossRef]
- van Gerrevink, M.J.; Veraverbeke, S. Evaluating the Near and Mid Infrared Bi-Spectral Space for Assessing Fire Severity and Comparison with the Differenced Normalized Burn Ratio. Remote Sens. 2021, 13, 695. [Google Scholar] [CrossRef]
- Warner, T.A.; Skowronski, N.S.; Gallagher, M.R. High Spatial Resolution Burn Severity Mapping of the New Jersey Pine Barrens with WorldView-3 near-Infrared and Shortwave Infrared Imagery. Int. J. Remote Sens. 2017, 38, 598–616. [Google Scholar] [CrossRef]
- Gallagher, M.R.; Skowronski, N.S.; Lathrop, R.G.; McWilliams, T.; Green, E.J. An Improved Approach for Selecting and Validating Burn Severity Indices in Forested Landscapes. Can. J. Remote Sens. 2020, 46, 100–111. [Google Scholar] [CrossRef]
- Campbell, J.W.; Grodsky, S.M.; Keller, O.; Vigueira, C.C.; Vigueira, P.A.; Waite, E.S.; Greenberg, C.H. Response of Beetles (Coleoptera) to Repeated Applications of Prescribed Fire and Other Fuel Reduction Techniques in the Southern Appalachian Mountains. For. Ecol. Manag. 2018, 429, 294–299. [Google Scholar] [CrossRef]
- Cook, W.M.; Holt, R.D. Fire Frequency and Mosaic Burning Effects on a Tallgrass Prairie Ground Beetle Assemblage. Biodivers. Conserv. 2006, 15, 2301–2323. [Google Scholar] [CrossRef]
- Hammond, H.E.J.; Hoffman, P.G.K.; Pinno, B.D.; Pinzon, J.; Klimaszewski, J.; Hartley, D.J. Response of Ground and Rove Beetles (Coleoptera: Carabidae, Staphylinidae) to Operational Oil Sands Mine Reclamation in Northeastern Alberta, a Case Study. J. Insect Conserv. 2018, 22, 687–706. [Google Scholar] [CrossRef]
- Parmenter, R.R.; Kreutzian, M.; Moore, D.I.; Lightfoot, D.C. Short-Term Effects of a Summer Wildfire on a Desert Grassland Arthropod Community in New Mexico. Environ. Entomol. 2011, 40, 1051–1066. [Google Scholar] [CrossRef]
- Thomas, D.B. Nontoxic Antifreeze for Insect Traps. Entomol. News 2008, 119, 361–365. [Google Scholar] [CrossRef]
- Ball, G.E.; Bousquet, Y. Carabidae Latreille, 1810. In American beetles. Volume 1. Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia; CRC Press: Boca Raton, FL, USA, 2001; pp. 32–132. [Google Scholar]
- Gidaspow, T. North American Caterpillar Hunters of the Genera Calosoma and Callisthenes (Coleoptera, Carabidae). Bull. Am. Mus. Nat. Hist. 1959, 116, 225–344. [Google Scholar]
- van Dyke, E.C. A Review of the North American Species of the Genus Carabus Linnaeus. Entomol. Am. 1945, 24, 87–137. [Google Scholar]
- Pearson, D.L.; Knisley, C.B.; Kazilek, C.J. A Field Guide to the Tiger Beetles of the United States and Canada: Identification, Natural History, and Distribution of the Cicindelidae; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Lindroth, C.H. The Ground-Beetles (Carabidae, Excl. Cicindelinae) of Canada and Alaska; Opuscula Entomologica: Stockholm, Sweden, 1961. [Google Scholar]
- Lindroth, C.H. A Revision of the Genus Synuchus Gyllenhal (Coleoptera: Carabidae) in the Widest Sense, with Notes on Pristosia Motschulsky (Eucalathus Bates) and Calathus Bonelli. Trans. R. Entomol. Soc. Lond. 1956, 108, 485–585. [Google Scholar] [CrossRef]
