Combustion and Stubble Burning: A Major Concern for the Environment and Human Health
Abstract
:1. Introduction
2. Combustion and Stubble Burning Effluent Emissions
2.1. Combustion and Stubble Burning Contribution
2.2. Dispersal of the Combustion and Stubble Burning Effluents
3. Health Concerns and Impact on the Environment
3.1. Environment Impact on Biotic and Abiotic Factors of the Ecosystem
3.2. Reaction Processes between Effluents and Environment
4. Aftermath of Combustion and Stubble Burning
5. Combating Alternatives and Strategies
6. Opinion
7. Future Challenges and Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, S.K.S.; Das, D.; Kim, S.C.; Cho, B.-K.; Lee, J.-K.; Kalia, V.C. Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew. Sustain. Energy Rev. 2021, 150, 111491. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P. Research and Data to Make Progress against the World’s Largest Problems. 2022. Available online: OurWorldInData.org (accessed on 25 January 2023).
- Lewtas, J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. Rev. Mutat. Res. 2007, 636, 95–133. [Google Scholar] [CrossRef] [PubMed]
- Abdurrahman, M.I.; Chaki, S.; Saini, G. Stubble burning: Effects on health & environment, regulations and management practices. Environ. Adv. 2020, 2, 100011. [Google Scholar]
- Yadav, R.S. Stubble Burning: A Problem for the Environment, Agriculture, and Humans. Down to Earth. 4 June 2019. Available online: https://www.downtoearth.org.in/blog/agriculture/stubble-burning-a-problem-for-the-environment-agriculture-and-humans-64912 (accessed on 25 January 2023).
- Stubble Burning is So Bad in Punjab, That 84% Population is Having Health Issues. Available online: https://www.indiatimes.com/news/india/stubble-burning-is-so-bad-in-punjab-that-84-of-population-is-having-health-issues-331980.html (accessed on 25 January 2023).
- Vishnoi, A. Magnitude of Stubble Problem Grows Larger: Govt Review. Available online: https://economictimes.indiatimes.com/news/india/magnitude-of-stubble-problem-grows-larger-govt-review/articleshow/94571984.cms?from=mdr (accessed on 25 January 2023).
- Omar, P. Stubble Burning Share Rises to 26% in Delhi’s Pollution, AQI Points ‘Severe’. Available online: https://www.livemint.com/news/india/stubble-burning-share-rises-to-26-in-delhi-s-pollution-aqi-points-severe-11667131222272.html (accessed on 25 January 2023).
- Patel, S.K.S.; Shanmugam, R.; Lee, J.-K.; Kalia, V.C.; Kim, I.-W. Biomolecules production from greenhouse gases by methanotrophs. Indian J. Microbiol. 2021, 61, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.S.; Gupta, R.K.; Kalia, V.C.; Lee, J.-K. Synthetic design of methanotroph co-cultures and their immobilization within polymers containing magnetic nanoparticles to enhance methanol production from wheat straw-based biogas. Bioresour. Technol. 2022, 364, 128032. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.S.; Kalia, V.C.; Lee, J.-K. Integration of biogas derived from dark fermentation and anaerobic digestion of biowaste to enhance methanol production by methanotrophs. Bioresour. Technol. 2023, 367, 128427. [Google Scholar] [CrossRef] [PubMed]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K.; et al. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- Kravchenko, J.; Ruhl, L.S. Coal Combustion Residuals and Health. In Practical Applications of Medical Geology; Siegel, M., Selinus, O., Finkelman, R., Eds.; Springer: Cham, Switzerland, 2021; pp. 429–474. [Google Scholar]
- Corsini, E.; Marinovich, M.; Vecchi, R. Ultrafine particles from residential biomass combustion: A review on experimental data and toxicological response. Int. J. Mol. Sci. 2019, 20, 4992. [Google Scholar] [CrossRef] [Green Version]
