Regional Drivers behind the Burning of Remanent Forests in Michoacán Avocado Belt, Central Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Input Data
2.3. Characterization of the Components of the Fire Regime
2.4. Data Mining for the Atmospheric Conditions of Each Fire and the Region Overall
2.5. Distance Analysis
2.6. Atmospheric Comparisons and Analysis of the Influence of ENSO
3. Results
3.1. Eighteen Years of Fires
3.2. Highly Atmospheric-Sensitive Fires
3.3. Antrhopogenic Fires and Illegal Burnings
4. Discussion
4.1. The Cleaner the Inputs, the Clearer the Outputs
4.2. Social Drivers in MAB
4.3. Atmospheric Controllers in MAB
4.4. Charboiled Guacamole?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Group | Subgroup | Class | Code 1 | Annual Average Temperature | Total Annual Precipitation | Winter Rainfall | Orch. % 2 |
---|---|---|---|---|---|---|---|
Tropical | Semi-humid tropical | Summer rainfalls | Aw0(w) | >22 °C | ~950 mm | <5% | 2.76 |
Summer rainfalls | Aw1(w) | >22 °C | >1084 mm | <5% | 19.99 | ||
Subtropical | Humid subtropical | Summer rainfalls | A(C)(m)(w) | 18–22 °C | 640–720 mm | <5% | 25.21 |
Semi-humid subtropical | Summer rainfalls | (A)C(w1)(w) | >18 °C | >778 mm | <5% | 4.11 | |
Summer rainfalls | (A)C(w2)(w) | >18 °C | >995 mm | <5% | 16.84 | ||
Temperate | Humid temperate | Summer rainfalls | C(m)(w) | 12–18 °C | 520–640 mm | <5% | 6.81 |
Semi-humid temperate | Summer rainfalls | C(w1)(w) | 12–18 °C | 518–995 mm | <5% | 14.04 | |
Summer rainfalls | C(w2)(w) | 12–18 °C | >664 mm | <5% | 1.44 | ||
Subalpine | Humid subalpine | Summer rainfalls | C(E)(m)(w) | 5–12 °C | 380–520 mm | <5% | 0.04 |
Semi-humid subalpine | Summer rainfalls | C(E)(w2)(w) | 5–12 °C | >276 mm | <5% | 8.75 |
Municipality | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Total | Percent of total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acuitzio | 10 | 6 | 28 | 24 | 5 | 17 | 7 | 9 | 6 | 4 | 1 | 5 | 1 | 6 | 2 | 1 | 4 | 5 | 141 | 2.6% |
Apatzingán | 1 | 3 | 3 | 8 | 6 | 13 | 14 | 11 | 7 | 12 | 3 | 2 | 4 | 1 | 0 | 2 | 0 | 1 | 91 | 1.7% |
Ario | 17 | 12 | 15 | 17 | 24 | 26 | 44 | 37 | 63 | 46 | 25 | 36 | 28 | 45 | 25 | 21 | 25 | 18 | 524 | 9.6% |
Cotija | 4 | 9 | 6 | 12 | 6 | 7 | 10 | 3 | 5 | 8 | 5 | 7 | 1 | 2 | 0 | 3 | 3 | 0 | 91 | 1.7% |
Los Reyes | 27 | 6 | 18 | 28 | 24 | 34 | 29 | 23 | 27 | 19 | 19 | 29 | 15 | 29 | 19 | 7 | 15 | 21 | 389 | 7.1% |
Peribán | 4 | 5 | 8 | 8 | 3 | 18 | 14 | 7 | 8 | 1 | 2 | 5 | 4 | 2 | 0 | 3 | 3 | 7 | 102 | 1.9% |
S. Escalante | 21 | 2 | 12 | 43 | 33 | 36 | 33 | 28 | 33 | 14 | 8 | 27 | 14 | 23 | 6 | 3 | 25 | 30 | 391 | 7.1% |