- Ball, G.E. A Taxonomic Study of the North American Licinini with Notes on the Old World Species of the Genus Diplochelia Brulle (Coleoptera). Mem. Am. Entomol. Soc. 1959, 16, 1–258. [Google Scholar]
- Ball, G.E.; Nimmo, A.P. Synopsis of the Species of Subgenus Progaleritina Jeannel, Including Reconstructed Phylogeny and Geographical History (Coleoptera: Carabidae: Galerita Fabricius). Trans. Am. Entomol. Soc. 1983, 109, 295–356. [Google Scholar]
- Bousquet, Y. Taxonomic Revision of Neartic, Mexican, and West Indian Oodini (Coleoptera: Carabidae). Can. Entomol. 1996, 128, 443–537. [Google Scholar] [CrossRef]
- Liebherr, J.K.; Will, K.W. New North American Platynus Bonelli (Coleoptera: Carabidae), a Key to Species North of Mexico, and Notes on Species from the Southwestern United States. Coleopt. Bull. 1996, 50, 21. [Google Scholar]
- Messer, P.W.; Raber, B.T. A Review of Nearctic Selenophorus Dejean (Coleoptera: Carabidae: Harpalini) North of Mexico with New Species, New Synonyms, Range Extensions, and a Key. Coleopt. Bull. 2021, 75, 9–55. [Google Scholar] [CrossRef]
- Purrington, F.F.; Drake, C.J. A Key to Adult Nearctic Pasimachus (Pasimachus) Bonelli (Coleoptera: Carabidae: Scaritini), with Comments on Their Functional Mouthpart Morphology. Entomol. News 2005, 116, 253–262. [Google Scholar]
- Bousquet, Y. Illustrated Identification Guide to Adults and Larvae of Northeastern North American Ground Beetles (Coleoptera: Carabidae); Pensoft: Newport News, VA, USA, 2010. [Google Scholar]
- Ciegler, J.C. Ground Beetles and Wrinkled Bark Beetles of South Carolina (Coleoptera: Geadephaga: Carabidae and Rhysodidae); Biota of South Carolina; Clemson University: Clemson, SC, USA, 2000; Volume 1. [Google Scholar]
- Waite, E.S. Arizona State University Biocollections. Available online: https://doi.org/10.15468/5d9kk2 (accessed on 5 July 2021).
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the Concept of Trait Be Functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Nelson, M.; Hosler, S.C.; Boetzl, F.A.; Jones, H.P.; Barber, N.A. Reintroduced Grazers and Prescribed Fire Effects on Beetle Assemblage Structure and Function in Restored Grasslands. Ecol. Appl. 2021, 31, e02217. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Forsythe, T. A Comparison of Adaptations to Running, Pushing and Burrowing in Some Adult Coleoptera, Specially Carabidae. J. Zool. 1984, 202, 513–534. [Google Scholar] [CrossRef]
- Talarico, F.; Brandmayr, P.; Giglio, A.; Massolo, A.; Zetto Brandmayr, T. Morphometry of Eyes, Antennae and Wings in Three Species of Siagona (Coleoptera, Carabidae). ZooKeys 2011, 100, 203–214. [Google Scholar] [CrossRef]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online; Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J.L., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 1–15. ISBN 978-1-118-44511-2. [Google Scholar]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- de Arruda, F.V.; Teresa, F.B.; Layme, V.M.G.; Vicente, R.E.; Camarota, F.; Izzo, T.J. Fire and Flood: How the Pantanal Ant Communities Respond to Multiple Disturbances? Perspect. Ecol. Conserv. 2022, 20, 197–204. [Google Scholar] [CrossRef]
