Wildfires in the Larch Range within Permafrost, Siberia
Abstract
:1. Introduction
- What are the temporal and spatial dynamics of the burned areas, fire numbers, and severity in the larch forests growing in the permafrost zone?
- What is the influence of fires on larch growth and regeneration within permafrost?
- What are the patterns of post-fire GPP recovery within burns?
- What should be the approach to firefighting in the zone of larch dominance within permafrost?
2. Materials
2.1. Study Area
2.2. Environmental Variables
3. Methods
3.1. Fire Rate Detection and Analysis
3.2. Regeneration Rate Analysis within Burns
3.3. Dendrochronology Analysis
3.4. GPP (Gross Primary Productivity) Dynamics
3.5. Statistics
4. Results
4.1. Climate Variables Dynamics within the Study Area
4.2. Wildfire Geography
4.3. Wildfire Temporal Dynamics
4.4. Wildfire Intensity
4.5. Wildfire Dependence on the Climate Variables
4.6. Wildfire Influence on the Larch Trees’ Growth
4.7. Post-Fire Regeneration within Burns
- (a)
- Post-fire regeneration in the continuous permafrost zone (study area #1)
- (b)
- Post-fire regeneration at the south of the larch range (study area #2)
- (c)
- Study area #3
4.8. Post-Fire GPP Dynamics
5. Discussion
5.1. Wildfire Dynamics in the Larch-Dominant Forests
5.2. Wildfire and Larch Dominance in the Permafrost
5.3. Firefighting in the Larch-Dominant Forests
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowman, D.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’antonio, C.M.; Defries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef] [PubMed]
- Archibald, S.; Lehmann, C.E.R.; Belcher, C.M.; Bond, W.J.; Bradstock, R.A.; Daniau, A.L.; Dexter, K.G.; Forrestel, E.J.; Greve, M.; He, T.; et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 2018, 13, 033003. [Google Scholar] [CrossRef] [Green Version]
- McLauchlan, K.K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Tepley, A.J.; Varner, J.M.; Veblen, T.T.; Adalsteinsson, S.A.; et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecology 2020, 108, 2047–2069. [Google Scholar] [CrossRef]
- Chapin, F.S.; Trainor, S.F.; Huntington, O.; Lovecraft, A.L.; Zavaleta, E.; Natcher, D.C.; McGuire, A.D.; Nelson, J.L.; Ray, L.; Calef, M.; et al. Increasing wildfire in Alaska’s boreal forest: Pathways to potential solutions of a wicked problem. BioScience 2008, 58, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Kukavskaya, E.A.; Buryak, L.V.; Shvetsov, E.G.; Conard, S.G.; Kalenskaya, O.P. The impact of increasing fire frequency on forest transformations in southern Siberia. For. Ecol. Manag. 2016, 382, 222–230. [Google Scholar] [CrossRef]
- De Groot, W.J.; Flannigan, M.D.; Cantin, A.S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag. 2013, 294, 35–44. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.P.; Flannigan, M.D. Wildfires in the Siberian taiga. Ambio 2021, 50, 1953–1974. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Rogers, B.; Goulden, M.; Jandt, R.; Miller, C.; Wiggins, E.; Randerson, J. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 2017, 7, 529–534. [Google Scholar] [CrossRef]
- Hessilt, T.D.; van der Werf, G.; Abatzoglou, J.T.; Scholten, R.C.; Veraverbeke, S. Future increases in lightning-ignited boreal fires from conjunct increases in dry fuels and lightning. In Proceedings of the 23rd EGU General Assembly, Online, 19–30 April 2021; EGU21-2218. Available online: https://meetingorganizer.copernicus.org/EGU21/EGU21-2218.html (accessed on 14 June 2023).