- Balmes, J.R. Household air pollution from domestic combustion of solid fuels and health. J. Allergy Clin. Immunol. Pract. 2019, 143, 1979–1987. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Belcher, C.M. The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire. Phil. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, F.H.; Melody, S.; Bowman, D.M. The pyrohealth transition: How combustion emissions have shaped health through human history. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardil, A.; de-Miguel, S.; Silva, C.A.; Reich, P.B.; Calkin, D.E.; Brancalion, P.H.S.; Vibrans, A.C.; Gamarra, J.G.P.; Zhou, M.; Pijanowski, B.C. Recent deforestation drove the spike in Amazonian fires. Environ. Res. Lett. 2020, 15, 121003. [Google Scholar] [CrossRef]
- Rein, G. Smoldering combustion. In SFPE Handbook of Fire Protection Engineering; Hurley, M.J., Ed.; Springer: New York, NY, USA, 2016; pp. 581–603. [Google Scholar]
- Ohlemiller, T.J. Modeling of smoldering combustion propagation. Prog. Energy Combust. Sci. 1985, 11, 277–310. [Google Scholar] [CrossRef]
- T’ien, J.S.; Shih, H.; Jiang, C.; Ross, H.D.; Miller, F.J. Mechanisms of Flame Spread 14 and Smolder Wave Propagation. In Chapter 5 in Microgravity Combustion: Fire in Free Fall; Ross, H.D., Ed.; Academic Press: Cambridge, MA, USA, 2001; pp. 299–417. [Google Scholar]
- Babrauskas, V. Ignition Handbook; Fire Science Publishers: Issaquah, WA, USA, 2003. [Google Scholar]
- Torero, J.L.; Gerhard, J.I.; Martins, M.F.; Zanoni, M.A.; Rashwan, T.L.; Brown, J.K. Processes defining smouldering combustion: Integrated review and synthesis. Prog. Energy Combus. Sci. 2020, 81, 100869. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Liu, Z.; Ballantyne, A.P.; Cooper, L.A. Biophysical feedback of global forest fires on surface temperature. Nat. Commun. 2019, 10, 214. [Google Scholar] [CrossRef] [Green Version]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global trends of forest loss due to fire from 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- MoEFCC. Forest Fire Activities. In Ministry of Environment Forest and Climate Change; Government of India: New Delhi, India, 2021. Available online: https://fsi.nic.in/forest-fire-activities (accessed on 25 January 2023).
- Boer, M.M.; de Dios, R.V.; Bradstock, R.A. Unprecedented burn area of australian mega forest fires. Nat. Clim. Chang. 2020, 10, 170. [Google Scholar] [CrossRef]
- Manzello, S.L.; Suzuki, S.; Gollner, M.J.; Fernandez-Pello, A.C. Role of firebrand combustion in large outdoor fire spread. Prog. Energy Combust. Sci. 2020, 76, 100801. [Google Scholar] [CrossRef]
- Nigl, T.; Rübenbauer, W.; Pomberger, R. Cause-oriented investigation of the fire incidents in Austrian waste management systems. Detritus 2020, 9, 213–220. [Google Scholar]
- Mazzucco, W.; Costantino, C.; Restivo, V.; Alba, D.; Marotta, C.; Tavormina, E.; Cernigliaro, A.; Macaluso, M.; Cusimano, R.; Grammauta, R.; et al. The management of health hazards related to municipal solid waste on fire in Europe: An environmental justice issue? Int. J. Environ. Res. Public Health. 2020, 17, 6617. [Google Scholar] [CrossRef] [PubMed]
- Fogelman, R. Is the Recycling Industry Facing a Fire Epidemic? 2018. Available online: https://www.recyclingproductnews.com/article/27240/is-the-recycling-industry-facing-a-fire-epidemic (accessed on 25 January 2023).
- Wiwanitkit, V. Thai waste landfill site fire crisis, particular matter 10, and risk of lung cancer. J. Cancer Res. Ther. 2016, 2, 1088–1089. [Google Scholar] [CrossRef] [PubMed]
- Yadav, I.C.; Devi, N.L. Biomass burning, regional air quality, and climate change. In Encyclopedia of Environmental Health, 2nd ed.; Nriagu, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 386–391. [Google Scholar]
- Liu, T.; Marlier, M.E.; Karambelas, A.; Jain, M.; Singh, S.; Singh, M.K.; Gautam, R.; DeFries, R.S. Missing emissions from post-monsoon agricultural fires in northwestern India: Regional limitations of MODIS burned area and active fire products. Environ. Res. Commun. 2019, 1, 011007. [Google Scholar] [CrossRef]