- Hanula, J.L.; Horn, S.; O’Brien, J.J. Have Changing Forests Conditions Contributed to Pollinator Decline in the Southeastern United States? For. Ecol. Manag. 2015, 348, 142–152. [Google Scholar] [CrossRef]
- Vázquez-Veloso, A.; Dejene, T.; Oria-de-Rueda, J.A.; Guijarro, M.; Hernando, C.; Espinosa, J.; Madrigal, J.; Martín-Pinto, P. Prescribed Burning in Spring or Autumn Did Not Affect the Soil Fungal Community in Mediterranean Pinus Nigra Natural Forests. For. Ecol. Manag. 2022, 512, 120161. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P. A Distance-Based Framework for Measuring Functional Diversity from Multiple Traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P.; Shipley, B. FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology, R Package Version 1.0-12; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Hjältén, J.; Hägglund, R.; Löfroth, T.; Roberge, J.-M.; Dynesius, M.; Olsson, J. Forest Restoration by Burning and Gap Cutting of Voluntary Set-Asides Yield Distinct Immediate Effects on Saproxylic Beetles. Biodivers. Conserv. 2017, 26, 1623–1640. [Google Scholar] [CrossRef]
- Tello, F.; González, M.E.; Valdivia, N.; Torres, F.; Lara, A.; García-López, A. Diversity Loss and Changes in Saproxylic Beetle Assemblages Following a High-Severity Fire in Araucaria–Nothofagus Forests. J. Insect Conserv. 2020, 24, 585–601. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Gibson, K.S.; Johnson, N.C.; Laturno, C.; Parmenter, R.R.; Antoninka, A. Abundance of Mites, but Not of Collembolans or Nematodes, Is Reduced by Restoration of a Pinus Ponderosa Forest with Thinning, Mastication, and Prescribed Fire. Trees For. People 2022, 7, 100190. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package, R Package Version 2.2-0; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Quensen, J. Ggordiplots: The Comprehensive R Archive Network: Make Ggplot Versions of Vegans Ordiplots. 2018. Available online: https://cran.r-project.org/web/packages/ggordiplots/index.html (accessed on 2 August 2023).
- Beal-Neves, M.; Chiarani, E.; Abreu Ferreira, P.M.; Fontana, C. The Role of Fire Disturbance on Habitat Structure and Bird Communities in South Brazilian Highland Grasslands. Sci. Rep. 2020, 10, 19708. [Google Scholar] [CrossRef] [PubMed]
- Cramer, M.J.; Willig, M.R. Habitat Heterogeneity, Habitat Associations, and Rodent Species Diversity in a Sand-Shinnery-Oak Landscape. J. Mammal. 2002, 83, 743–753. [Google Scholar] [CrossRef]
- Whittaker, R.H. Evolution and Measurement of Species Diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef]
- Gagic, V.; Bartomeus, I.; Jonsson, T.; Taylor, A.; Winqvist, C.; Fischer, C.; Slade, E.M.; Steffan-Dewenter, I.; Emmerson, M.; Potts, S.G.; et al. Functional Identity and Diversity of Animals Predict Ecosystem Functioning Better than Species-Based Indices. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142620. [Google Scholar] [CrossRef]
