Burn Severity Effect on the Short-Term Functional Response of Quercus ilex after Fire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Wildfire, and Experimental Design
2.2. Plant Functional Monitoring
2.2.1. Water Status
2.2.2. Leaf Gas Exchange
2.2.3. Plant Growth
3. Statistical Analysis
4. Results
4.1. Meteorology
4.2. Water Status
4.3. Leaf Gas Exchange
4.4. Plant Growth
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Naveh, Z. The evolutionary significance of fire in the Mediterranean region. Vegetatio 1975, 29, 199–208. [Google Scholar] [CrossRef]
- Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Bowman, D.M.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [Green Version]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [Green Version]
- Ruffault, J.; Curt, T.; Moron, V.; Trigo, R.M.; Mouillot, F.; Koutsias, N.; Pimont, F.; Martin-StPaul, N.; Barbero, R.; Dupuy, J.-L. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. 2020, 10, 13790. [Google Scholar] [CrossRef]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.J.; van Wilgen, B.W. Fire and Plants; Chapman & Hall: London, UK, 1996. [Google Scholar]
- Keeley, J.E. Role of fire in seed germination of woody taxa in California chaparral. Ecology 1987, 68, 434–443. [Google Scholar] [CrossRef]
- Trabaud, L. Postfire plant community dynamics in the Mediterranean Basin. In The Role of Fire in Mediterranean-Type Ecosystems; Moreno, J.M., Oechel, W.C., Eds.; Springer: New York, NY, USA, 1994; pp. 1–15. [Google Scholar]
- Bond, W.J.; Midgley, J.J. Ecology of sprouting in woody plants: The persistence niche. Trends Ecol. Evol. 2001, 16, 45–51. [Google Scholar] [CrossRef]
- Klimesova, J.; Klimes, L. Bud banks and their role in vegetative regeneration—A literature review and proposal for simple classification and assessment. Perspect. Plant Ecol. Evol. Syst. 2007, 8, 115–129. [Google Scholar] [CrossRef]
- Moreira, B.; Tormo, J.; Pausas, J.G. To resprout or not to resprout: Factors driving intraspecific variability in resprouting. Oikos 2012, 121, 1577–1584. [Google Scholar] [CrossRef]
- Pate, J.S.; Froend, R.H.; Bowen, B.J.; Hansen, A.; Kuo, J. Seedling growth and storage characteristics of seeder and resprouter species of Mediterranean-type ecosystems of SW Australia. Ann. Bot. 1990, 65, 585–601. [Google Scholar] [CrossRef]
- Schwilk, D.W.; Ackerly, D.D. Is there a cost to resprouting? Seedling growth rate and drought tolerance in sprouting and nonsprouting Ceanothus (Rhamnaceae). Am. J. Bot. 2005, 92, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Ackerly, D. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol. Monogr. 2004, 74, 25–44. [Google Scholar] [CrossRef]
- Bell, D.T. Ecological response syndromes in the flora of southwestern Western Australia: Fire resprouters versus reseeders. Bot. Rev. 2001, 67, 417–440. [Google Scholar] [CrossRef]
- Vilagrosa, A.; Hernandez, E.I.; Luis, V.C.; Cochard, H.; Pausas, J.G. Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytol. 2014, 201, 1277–1288. [Google Scholar] [CrossRef]
- Bellingham, P.J.; Sparrow, A.D. Resprouting as a life history strategy in woody plant communities. Oikos 2000, 89, 409–416. [Google Scholar] [CrossRef]
- Clarke, P.J.; Lawes, M.; Midgley, J.J.; Lamont, B.; Ojeda, F.; Burrows, G.; Enright, N.; Knox, K. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytol. 2013, 197, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Pratt, R.B.; Keeley, J.E.; Jacobsen, A.L.; Ramirez, A.R.; Vilagrosa, A.; Paula, S.; Kaneakua-Pia, I.N.; Davis, S.D. Towards understanding resprouting at the global scale. New Phytol. 2016, 209, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Hinojosa, M.B.; Albert-Belda, E.; Gómez-Muñoz, B.; Moreno, J.M. High fire frequency reduces soil fertility underneath woody plant canopies of Mediterranean ecosystems. Sci. Total Environ. 2021, 752, 141877. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.; Pérez, B.; Moreno, J.M. Resprouting of the Mediterranean-type shrub Erica australis with modified lignotuber carbohydrate content. J. Ecol. 2003, 91, 348–356. [Google Scholar] [CrossRef]
- Enright, N.; Fontaine, J.; Westcott, V.; Lade, J.; Miller, B. Fire interval effects on persistence of resprouter species in Mediterranean-type shrublands. Plant Ecol. 2011, 212, 2071–2083. [Google Scholar] [CrossRef] [Green Version]