- Lan, R.; Eastham, S.D.; Liu, T.; Norford, L.K.; Barrett, S.R. Air quality impacts of crop residue burning in India and mitigation alternatives. Nat. Commun. 2022, 13, 6537. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Kumar, S.; Mor, S. Long term assessment of firework emissions and air quality during Diwali festival and impact of 2020 fireworks ban on air quality over the states of Indo Gangetic Plains airshed in India. Atmos. Environ. 2022, 285, 119223. [Google Scholar] [CrossRef]
- Hull, T.R.; Stec, A.A. Generation, sampling and quantification of toxic combustion products. In Toxicology, Survival and Health Hazards of Combustion Products; Purser, D.A., Maynard, R.L., Wakefield, J., Eds.; Royal Society of Chemistry: Cambridge, UK, 2015; Chapter 5; pp. 108–138. [Google Scholar]
- Abdallah, T. Sustainable Mass Transit: Challenges and Opportunities in Urban Public Transportation; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–218. [Google Scholar]
- Reitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y.; Agarwal, A.K.; Arcoumanis, D.; Assanis, D.; Bae, C.; et al. IJER editorial: The future of the internal combustion engine. Int. J. Engine Res. 2020, 21, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Stępień, Z. A comprehensive overview of hydrogen-fueled internal combustion engines: Achievements and future challenges. Energies 2021, 14, 6504. [Google Scholar] [CrossRef]
- Steven, S.; Restiawaty, E.; Bindar, Y. Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect. Renew. Sustain. Energy Rev. 2021, 149, 111329. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Xue, K.; Xu, G.; Yang, Y.; Wang, Z.; Liu, W.; Liu, T. An innovative waste-to-energy system integrated with a coal-fired power plant. Energy 2020, 194, 116893. [Google Scholar] [CrossRef]
- Greenfield, C.; Alvares, C.; Lorenczik, S.; Jorquera, J. Coal Fired Electricity; International Energy Agency: Paris, France, 2022; Available online: https://www.iea.org/reports/coal-fired-electricity (accessed on 25 January 2023).
- Singh, D.; Dhiman, S.K.; Kumar, V.; Babu, R.; Shree, K.; Priyadarshani, A.; Singh, A.; Shakya, L.; Nautiyal, A.; Saluja, S. Crop residue burning and its relationship between health, agriculture value addition, and regional finance. Atmosphere 2022, 13, 1405. [Google Scholar] [CrossRef]
- Ravindra, K.; Singh, T.; Mor, S. Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. J. Clean. Prod. 2019, 208, 261–273. [Google Scholar] [CrossRef]
- Abed, A.M.; Lafta, H.A.; Alayi, R.; Tamim, H.; Sharifpur, M.; Khalilpoor, N.; Bagheri, B. Utilization of animal solid waste for electricity generation in the Northwest of Iran 3E analysis for one-year simulation. Int. J. Chem. Eng. 2022, 2022, 4228483. [Google Scholar] [CrossRef]
- Purser, D.A. Fire types and combustion products. In Toxicology, Survival and Health Hazards of Combustion Products; Purser, D.A., Maynard, R.L., Wakefield, J., Eds.; Royal Society of Chemistry: Cambridge, UK, 2015; Chapter 2; pp. 11–52. [Google Scholar]
- Martin, D.; Tomida, M.; Meacham, B. Environmental impact of fire. Fire Sci. Rev. 2016, 5, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Venkatramanan, V.; Shah, S.; Rai, A.K.; Prasad, R. Nexus between crop residue burning, bioeconomy and sustainable development goals over north-western India. Front. Energy Res. 2021, 8, 614212. [Google Scholar] [CrossRef]
- Ghosh, P.; Sharma, S.; Khanna, I.; Datta, A.; Suresh, R.; Kundu, S.; Goel, A.; Datt, D. Scoping Study for South Asia Air Pollution; The Energy Resource Institute: Delhi, India, 2019; Available online: https://airsouthasia.org/2019/07/06/scoping-study-for-south-asia-air-pollution (accessed on 25 January 2023).
- Shabbir, M.; Junaid, A.; Zahid, J. Smog: A Transboundary Issue and Its Implications in India and Pakistan; Sustainable Development Policy Institute (SDPI): Islamabad, Pakistan, 2019. [Google Scholar]
- What You Need to Know About Climate Change and Air Pollution. Available online: https://www.worldbank.org/en/news/feature/2022/09/01/what-you-need-to-know-about-climate-change-and-air-pollution (accessed on 27 January 2023).