- Pakeman, R.J.; Stockan, J.A. Drivers of Carabid Functional Diversity: Abiotic Environment, Plant Functional Traits, or Plant Functional Diversity? Ecology 2014, 95, 1213–1224. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying Burn Severity in a Heterogeneous Landscape with a Relative Version of the Delta Normalized Burn Ratio (DNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Creasy, R.M.; Sherlock, J.W. Calibration and Validation of the Relative Differenced Normalized Burn Ratio (RdNBR) to Three Measures of Fire Severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 2009, 113, 645–656. [Google Scholar] [CrossRef]
- Ammer, C. Unraveling the Importance of Inter- and Intraspecific Competition for the Adaptation of Forests to Climate Change. In Progress in Botany; Springer: Cham, Germany, 2016; Volume 78, pp. 345–367. [Google Scholar]
- Molles, M.C., Jr. Ecology Concepts and Applications, 6th ed.; McGraw-Hill Companies: New York, NY, USA, 2013. [Google Scholar]
- Skowronski, N.S.; Gallagher, M.R.; Warner, T.A. Decomposing the Interactions between Fire Severity and Canopy Fuel Structure Using Multi-Temporal, Active, and Passive Remote Sensing Approaches. Fire 2020, 3, 7. [Google Scholar] [CrossRef]
- Radea, C.; Arianoutsou, M. Soil Arthropod Communities and Population Dynamics Following Wildfires in Pine Forests of the Mediterranean Basin: A Review. Isr. J. Ecol. Evol. 2012, 58, 137–149. [Google Scholar]
- Ryan, K. Dynamic Interactions between Forest Structure and Fire Behavior in Boreal Ecosystems. Silva Fenn. 2002, 36, 13–39. [Google Scholar] [CrossRef]
- Ponisio, L.C.; Wilkin, K.; M’Gonigle, L.K.; Kulhanek, K.; Cook, L.; Thorp, R.; Griswold, T.; Kremen, C. Pyrodiversity Begets Plant-Pollinator Community Diversity. Glob. Chang. Biol. 2016, 22, 1794–1808. [Google Scholar] [CrossRef] [PubMed]
- Gongalsky, K.B.; Wikars, L.-O.; Persson, T. Dynamics of Pyrophilous Carabids in a Burned Pine Forest in Central Sweden. Balt. J. Coleopterol. 2003, 6, 107–111. [Google Scholar]
- Fernández Fernández, M.M.; Salgado Costas, J.M. Recolonization of a Burnt Pine Forest (Pinus Pinaster) by Carabidae (Coleoptera). Eur. J. Soil Biol. 2004, 40, 47–53. [Google Scholar] [CrossRef]
- Zdzioch, P. Effect of Fire of Various Intensities on Assemblages of Ground Beetles (Coleoptera: Carabidae) Inhabiting Pine-Stands at Different Ages. Balt. J. Coleopterol. 2003, 3, 101–105. [Google Scholar]
- Nimmo, D.G.; Kelly, L.T.; Farnsworth, L.M.; Watson, S.J.; Bennett, A.F. Why Do Some Species Have Geographically Varying Responses to Fire History? Ecography 2014, 37, 805–813. [Google Scholar] [CrossRef]
- Legendre, P. Spatial Autocorrelation: Trouble or New Paradigm? Ecology 1993, 74, 1659–1673. [Google Scholar] [CrossRef]
- Negret, P.J.; Marco, M.D.; Sonter, L.J.; Rhodes, J.; Possingham, H.P.; Maron, M. Effects of Spatial Autocorrelation and Sampling Design on Estimates of Protected Area Effectiveness. Conserv. Biol. 2020, 34, 1452–1462. [Google Scholar] [CrossRef]