- Paula, S.; Ojeda, F. Belowground starch consumption after recurrent severe disturbance in three resprouter species of the genus Erica. Botany 2009, 87, 253–259. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A.; Fonturbel, T. Does fire severity influence shrub resprouting after spring prescribed burning? Acta Oecol. 2013, 48, 30–36. [Google Scholar] [CrossRef]
- Wright, B.R.; Clarke, P.J. Resprouting responses of Acacia shrubs in the Western Desert of Australia—Fire severity, interval and season influence survival. Int. J. Wildland Fire 2007, 16, 317–323. [Google Scholar] [CrossRef]
- de Rigo, D.; Caudullo, G. Quercus ilex in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the European Union: Luxembourg, 2016; pp. 152–153. [Google Scholar]
- Carcaillet, C.; Barakat, H.N.; Panaïotis, C.; Loisel, R. Fire and late-Holocene expansion of Quercus ilex and Pinus pinaster on Corsica. J. Veg. Sci. 1997, 8, 85–94. [Google Scholar] [CrossRef]
- de Román, M.; de Miguel, A.M. Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period. Mycorrhiza 2005, 15, 471–482. [Google Scholar] [CrossRef]
- Fleck, I.; Hogan, K.; Llorens, L.; Abadía, A.; Aranda, X. Photosynthesis and photoprotection in Quercus ilex resprouts after fire. Tree Physiol. 1998, 18, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Limousin, J.; Rambal, S.; Ourcival, J.; Rocheteau, A.; Joffre, R.; Rodriguez-Cortina, R. Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob. Chang. Biol. 2009, 15, 2163–2175. [Google Scholar] [CrossRef]
- AEMET. Agencia Estatal de Meteorología—Datos abiertos—AEMET OpenData. Available online: https://opendata.aemet.es/centrodedescargas/inicio,15/01/2023 (accessed on 12 June 2023).
- GEODE. Mapas IGME—Portal de Cartografía del IGME: GEODE—Cartografía Geológica Digital Continua a Escala 1:50,000. Available online: https://info.igme.es/cartografiadigital/geologica/Geode.aspx (accessed on 15 January 2023).
- Monroy, J. Un Año del Incendio Histórico Que Amenazó las Urbanizaciones; La Tribuna de Toledo: Toledo, Spain, 2020. [Google Scholar]
- Donovan, L.A.; Richards, J.H.; Linton, M.J. Magnitude and mechanisms of disequilibrium between predawn plant and soil water potentials. Ecology 2003, 84, 463–470. [Google Scholar] [CrossRef]
- Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, 4th ed.; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Pausas, J.G.; Keeley, J.E. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 2017, 22, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Clemente, A.S.; Rego, F.C.; Correia, O.A. Growth, water relations and photosynthesis of seedlings and resprouts after fire. Acta Oecol. 2005, 27, 233–243. [Google Scholar] [CrossRef]
- DeSouza, J.; Silka, P.; Davis, S. Comparative physiology of burned and unburned Rhus laurina after chaparral wildfire. Oecologia 1986, 71, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Fleck, I.; Diaz, C.; Pascual, M.; Iniguez, F. Ecophysiological differences between first-year resprouts after wildfire and unburned vegetation of Arbutus unedo and Coriaria myrtifolia. Acta Oecologica 1995, 16, 55–69. [Google Scholar]
- Parra, A.; Moreno, J.M. Post-fire environments are favourable for plant functioning of seeder and resprouter Mediterranean shrubs, even under drought. New Phytol. 2017, 214, 1118–1131. [Google Scholar] [CrossRef] [Green Version]
- Parra, A.; Moreno, J.M. Drought differentially affects the post-fire dynamics of seeders and resprouters in a Mediterranean shrubland. Sci. Total Environ. 2018, 626, 1219–1229. [Google Scholar] [CrossRef]
- McMichael, C.; Hope, A.; Roberts, D.; Anaya, M. Post-fire recovery of leaf area index in California chaparral: A remote sensing-chronosequence approach. Int. J. Remote Sens. 2004, 25, 4743–4760. [Google Scholar] [CrossRef]
- Rambal, S. Fire and water yield: A survey and predictions for global change. In The Role of Fire in Mediterranean-Type Ecosystems; Moreno, J.M., Oechel, W.C., Eds.; Springer: New York, NY, USA, 1994; pp. 96–116. [Google Scholar]
- Silva, J.S.; Rego, F.C.; Mazzoleni, S. Soil water dynamics after fire in a Portuguese shrubland. Int. J. Wildland Fire 2006, 15, 99–111. [Google Scholar] [CrossRef]