- Finney, D.L.; Doherty, R.M.; Wild, O.; Stevenson, D.S.; MacKenzie, J.A.; Blyth, A.M. A projected decrease in lightning under climate change. Nat. Commun. 2018, 8, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.I.; Dvinskaya, M.L.; Im, S.T.; Golyukov, A.S.; Smith, K.T. Wildfires in the Siberian Arctic. Fire 2022, 5, 106. [Google Scholar] [CrossRef]
- Flannigan, M.D. Fighting fire with science. Nature 2019, 576, 328. [Google Scholar] [CrossRef] [Green Version]
- Moritz, M.; Batllori, E.; Bradstock, R.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Tania Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Coogan, S.C.P.; Robinne, F.-N.; Jain, P.; Flannigan, M.D. Scientists’ warning on wildfire—A Canadian perspective. Can. J. For. Res. 2019, 49, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Tymstra, C.; Stocks, B.; Cai, X.; Flannigan, M. Wildfire management in Canada: Review, challenges and opportunities. Prog. Disaster Sci. 2020, 5, 10004. [Google Scholar] [CrossRef]
- Wotton, B.M.; Flannigan, M.D.; Marshall, G.A. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 2017, 12, 095003. [Google Scholar] [CrossRef]
- Melvin, A.M.; Murray, J.; Boehlert, B.; Martinich, J.A.; Rennels, L.; Rupp, T.S. Estimating wildfire response costs in Alaska’s changing climate. Clim. Chang. 2017, 141, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Sannikov, S.N. Forest fires as a factor in transformation of the structure, renewal and evolution of biogeocenoses. Ecology 1981, 6, 23–33. (In Russian) [Google Scholar]
- Hopkins, T.; Larson, A.; Belote, T. Contrasting Effects of Wildfire and Ecological Restoration in Old-Growth Western Larch Forests. For. Sci. 2014, 60, 1005–1013. [Google Scholar] [CrossRef]
- Moris, J.V.; Vacchiano, G.; Ascoli, D.; Motta, R. Alternative stable states in mountain forest ecosystems: The case of European larch (Larix decidua) forests in the western Alps. J. Mt. Sci. 2017, 14, 811–822. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.I.; Dvinskaya, M.L.; Petrov, I.A.; Im, S.T.; Ranson, K.J. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals. Environ. Res. Lett. 2015, 16, 2389–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharuk, V.I.; Ranson, K.J.; Petrov, I.A.; Dvinskaya, M.L.; Im, S.T.; Golyukov, A.S. Larch (Larix dahurica Turcz) Growth Response to Climate Change in the Siberian Permafrost Zone. Reg. Environ. Chang. 2018, 1, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.I.; Petrov, I.A.; Golyukov, A.S.; Dvinskaya, M.L.; Im, S.T.; Shushpanov, A.S. Larch growth across thermal and moisture gradients in the Siberian Mountains. J. Mt. Sci. 2023, 20, 101–114. [Google Scholar] [CrossRef]
- Shuman, J.K.; Shugart, H.H.; O’Halloran, T.L. Sensitivity of Siberian larch forests to climate change. Glob. Chang. Biol. 2011, 17, 2370–2384. [Google Scholar] [CrossRef]
- Xu, L.; Saatchi, S.S.; Yang, Y.; Yu, Y.; Pongratz, J.; Bloom, A.A.; Bowman, K.; Worden, J.; Liu, J.; Yin, Y.; et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 2021, 7, eabe9829. [Google Scholar] [CrossRef]
- Brown, J.; Ferrians, O.J.; Heginbottom, J.A.; Melnikov, E.S. Circum-Arctic Map of Permafrost and Ground Ice Conditions, Ver. 2; Digital Media; National Snow and Ice Data Center: Boulder, CO, USA, 2002; Available online: https://nsidc.org/data/ggd318 (accessed on 24 April 2023).
- Bartalev, S.; Egorov, V.; Zharko, V.; Loupian, E.; Plotnikov, D.; Khvostikov, S.; Shabanov, N. Land Cover Mapping over Russia using Earth Observation Data; Russian Academy of Sciences, Space Research Institute: Moscow, Russia, 2016; p. 208. [Google Scholar]
- Hersbach, H.; Rosnay, P.; Bell, B.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Alonso-Balmaseda, M.; Balsamo, G.; Bechtold, P.; et al. Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP. ECMWF ERA Report Series. 2018. Available online: https://www.ecmwf.int/en/elibrary/18765-operational-global-reanalysis-progress-future-directions-and-synergies-nwp (accessed on 19 July 2021).
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming. The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Hall, J.V.; Justice, C.O. MODIS Collection 6 and Collection 6.1 Active Fire Product User’s Guide; National Aeronautical and Space Administration—NASA: Washington, DC, USA, 2021; p. 64. [Google Scholar]
- Forest Management Instruction. Available online: https://docs.cntd.ru/document/351878696 (accessed on 14 June 2023). (In Russian).
- Regulations for reforestation. Ministry of Natural Resources of Russia. Available online: https://docs.cntd.ru/document/728111110 (accessed on 14 June 2023). (In Russian).