- Den Boer, P.J. On the Significance of Dispersal Power for Populations of Carabid-Beetles (Coleoptera, Carabidae). Oecologia 1970, 4, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Den Boer, P.J. The Survival Value of Dispersal in Terrestrial Arthropods. Biol. Conserv. 1990, 54, 175–192. [Google Scholar] [CrossRef]
- Frampton, G.K.; Çilgi, T.; Fry, G.L.A.; Wratten, S.D. Effects of Grassy Banks on the Dispersal of Some Carabid Beetles (Coleoptera: Carabidae) on Farmland. Biol. Conserv. 1995, 71, 347–355. [Google Scholar] [CrossRef]
- Davies, G.M.; Gray, A. Don’t Let Spurious Accusations of Pseudoreplication Limit Our Ability to Learn from Natural Experiments (and Other Messy Kinds of Ecological Monitoring). Ecol. Evol. 2015, 5, 5295–5304. [Google Scholar] [CrossRef]
- van Mantgem, P.; Schwartz, M.; Keifer, M. Monitoring Fire Effects for Managed Burns and Wildfires: Coming to Terms with Pseudoreplication. Nat. Areas J. 2001, 21, 266–273. [Google Scholar]
- Barton, P.S.; Gibb, H.; Manning, A.D.; Lindenmayer, D.B.; Cunningham, S.A. Morphological Traits as Predictors of Diet and Microhabitat Use in a Diverse Beetle Assemblage: Morphological traits of beetles. Biol. J. Linn. Soc. 2011, 102, 301–310. [Google Scholar] [CrossRef]
- Holliday, N.J. Species Responses of Carabid Beetles (Coleoptera: Carabidae) during Post-Fire Regeneration of Boreal Forest. Can. Entomol. 1991, 123, 1369–1389. [Google Scholar] [CrossRef]
- Koltz, A.M.; Burkle, L.A.; Pressler, Y.; Dell, J.E.; Vidal, M.C.; Richards, L.A.; Murphy, S.M. Global Change and the Importance of Fire for the Ecology and Evolution of Insects. Curr. Opin. Insect Sci. 2018, 29, 110–116. [Google Scholar] [CrossRef]
- Ribera, I.; Doledec, S.; Downie, I.S.; Foster, G.N. Effect of Land Disturbance and Stress on Species Traits of Ground Beetle Assemblages. Ecology 2001, 82, 19. [Google Scholar] [CrossRef]
- Firebaugh, A.; Haynes, K.J. Experimental Tests of Light-Pollution Impacts on Nocturnal Insect Courtship and Dispersal. Oecologia 2016, 182, 1203–1211. [Google Scholar] [CrossRef]
- Perkin, E.K.; Hölker, F.; Tockner, K. The Effects of Artificial Lighting on Adult Aquatic and Terrestrial Insects. Freshw. Biol. 2014, 59, 368–377. [Google Scholar] [CrossRef]
- Koivula, M. Useful Model Organisms, Indicators, or Both? Ground Beetles (Coleoptera, Carabidae) Reflecting Environmental Conditions. ZooKeys 2011, 100, 287–317. [Google Scholar] [CrossRef] [PubMed]
- Dell, J.; O’Brien, J.; Doan, L.; Richards, L.; Dyer, L. An Arthropod Survival Strategy in a Frequently Burned Forest. Ecology 2017, 98, 2972–2974. [Google Scholar] [CrossRef] [PubMed]
- Varet, M.; Burel, F.; Lafage, D.; Pétillon, J. Age-Dependent Colonization of Urban Habitats: A Diachronic Approach Using Carabid Beetles and Spiders. Anim. Biol. 2013, 63, 257–269. [Google Scholar] [CrossRef]
- Gandhi, K.J.K.; Gilmore, D.W.; Katovich, S.A.; Mattson, W.J.; Zasada, J.C.; Seybold, S.J. Catastrophic Windstorm and Fuel-Reduction Treatments Alter Ground Beetle (Coleoptera: Carabidae) Assemblages in a North American Sub-Boreal Forest. For. Ecol. Manag. 2008, 256, 1104–1123. [Google Scholar] [CrossRef]