Tangamand. | 4 | 0 | 0 | 4 | 2 | 1 | 17 | 10 | 4 | 7 | 1 | 18 | 27 | 17 | 13 | 6 | 16 | 15 | 162 | 3.0% |
Tangancícua. | 22 | 4 | 7 | 15 | 7 | 17 | 26 | 5 | 10 | 10 | 5 | 20 | 9 | 9 | 5 | 0 | 9 | 17 | 197 | 3.6% |
Taretan | 5 | 1 | 2 | 1 | 5 | 3 | 6 | 9 | 6 | 3 | 1 | 7 | 6 | 12 | 3 | 0 | 8 | 8 | 86 | 1.6% |
Tingambato | 18 | 11 | 18 | 14 | 14 | 12 | 34 | 35 | 49 | 22 | 13 | 19 | 14 | 42 | 19 | 2 | 11 | 13 | 360 | 6.6% |
Tingüindín | 7 | 2 | 6 | 7 | 4 | 7 | 9 | 7 | 6 | 10 | 6 | 4 | 4 | 3 | 4 | 3 | 4 | 3 | 96 | 1.7% |
Tocumbo | 7 | 8 | 3 | 4 | 21 | 8 | 18 | 8 | 4 | 9 | 7 | 5 | 8 | 4 | 4 | 6 | 11 | 7 | 142 | 2.6% |
Turicato | 1 | 1 | 1 | 6 | 14 | 15 | 12 | 7 | 5 | 2 | 0 | 0 | 2 | 3 | 1 | 2 | 5 | 0 | 77 | 1.4% |
Tuxpan | 7 | 15 | 5 | 12 | 6 | 7 | 17 | 10 | 23 | 7 | 8 | 30 | 12 | 13 | 7 | 1 | 11 | 22 | 213 | 3.9% |
Uruapan | 42 | 32 | 39 | 37 | 59 | 61 | 80 | 54 | 125 | 110 | 49 | 107 | 90 | 113 | 50 | 38 | 64 | 75 | 1225 | 22.3% |
Villa Madero | 13 | 3 | 18 | 24 | 10 | 22 | 13 | 15 | 23 | 32 | 13 | 20 | 29 | 31 | 11 | 4 | 14 | 9 | 304 | 5.5% |
Ziracuaretiro | 26 | 27 | 38 | 27 | 39 | 43 | 48 | 22 | 44 | 28 | 23 | 37 | 27 | 29 | 17 | 6 | 25 | 17 | 523 | 9.5% |
Zitácuaro | 25 | 18 | 14 | 23 | 14 | 19 | 14 | 21 | 41 | 28 | 18 | 19 | 39 | 30 | 14 | 5 | 8 | 22 | 372 | 6.8% |
Total | 261 | 165 | 241 | 314 | 296 | 366 | 445 | 321 | 489 | 372 | 207 | 397 | 334 | 414 | 200 | 113 | 261 | 290 | 5486 |
“El Niño” | “La Niña” | Neutral Month | |
---|---|---|---|
Burned area (ha) | 93.9 ± 317.3 | 218.2 ± 425.3 | 453.9 ± 780.0 |
Number of fires | 9 ± 20 | 23 ± 40 | 35 ± 46 |
Rate of spread 1 | 2.06 ± 3.16 | 3.34 ± 4.27 | 4.62 ± 5.03 |
Rate of spread 2 | 0.23 ± 0.42 | 0.34 ± 0.63 | 0.31 ± 0.50 |
Percentage of trees burned | 0.7 ± 1.7 | 2.4 ± 3.4 | 3.6 ± 5.5 |
Anthropogenic Factor | Main Roads | Agricultural Frontier | Avocado Orchards | Human Settlements | Main Roads + Avocado Orchards. |
---|---|---|---|---|---|
Model | F~Dr * | F~Da ― | F~Do * | F~Dh ― | F~Dm + Do *** |
Intercept | 68.81 | 69.09 | 69.48 | 68.91 | 68.93 |
Slope | 3.00 × 10−5 | 2.28 × 10−5 | −1.98 × 10−5 | 2.19 × 10−5 | 4.86 × 10−5 |
Residual deviance | 1,799,335 | 1,803,300 | 1,800,199 | 1,802,057 | 1,788,979 |
Null deviance | 1,804,564 | 1,804,564 | 1,804,564 | 1,804,564 | 1,804,564 |
d.f. | 2289 | 2289 | 2289 | 2289 | 2288 |
D2% | 0.242 | 0.070 | 0.290 | 0.139 | 0.864 |
References
- Food and Agriculture Organization of the United Nations (FAO). June 2022. FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 26 August 2022).