- Werner, C.; Schnyder, H.; Cuntz, M.; Keitel, C.; Zeeman, M.J.; Dawson, T.; Badeck, F.-W.; Brugnoli, E.; Ghashghaie, J.; Grams, T.E. Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences 2012, 9, 3083–3111. [Google Scholar] [CrossRef] [Green Version]
- Fleck, I.; Grau, D.; Sanjosé, M.; Vidal, D. Carbon isotope discrimination in Quercus ilex resprouts after fire and tree-fell. Oecologia 1996, 105, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Fleck, I.; Grau, D.; Sanjosé, M.; Vidal, D. Influence of fire and tree-fell on physiological parameters in Quercus ilex resprouts. Ann. Sci. For. 1996, 53, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Chapin, F.S., III; Schulze, E.; Mooney, H.A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 1990, 21, 423–447. [Google Scholar] [CrossRef]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Pratt, R.B.; Jacobsen, A.L.; Ramirez, A.R.; Helms, A.M.; Traugh, C.A.; Tobin, M.F.; Heffner, M.S.; Davis, S.D. Mortality of resprouting chaparral shrubs after a fire and during a record drought: Physiological mechanisms and demographic consequences. Glob. Chang. Biol. 2014, 20, 893–907. [Google Scholar] [CrossRef]
- Ramirez, A.; Pratt, R.; Jacobsen, A.; Davis, S. Exotic deer diminish post-fire resilience of native shrub communities on Santa Catalina Island, southern California. Plant Ecol. 2012, 213, 1037–1047. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 1997, 94, 13730–13734. [Google Scholar] [CrossRef]
- Villar, R.; Merino, J. Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytol. 2001, 151, 213–226. [Google Scholar] [CrossRef]
- Salleo, S.; Nardini, A.; Lo Gullo, M. Is sclerophylly of Mediterranean evergreens an adaptation to drought? New Phytol. 1997, 135, 603–612. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.; Diemer, M. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
Fire Severity (FS) | Time (T) | FS × T | ||||
---|---|---|---|---|---|---|
χ2 | p | χ2 | p | χ2 | p | |
Water status | ||||||
Soil moisture (SM) | 3.83 | 0.148 | 464.32 | <0.001 | 4.42 | 0.620 |
Predawn water potential (Ψpd) | 239.41 | <0.001 | 575.06 | <0.001 | 108.75 | <0.001 |
Leaf gas exchange | ||||||
Net carbon assimilation (A) | 4.79 | 0.091 | 104.99 | <0.001 | 4.17 | 0.654 |
Water use efficiency (WUEi) | 64.66 | <0.001 | 31.58 | <0.001 | 4.68 | 0.585 |
Plant growth | ||||||
Shoot growth (SG) | 56.21 | <0.001 | 62.13 | <0.001 | 67.85 | <0.001 |
Specific leaf area (SLA) | 136.81 | <0.001 | 16.75 | 0.001 | 21.80 | 0.001 |
Fire Severity (FS) | Pairwise Comparison Subsets | ||||
---|---|---|---|---|---|
χ2 | p | B− | LB+ | HB+ | |
Soil moisture (SM) | |||||
Aut | 2.01 | 0.367 | a | a | a |
Win | 2.68 | 0.262 | a | a | a |
Spr | 3.12 | 0.211 | a | a | a |
Sum | 4.80 | 0.091 | a | a | a |
Predawn water potential (Ψpd) | |||||
Aut | 105.34 | <0.001 | a | b | b |
Win | 25.89 | <0.001 | a | b | b |
Spr | 61.32 | <0.001 | a | b | c |
Sum | 144.25 | <0.001 | a | b | c |
Net carbon assimilation (A) | |||||
Aut | 2.14 | 0.343 | a | a | a |
Win | 3.06 | 0.216 | a | a | a |
Spr | 0.11 | 0.944 | a | a | a |
Sum | 28.72 | <0.001 | a | b | b |
Water use efficiency (WUEi) | |||||
Aut | 12.27 | 0.002 | a | a | b |
Win | 46.51 | <0.001 | a | b | c |
Spr | 24.54 | <0.001 | a | a | b |
Sum | 13.35 | 0.001 | a | a | b |
Shoot growth (SG) | |||||
Aut | 10.96 | 0.004 | a | b | ab |
Win | 0.03 | 0.983 | a | a | a |
Spr | 49.71 | <0.001 | a | a | b |
Sum | 15.99 | <0.001 | a | a | b |
Specific leaf area (SLA) | |||||
Aut | 86.28 | <0.001 | a | b | c |
Win | 25.31 | <0.001 | a | b | b |
Spr | 13.20 | 0.001 | a | ab | b |
Sum | 57.27 | <0.001 | a | b | c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra, A.; Hinojosa, M.B. Burn Severity Effect on the Short-Term Functional Response of Quercus ilex after Fire. Fire 2023, 6, 286. https://doi.org/10.3390/fire6080286
Parra A, Hinojosa MB. Burn Severity Effect on the Short-Term Functional Response of Quercus ilex after Fire. Fire. 2023; 6(8):286. https://doi.org/10.3390/fire6080286
Chicago/Turabian StyleParra, Antonio, and M. Belén Hinojosa. 2023. "Burn Severity Effect on the Short-Term Functional Response of Quercus ilex after Fire" Fire 6, no. 8: 286. https://doi.org/10.3390/fire6080286
APA StyleParra, A., & Hinojosa, M. B. (2023). Burn Severity Effect on the Short-Term Functional Response of Quercus ilex after Fire. Fire, 6(8), 286. https://doi.org/10.3390/fire6080286