- Wikars, L.-O. Dependence on Fire in Wood-Living Insects: An Experiment with Burned and Unburned Spruce and Birch Logs. J. Insect Conserv. 2002, 6, 1–12. [Google Scholar] [CrossRef]
- Cobb, T.P.; Langor, D.W.; Spence, J.R. Biodiversity and Multiple Disturbances: Boreal Forest Ground Beetle (Coleoptera: Carabidae) Responses to Wildfire, Harvesting, and Herbicide. Can. J. For. Res. 2007, 37, 1310–1323. [Google Scholar] [CrossRef]
- Niwa, C.G.; Peck, R.W. Influence of Prescribed Fire on Carabid Beetle (Carabidae) and Spider (Araneae) Assemblages in Forest Litter in Southwestern Oregon. Environ. Entomol. 2002, 31, 785–796. [Google Scholar] [CrossRef]
- Oliver, I.; Mac Nally, R.; York, A. Identifying Performance Indicators of the Effects of Forest Management on Ground-Active Arthropod Biodiversity Using Hierarchical Partitioning and Partial Canonical Correspondence Analysis. For. Ecol. Manag. 2000, 139, 21–40. [Google Scholar] [CrossRef]
- Brennan, K.E.C.; Moir, M.L.; Wittkuhn, R.S. Fire Refugia: The Mechanism Governing Animal Survivorship within a Highly Flammable Plant: Plants as Fire Refugia for Animals. Austral Ecol. 2011, 36, 131–141. [Google Scholar] [CrossRef]
- Stanger-Hall, K.F.; Sander Lower, S.E.; Lindberg, L.; Hopkins, A.; Pallansch, J.; Hall, D.W. The Evolution of Sexual Signal Modes and Associated Sensor Morphology in Fireflies (Lampyridae, Coleoptera). Proc. R. Soc. B Biol. Sci. 2018, 285, 20172384. [Google Scholar] [CrossRef]
- Tocco, C.; Dacke, M.; Byrne, M. Eye and Wing Structure Closely Reflects the Visual Ecology of Dung Beetles. J. Comp. Physiol. A 2019, 205, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, T.S.; Rütting, T.; Nilsson, M.-C.; Wardle, D.A.; Gundale, M.J. Mid-Term Effects of Wildfire and Salvage Logging on Gross and Net Soil Nitrogen Transformation Rates in a Swedish Boreal Forest. For. Ecol. Manag. 2022, 517, 120240. [Google Scholar] [CrossRef]
- Mitchell, D.J.; Beckmann, C.; Biro, P.A. Understanding the Unexplained: The Magnitude and Correlates of Individual Differences in Residual Variance. Ecol. Evol. 2021, 11, 7201–7210. [Google Scholar] [CrossRef] [PubMed]
- Ramakers, J.J.C.; Visser, M.E.; Gienapp, P. Quantifying Individual Variation in Reaction Norms: Mind the Residual. J. Evol. Biol. 2020, 33, 352–366. [Google Scholar] [CrossRef]
- Shoemaker, L.G.; Sullivan, L.L.; Donohue, I.; Cabral, J.S.; Williams, R.J.; Mayfield, M.M.; Chase, J.M.; Chu, C.; Harpole, W.S.; Huth, A.; et al. Integrating the Underlying Structure of Stochasticity into Community Ecology. Ecology 2020, 101, e02922. [Google Scholar] [CrossRef]
- Hiers, J.K.; O’Brien, J.J.; Varner, J.M.; Butler, B.W.; Dickinson, M.; Furman, J.; Gallagher, M.; Godwin, D.; Goodrick, S.L.; Hood, S.M.; et al. Prescribed Fire Science: The Case for a Refined Research Agenda. Fire Ecol. 2020, 16, 11. [Google Scholar] [CrossRef]
Species | Total | Site | Year | |||
---|---|---|---|---|---|---|
Control | Mod Sev | High Sev | 2017 | 2018 | ||
Pasimachus depressus | 254 | 181 | 45 | 28 | X | X |
Polyderis laeva | 67 | 21 | 18 | 28 | X | X |
Galerita janus | 58 | 7 | 50 | 1 | X | X |