- De la Tejera Hernández, B.; Santos, O.Á.; Santamaría, Q.H.; Gómez, M.T.; Olivares, V.C. El oro verde en Michoacán: ¿un Crecimiento sin Fronteras? Acercamiento a la Problemática y Retos del Sector Aguacatero Para el Estado y la Sociedad; Economía y Sociedad; Universidad Michoacana de San Nicolás de Hidalgo: Morelia, México, 2013; Volume 17, pp. 15–40. [Google Scholar]
- SIAP (n.d.). Anuario Estadístico de la Producción Agrícola [online]. Available online: https://bit.ly/2WtexHT (accessed on 16 December 2018).
- SIAP (2020). Balanza Comercial Agropecuaria y Agroindustrial Noviembre 2019 [online]. Servicio de Información Agroalimentaria y Pesquera. Available online: https://bit.ly/2L3CqAr (accessed on 2 April 2020).
- Gutiérrez-Contreras, M.; Lara-Chávez, M.B.N.; Guillén-Andrade, H.; Chávez-Bárcenas, A.T. Agroecología de la Franja Aguacatera en Michoacán, México; Asociación Interciencia: Caracas, Venezuela, 2010; Volume 35, pp. 647–653. [Google Scholar]
- APEAM AC. Avocadoland (Primer Episodio) [Video]. YouTube. Available online: https://bit.ly/2yoIktk (accessed on 13 November 2017).
- Bravo-Espinosa, M.; Mendoza, M.E.; Carlón Allende, T.; Medina, L.; Sáenz-Reyes, J.T.; Páez, R. Effects of converting forest to avocado orchards on topsoil properties in the trans-Mexican volcanic system, Mexico. Land Degrad. Dev. 2014, 25, 452–467. [Google Scholar] [CrossRef]
- Reyes González, A. Análisis Comparativo de los Patrones Espaciales de la Deforestación en una Zona Tropical y una Templada de Michoacán. Master’s Thesis, Universidad Nacional Autónoma de México, Facultad de Filosofía y Letras, Mexico City, México, 2014. [Google Scholar]
- Ortiz Paniagua, C.F. Avocado Export Agriculture and Tourism in Michoacan. A Perspective from Social Preferences by Ecosystems Services. El Periplo Sustentable 2017, 33, 452–485. [Google Scholar]
- Cho, K.; Goldstein, B.; Gounaridis, D.; Newell, J.P. Where does your guacamole come from? Detecting deforestation associated with the export of avocados from Mexico to the United States. J. Environ. Manag. 2021, 278, 111482. [Google Scholar] [CrossRef] [PubMed]
- De la Vega-Rivera, A.; Merino-Pérez, L. Socio-environmental impacts of the avocado boom in the Meseta Purepecha, Michoacan, Mexico. Sustainability 2021, 13, 7247. [Google Scholar] [CrossRef]
- Kennedy, L. The Avocado War (season 2, episode 1) [streaming series episode]. In Mussman, J. (executive producer), Rotten. Netflix & Zero Point Zero Production. Available online: https://bit.ly/35CmNct (accessed on 4 October 2019).
- Morales Manilla, L.M.; Cuevas García, G. Informe Final: “Inventarios 1974–2007, e impacto ambiental regional del cultivo del aguacate en el estado de Michoacán (Etapa I)”; CIGA, UNAM–Fundación Produce Michoacán, Abril: Morelia, Michoacán, México, 2011; 138 p, Available online: https://bit.ly/3XDhiUn (accessed on 26 August 2020).
- Budds, J. El acceso a los recursos de agua de los agricultores en el valle de La Ligua, Chile. Rev. De Derecho Adm. Econ. 2003, 2, 371–379. [Google Scholar]
- Budds, J. La demanda, evaluación y asignación del agua en el contexto de escasez: Un análisis del ciclo hidrosocial del valle del río La Ligua, Chile. Rev. De Geogr. Norte Gd. 2012, 52, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Mejía, D.; Levers, C.; Mas, J.F. Spatial patterns and determinants of avocado frontier dynamics in Mexico. Reg. Environ. Change 2022, 22, 1–19. [Google Scholar] [CrossRef]
- Sáenz-Ceja, J.E.; Pérez-Salicrup, D.R. Avocado Cover Expansion in the Monarch Butterfly Biosphere Reserve, Central Mexico. Conservation 2021, 1, 299–310. [Google Scholar] [CrossRef]
- Amezcua Cruzaley, S. Las Coníferas de Michoacán; Comisión Forestal del Estado de Michoacán (COFOM): Morelia, Michoacán, México, 2008. [Google Scholar]
- Arizaga, S.; Martínez-Cruz, J.; Salcedo-Cabrales, M.; Bello-González, M.A. Manual de la Biodiversidad de Encinos Michoacanos; Instituto Nacional de Ecología: Mexico City, México, 2009. [Google Scholar]
- Monterrubio-Rico, T.C.; Charre-Medellín, J.F.; Pérez-Martínez, M.Z.; Mendoza, E. Use of remote cameras to evaluate ocelot (Leopardus pardalis) population parameters in seasonal tropical dry forests of central-western Mexico. Mammalia 2018, 82, 113–122. [Google Scholar] [CrossRef]
- Vilar, V.; Gohari, A.; Montel, N.; Roussel, V. Les Avocats du diable. In Envoyé Spécial (TV Show) [video]. YouTube; French 2. Available online: https://bit.ly/35zfv9D (accessed on 21 September 2017).