- Rinn, F.; Tsap, V. 3.6 Reference Manual: Computer Program for Tree-Ring Analysis and Presentation; Frank Rinn Distribution: Heidelberg, Germany, 1996. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 44, 69–75. [Google Scholar]
- Cook, E.R.; Holmes, R.L. User’s Manual for Program ARSTAN. In Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin; Chronology Series 6; Holmes, R.L., Adams, R.K., Fritts, H.C., Eds.; Laboratory of Tree-Ring Research: Tucson, TX, USA, 1986; pp. 50–65. [Google Scholar]
- Sutherland, E.K.; Brewer, P.W.; Falk, D.A.; Vel’asquez, M.E. FHAES Fire History Analysis and Exploration System (for FHAES Version 2.0.2); Missoula Forestry Sciences Lab: Missoula, MT, USA, 2017. [Google Scholar]
- Fritts, H.C. Tree-Rings and Climate//London; Acad. Press: San Francisco, CA, USA; New York, NY, USA, 1976; 576p. [Google Scholar]
- Running, S.; Mu, Q.; Zhao, M. MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500m SIN Grid V061; NASA EOSDIS Land Processes DAAC: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Wooster, M.J.; Zhang, Y.H. Boreal forest fires burn less intensely in Russia than in North America. Geophys. Res. Lett. 2004, 31, L20505. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.I.; Ranson, K.J.; Dvinskaya, M.L. Evidence of evergreen conifer invasion into larch dominated forests during recent decades in Central Siberia. Eurasian J. For. Res. 2007, 10, 163–171. [Google Scholar]
- Berner, L.T.; Beck, P.S.A.; Loranty, M.M.; Alexander, H.D.; Mack, M.C.; Goetz, S.J. Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia. Biogeosciences 2012, 9, 3943–3959. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Yang, J. High severity fire reduces early successional boreal larch forest aboveground productivity by shifting stand density in north-eastern China. Int. J. Wild. Fire 2016, 25, 861–875. [Google Scholar] [CrossRef]
- Todd, S.K.; Jewkes, H.A. Wildland fire in Alaska: A history of organized fire suppression and management in the Last Frontier. In University of Alaska Fairbanks, Agricultural and Forestry Experiment Station Bulletin No. 114; University of Alaska Fairbanks: Fairbanks, AK, USA, 2006. [Google Scholar]
Study Area * | Environmental Variables | Burned Area | Fire Frequency | ||
---|---|---|---|---|---|
Adjusted R2 | p-Value | Adjusted R2 | p-Value | ||
Larch range ** | Air temperature | 0.36 | 0.0016 | 0.22 | 0.026 |
Precipitation | 0.32 | 0.041 | 0.21 | 0.038 | |
Soil moisture | 0.55 | 0.0003 | 0.21 | 0.047 | |
SPEI | 0.26 | 0.012 | 0.17 | 0.058 | |
TW | 0.28 | 0.034 | 0.22 | 0.065 | |
North ** | Air temperature | 0.36 | 0.0019 | 0.25 | 0.047 |
Precipitation | 0.38 | 0.02 | 0.46 | 0.041 | |
Soil moisture | 0.62 | 0.0008 | 0.36 | 0.015 | |
SPEI | 0.56 | 0.0008 | 0.29 | 0.037 | |
TW | – | – | – | – | |
South1 *** | Air temperature | 0.48 | 0.0019 | 0.63 | 0.0001 |
Precipitation | 0.31 | 0.005 | 0.38 | 0.0001 | |
Soil moisture | 0.49 | 0.0001 | 0.67 | 0.000001 | |
SPEI | 0.23 | 0.017 | 0.36 | 0.002 | |
TW | 0.24 | 0.06 | 0.31 | 0.03 | |
South2 *** | Air temperature | 0.12 | 0.087 | 0.13 | 0.075 |
Precipitation | 0.14 | 0.089 | 0.20 | 0.036 | |
Soil moisture | 0.48 | 0.0001 | 0.46 | 0.0002 | |
SPEI | 0.38 | 0.0011 | 0.42 | 0.0005 | |
TW | 0.32 | 0.022 | 0.28 | 0.035 |
Soil Type | Forest and Burns | Seedling Species Composition | Seedling Number (Thous. per ha) |
---|---|---|---|
Permafrost gley soils | Larch-dominant forest | 10 L * | 0.33 ± 0.06 *** (number of sites N = 13) |
Burns | 10 L + ** B | 40–500 (number of sites N = 12) |
Soil Type | Type of Forest and Burn | Seedling Species Composition | Seedlings Number (Thous. per ha) |
---|---|---|---|
Loamy soils | Larch sedge-type forest | P2S2L * | 0.13 |
Fireweed burn | 9L1SP + S and B | 5.2 ± 0.31 | |
Woodreed burn | Seedling number is negligible |
Soil Type | Type of Forest and Burn | Seedling Species Composition | Seedlings Number (Thous Per ha) |
---|---|---|---|
Loamy soils | Larch-dominant forest | 6L3As1B | 6.2 ± 1.2 |
Fireweed burn | 8B2L | 390 ± 87 | |
Woodreed burn | 6B3L1As | 17 ± 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharuk, V.I.; Shvetsov, E.G.; Buryak, L.V.; Golyukov, A.S.; Dvinskaya, M.L.; Petrov, I.A. Wildfires in the Larch Range within Permafrost, Siberia. Fire 2023, 6, 301. https://doi.org/10.3390/fire6080301
Kharuk VI, Shvetsov EG, Buryak LV, Golyukov AS, Dvinskaya ML, Petrov IA. Wildfires in the Larch Range within Permafrost, Siberia. Fire. 2023; 6(8):301. https://doi.org/10.3390/fire6080301
Chicago/Turabian StyleKharuk, Viacheslav I., Evgeny G. Shvetsov, Ludmila V. Buryak, Alexei S. Golyukov, Maria L. Dvinskaya, and Il’ya A. Petrov. 2023. "Wildfires in the Larch Range within Permafrost, Siberia" Fire 6, no. 8: 301. https://doi.org/10.3390/fire6080301
APA StyleKharuk, V. I., Shvetsov, E. G., Buryak, L. V., Golyukov, A. S., Dvinskaya, M. L., & Petrov, I. A. (2023). Wildfires in the Larch Range within Permafrost, Siberia. Fire, 6(8), 301. https://doi.org/10.3390/fire6080301