Dicaelus elongatus | 13 | 3 | 2 | 8 | X | X |
Platynus tenuicollis | 11 | 2 | 3 | 6 | X | X |
Carabus sylvosus | 8 | 1 | 4 | 3 | X | X |
Cicindela unipunctata | 8 | 6 | 2 | 0 | X | X |
Cymindis americana | 5 | 3 | 0 | 2 | X | X |
Syntomus americanus | 4 | 4 | 0 | 0 | X | X |
Synuchus impunctatus | 4 | 0 | 2 | 2 | X | X |
Cicindela patruela | 2 | 0 | 0 | 2 | X | |
Selenophorus opalinus | 2 | 0 | 0 | 2 | X | X |
Calosoma calidum | 1 | 0 | 1 | 0 | X | |
Calosoma sycophanta | 1 | 0 | 1 | 0 | X | |
Carabus vinctus | 1 | 0 | 1 | 0 | X | |
Scaphinotus sp. | 1 | 1 | 0 | 0 | X | |
Cicindela punctulata | 1 | 0 | 0 | 1 | X | |
Cicindela sexguttata | 1 | 1 | 0 | 0 | X | |
Amara aenea | 1 | 0 | 0 | 1 | X | |
Apenes sinuata | 1 | 1 | 0 | 0 | X | |
Oodes amaroides | 1 | 1 | 0 | 0 | X | |
Stenolophus comma | 1 | 1 | 0 | 0 | X | |
Notiophilus aeneus | 1 | 1 | 0 | 0 | X | |
Total | 447 | 234 | 129 | 84 | ||
Species Richness | 23 | 15 | 11 | 12 |
Taxonomic Composition | ||||
Degrees of Freedom | R2 | Pseudo F-Statistic | p-value | |
Fire Treatment | 2 | 0.146 | 6.231 | 0.0002 * |
Year | 1 | 0.062 | 5.276 | 0.0011 * |
Trap Week | 9 | 0.324 | 2.985 | 0.00009 * |
Residual | 41 | 0.479 | - | - |
: | Control-Mod | Control-High | Mod-High | |
Treatment pairwise comparison p-value: | 0.001 * | 0.075 | 0.009 * | |
Functional Composition | ||||
Degrees of Freedom | R2 | PseudoF-Statistic | p-value | |
Fire Treatment | 2 | 0.169 | 7.881 | 0.0002 * |
Year | 1 | 0.014 | 1.322 | 0.2489 |
Trap Week | 9 | 0.379 | 3.945 | 0.0002 * |
Residual | 41 | 0.438 | - | - |
: | Control-Mod | Control-High | Mod-High | |
Treatment pairwise comparison p-value: | 0.001 * | 0.07 | 0.041 * |
Taxonomic Composition | ||||
NMDS1 | NMDS2 | R2 | p-value | |
Trap Week | 0.985 | 0.174 | 0.3404 | 0.00009 * |
Functional Composition | ||||
NMDS1 | NMDS2 | R2 | p-value | |
Trap Week | 0.998 | 0.067 | 0.245 | 0.0006 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mason, S.C., Jr.; Shirey, V.; Waite, E.S.; Gallagher, M.R.; Skowronski, N.S. Exploring Prescribed Fire Severity Effects on Ground Beetle (Coleoptera: Carabidae) Taxonomic and Functional Community Composition. Fire 2023, 6, 366. https://doi.org/10.3390/fire6090366
Mason SC Jr., Shirey V, Waite ES, Gallagher MR, Skowronski NS. Exploring Prescribed Fire Severity Effects on Ground Beetle (Coleoptera: Carabidae) Taxonomic and Functional Community Composition. Fire. 2023; 6(9):366. https://doi.org/10.3390/fire6090366
Chicago/Turabian StyleMason, Stephen C., Jr., Vaughn Shirey, Evan S. Waite, Michael R. Gallagher, and Nicholas S. Skowronski. 2023. "Exploring Prescribed Fire Severity Effects on Ground Beetle (Coleoptera: Carabidae) Taxonomic and Functional Community Composition" Fire 6, no. 9: 366. https://doi.org/10.3390/fire6090366
APA StyleMason, S. C., Jr., Shirey, V., Waite, E. S., Gallagher, M. R., & Skowronski, N. S. (2023). Exploring Prescribed Fire Severity Effects on Ground Beetle (Coleoptera: Carabidae) Taxonomic and Functional Community Composition. Fire, 6(9), 366. https://doi.org/10.3390/fire6090366