- Barsimantov, J.; Navia Antezana, J. Forest cover change and land tenure change in Mexico’s avocado region: Is community forestry related to reduced deforestation for high-value crops? Appl. Geogr. 2012, 32, 844–853. [Google Scholar] [CrossRef]
- Gutiérrez, M.F.; Pérez-Salicrup, D.R.; Sandoval, A.F.; Arzeta, S.N.; Mas, J.F.; Ramírez, M.I.R. Modeling anthropic factors as drivers of wildfire occurrence at the Monarch Butterfly Biosphere. Madera Y Bosques 2018, 24, 23. [Google Scholar]
- Pérez-Medrano, R.; COFOM, Morelia, Michoacán, México. Personal communication, 2018.
- CEDDRSSA. Caso de Exportación: El Aguacate; Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria: Mexico City, Mexico, 2017. [Google Scholar]
- DOF. Ley General de Desarrollo Forestal Sustentable; Cámara de Diputados del H. Congreso de la Unión: Mexico City, México, 2018. [Google Scholar]
- Briones-Herrera, C.I.; Vega-Nieva, D.J.; Monjarás-Vega, N.A.; Flores-Medina, F.; Lopez-Serrano, P.M.; Corral-Rivas, J.J.; Carrillo-Parra, A.; Pulgarin Gámiz, M.A.; Alvarado-Celestino, E.; González-Cabán, A.; et al. Modeling and Mapping Forest Fire Occurrence from Aboveground Carbon Density in Mexico. Forests 2019, 10, 402. [Google Scholar] [CrossRef] [Green Version]
- Medellín, J.F.; Mas, J.F.; Chang-Martínez, L.A. Potential expansion of Hass avocado cultivation under climate change scenarios threatens Mexican mountain ecosystems. Crop Pasture Sci. 2021, 72, 291–301. [Google Scholar] [CrossRef]
- Olivares-Martínez, L.D.; Miguel Hernández University, Elche, Spain. Personal communication, 2015.
- INEGI. Conjunto de Datos Geográficos de las Cartas de Climas, Precipitación Total Anual y Temperatura Media Anual [Map]; Scale 1:1,000,000; Series I (Continuo Nacional); Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 1985. [Google Scholar]
- Breña-Naranjo, J.A.; Pedrozo-Acuña, A.; Pozos-Estrada, O.; Jiménez-López, S.A.; López-López, M.R. The contribution of tropical cyclones to rainfall in Mexico. Phys. Chem. Earth 2015, 83–84, 111–122. [Google Scholar] [CrossRef]
- Sáenz-Ceja, J.E.; Pérez-Salicrup, D.R. Modification of fire regimes inferred from the age structure of two conifer species in a tropical montane forest, Mexico. Forests 2020, 11, 1193. [Google Scholar] [CrossRef]
- INEGI. Uso del Suelo y Vegetación de México, (Serie VI), INEGI, 2014–2017; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2018; Electronic format: SHP; Scale 1:50,000; Available online: https://bit.ly/2zUWOkP (accessed on 26 August 2020).
- INEGI. Conjunto de Datos Geográficos de las Cartas Topográficas; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2018; Electronic format: SHP; Scale 1:50,000; Available online: https://bit.ly/3c3oAKd (accessed on 26 August 2020).
- Rodríguez-Trejo, D.A.; Fulé, P.Z. Fire ecology of Mexican pines and a fire management proposal. Int. J. Wildland Fire 2003, 12, 23–27. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Ramos-Gómez, M.; Cortés-Montaño, C.; Miller, A.M. Fire regime in a Mexican forest under indigenous resource management. Ecol. Appl. 2011, 21, 764–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez Martínez, G.; Orozco Hernández, E.; Ordóñez Días, J.A.B.; Camacho Sanabria, J.M. Forest fire regime and distribution in the State of Mexico (2000 to 2011). Rev. Mex. De Cienc. For. 2015, 6, 92–107. [Google Scholar]
- Sáenz-Ceja, J.E.; Pérez-Salicrup, D.R. Dendrochronological reconstruction of fire history in coniferous forests in the Monarch Butterfly Biosphere Reserve, Mexico. Fire Ecol. 2019, 15, 18. [Google Scholar] [CrossRef] [Green Version]
- Agee, J.K. Fire Ecology of Pacific Northwest Forests; Island Press: Washington, DC, USA, 1996. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 26 August 2020).
- QGIS Development Team. QGIS Geographic Information System v3.10.4-A Coruña. Open Source Geospatial Foundation Project. 2020. Available online: http://qgis.osgeo.org (accessed on 26 August 2020).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Evapotranspiración del Cultivo: Guías Para la Determinación de los Requerimientos de agua de los Cultivos; FAO: Roma, Italy, 2006; Volume 56, ISBN 92-5-304219-2. [Google Scholar]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Espino, J.; (CONAFOR, Morelia, Michoacán, México). Personal communication, 2018.
- Matin, M.A.; Chitale, V.S.; Murthy, M.S.; Uddin, K.; Bajracharya, B.; Pradhan, S. Understanding forest fire patterns and risk in Nepal using remote sensing, geographic information system, and historical fire data. Int. J. Wildland Fire 2017, 26, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Niklasson, M.; Granström, A. Numbers and sizes of fires: Long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 2000, 81, 1484–1499. [Google Scholar] [CrossRef]
- Román-Cuesta, R.M.; Gracia, M.; Retana, J. Environmental and human factors influencing fire trends in ENSO and non-ENSO years in tropical Mexico. Ecol. Appl. 2003, 13, 1177–1192. [Google Scholar] [CrossRef]
- Monjarás Vega, N.A.; Vega Nieva, D.J.; Corral Rivas, J.J.; López Serrano, P.M. Modelización y mapeo del riesgo de incendios forestales a partir de la distancia a carreteras y poblados en México. In Aproximaciones Tecnológicas de Vanguardia en la Geomática, Geodesia y Geoinformática en México; Medrano, C.N., Cárdenas, O.R., Salado, C.A., Tristán, A.C., Eds.; Universidad Autónoma de San Luis Potosí: San Luis Potosí, México, 2019; pp. 79–96. [Google Scholar]
- Narayanaraj, G.; Wimberly, M.C. Influences of forest roads on the spatial patterns of human-and lightning-caused wildfire ignitions. Appl. Geogr. 2012, 32, 878–888. [Google Scholar] [CrossRef]
- Abdi, O.; Kamkar, B.; Shirvani, Z.; Teixeira da Silva, J.A.; Buchoithner, M.F. Spatial-statistical analysis of factors determining forest fire: A case study from Golestan, Northeast Iran. Geomat. Nat. Hazards Risk 2018, 9, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Peralta-Hernández, A.R.; Barba-Martínez, L.R.; Magaña-Rueda, V.O.; Matthias, A.D.; Luna-Ruíz, J.J. Temporal and spatial behavior of temperature and precipitation during the canícula (midsummer drought) under El Niño conditions in central México. Atmos 2008, 21, 265–280. [Google Scholar]
- Magaña Rueda, V.; Pérez, J.L.; Conde, C. El fenómeno de El Niño y la oscilación del sur. Sus impactos en México [online]. Ciencias 1998, 51, 14–18. Available online: https://bit.ly/2W6w3T3 (accessed on 26 August 2020).
- Bravo Cabrera, J.L.; Azpra Romero, E.; Zarraluqui Such, V.; Gay García, C.; Porrúa, F.E. Significance tests for the relationship between" El Niño" phenomenon and precipitation in Mexico. Geofísica Int. 2010, 49, 245–261. [Google Scholar] [CrossRef]
- Maldonado Aranda, S. Stories of drug trafficking in rural Mexico: Territories, drugs and cartels in Michoacán. Eur. Rev. Lat. Am. Caribb. Stud./Rev. Eur. De Estud. Latinoam. Y Del Caribe 2013, 94, 43–66. [Google Scholar] [CrossRef] [Green Version]
- Contreras Peña, L.V. El Desarrollo del Capitalismo Monopolista Transnacional en la Agricultura en Michoacán. Master’s Thesis, Universidad Autónoma Chapingo, Dirección de Centros Regionales Universitarios, Texcoco, Mexico, 2015. [Google Scholar]
- Reforma. Utilizan Plagiarios Datos del Gobierno. REFORMA. Available online: https://bit.ly/2xLdcDN (accessed on 29 October 2017).
- Ornelas, R.G. Organized Crime in Michoacán: Rent-Seeking Activities in the Avocado Export Market. Politics Policy 2018, 46, 759–789. [Google Scholar] [CrossRef]
- García-Ponce, O.; Lajous, A. How Does a Drug Cartel Become a Lime Cartel? The Washington Post: Washington, DC, USA; Available online: https://www.washingtonpost.com/news/monkey-cage/wp/2014/05/20/how-does-a-drug-cartel-become-a-lime-cartel/ (accessed on 20 May 2014).
- Navarro, C. Environmental Concerns Accompany Surge in Demand for Mexican Avocados; LADB: Albuquerque, NM, USA, 2016. [Google Scholar]
Fires on MAB | MAB Overall | |||||
---|---|---|---|---|---|---|
x ± s | n | Distribution | x ± s | n | Distribution | |
Minimum temperature (°C) | 10.0 ± 4.7 | 3291 | Gamma | 11.2 ± 2.4 | 6573 | Gamma |
Maximum temperature (°C) | 28.4 ± 5.0 | 3283 | Gamma | 27.3 ± 3.8 | 6573 | Gamma |
Precipitation (mm) | 0.29 ± 2.36 | 3355 | Exponential | 1.91 ± 40 | 6573 | Exponential |
Precipitation last 30 days (mm) | 5.87 ± 20.60 | 3366 | Exponential | — | — | — |
Relative humidity (%) | 55.7 ± 8.2 | 3283 | Gamma | 60.0 ± 7.1 | 6573 | Gamma |
Min. T °C | Max. T °C | Prec. mm | ENSO KW | |
---|---|---|---|---|
Burned area | — | *** | *** | *** “La Niña” a “El Niño” a Neutral month b |
Number of fires | *** | *** | *** | *** “La Niña” a “El Niño” a Neutral month b |
Rate of spread | *** | *** | *** | *** “La Niña” ab “El Niño” a Neutral month b |
Percentage of trees burned | *** | *** | *** | *** “La Niña” ab “El Niño” a Neutral month b |
ENSO KW | — | *** “La Niña” a “El Niño” a Neutral month b | * “La Niña” a “El Niño” ab Neutral month b |
Distance to: | Human Settlements | Main Roads | Avocado Orchards | Agricultural Frontier |
---|---|---|---|---|
U statistic | 6,701,067 | 6,372,718 | 6,729,671 | 9,857,362 |
p-value | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Median | 1356 m | 1168 m | 309 m | 257 m |
Percentile 80 | 2690 m | 2775 m | 2607 m | 977 m |
Percentile 90 | 3465 m | 3779 m | 5005 m | 1614 m |
Percentile 95 | 4258 m | 4598 m | 7179 m | 2219 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivares-Martinez, L.D.; Gomez-Tagle, A.; Pérez-Salicrup, D.R. Regional Drivers behind the Burning of Remanent Forests in Michoacán Avocado Belt, Central Mexico. Fire 2023, 6, 81. https://doi.org/10.3390/fire6030081
Olivares-Martinez LD, Gomez-Tagle A, Pérez-Salicrup DR. Regional Drivers behind the Burning of Remanent Forests in Michoacán Avocado Belt, Central Mexico. Fire. 2023; 6(3):81. https://doi.org/10.3390/fire6030081
Chicago/Turabian StyleOlivares-Martinez, Luis D., Alberto Gomez-Tagle, and Diego R. Pérez-Salicrup. 2023. "Regional Drivers behind the Burning of Remanent Forests in Michoacán Avocado Belt, Central Mexico" Fire 6, no. 3: 81. https://doi.org/10.3390/fire6030081
APA StyleOlivares-Martinez, L. D., Gomez-Tagle, A., & Pérez-Salicrup, D. R. (2023). Regional Drivers behind the Burning of Remanent Forests in Michoacán Avocado Belt, Central Mexico. Fire, 6(3), 81. https://doi.org/10.3390/fire6030081