- Pandey, A.; Brauer, M.; Cropper, M.L.; Balakrishnan, K.; Mathur, P.; Dey, S.; Turkgulu, B.; Kumar, G.A.; Khare, M.; Beig, G.; et al. Health and economic impact of air pollution in the states of India: The global burden of disease study 2019. Lancet Plan. Health 2021, 5, e25–e38. [Google Scholar] [CrossRef]
- Perera, F.P. Multiple threats to child health from fossil fuel combustion: Impacts of air pollution and climate change. Environ. Health Perspect. 2017, 125, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Calderón-Garcidueñas, L.; Ayala, A. Air pollution, ultrafine particles, and your brain: Are combustion nanoparticle emissions and engineered nanoparticles causing preventable fatal neurodegenerative diseases and common neuropsychiatric outcomes? Environ. Sci. Technol. 2022, 56, 6847–6856. [Google Scholar] [CrossRef]
- Kim, D.; Chen, Z.; Zhou, L.F.; Huang, S.X. Air pollutants and early origins of respiratory diseases. Chronic Dis. Transl. Med. 2018, 4, 75–94. [Google Scholar] [CrossRef]
- Berg, E.L.; Pedersen, L.R.; Pride, M.C.; Petkova, S.P.; Patten, K.T.; Valenzuela, A.E.; Wallis, C.; Bein, K.J.; Wexler, A.; Lein, P.J.; et al. Developmental exposure to near roadway pollution produces behavioral phenotypes relevant to neurodevelopmental disorders in juvenile rats. Transl. Psychiatry 2020, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; Cole, T.B.; Dao, K.; Chang, Y.C.; Coburn, J.; Garrick, J.M. Developmental impact of air pollution on brain function. Neurochem. Int. 2019, 131, 104580. [Google Scholar] [CrossRef]
- Eckhardt, C.M.; Wu, H. Environmental exposures and lung aging: Molecular mechanisms and implications for improving respiratory health. Curr. Environ. Health Rep. 2021, 8, 281–293. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Stommel, E.W.; Lachmann, I.; Waniek, K.; Chao, C.K.; González-Maciel, A.; García-rres-Jardón, R.; Delgado-Chávez, R.; Mukherjee, P.S. TDP-43 CSF Concentrations in Rojas, E., Tocrease Exponentially with Age in Metropolitan Mexico City Young Urbanites Highly Exposed to PM2.5 and Ultrafine Particles and Historically Showing Alzheimer and Parkinson’s Hallmarks. Brain TDP-43 Pathology in MMC Residents Is Associated with High Cisternal CSF TDP-43 Concentrations. Toxics 2022, 10, 559. [Google Scholar]
- He, G.; Liu, T.; Zhou, M. Straw burning, PM2.5, and death: Evidence from China. J. Dev. Econom. 2020, 145, 102468. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; He, G.; Lau, A.K. Statistical evidence on the impact of agricultural straw burning on urban air quality in China. Sci. Total Environ. 2020, 711, 134633. [Google Scholar] [CrossRef]
- Tipayarom, D.; Oanh, N.K. Effects from open rice straw burning emission on air quality in the Bangkok Metropolitan Region. Sci. Asia 2007, 33, 339–345. [Google Scholar] [CrossRef]
- Husen, A. Morpho-anatomical, physiological, biochemical and molecular responses of plants to air pollution. In Harsh Environment and Plant Resilience; Husen, A., Ed.; Springer: Cham, Switzerland, 2021; pp. 203–234. [Google Scholar]
- Sillmann, J.; Aunan, K.; Emberson, L.; Büker, P.; Van Oort, B.; O’Neill, C.; Otero, N.; Pandey, D.; Brisebois, A. Combined impacts of climate and air pollution on human health and agricultural productivity. Environ. Res. Lett. 2021, 16, 093004. [Google Scholar] [CrossRef]
- Verma, A.K. Influence of climate change on balanced ecosystem, biodiversity and sustainable development: An overview. Int. J. Biol. Innov. 2021, 3, 331–337. [Google Scholar] [CrossRef]
- Xiyan, J.; Shuxi, Z.; Shaopeng, Z.; Ting, L.; Lihong, W. Research progress on heavy metals pollution and its control in soil-crop system. Asian J. Ecotoxicol. 2021, 6, 150–160. [Google Scholar]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Maciejczyk, P.; Chen, L.C.; Thurston, G. The role of fossil fuel combustion metals in PM2.5 air pollution health associations. Atmosphere 2021, 12, 1086. [Google Scholar] [CrossRef]
- Shakoor, A.; Ashraf, F.; Shakoor, S.; Mustafa, A.; Rehman, A.; Altaf, M.M. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environ. Sci. Pollut. Res. 2020, 2, 38513–38536. [Google Scholar] [CrossRef]
- Coppola, A.I.; Wagner, S.; Lennartz, S.T.; Seidel, M.; Ward, N.D.; Dittmar, T.; Santín, C.; Jones, M.W. The black carbon cycle and its role in the Earth system. Nat. Rev. Earth Environ. 2022, 3, 516–532. [Google Scholar] [CrossRef]
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Burnett, R.T.; Haines, A.; Ramanathan, V. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. Acad. Sci. USA 2019, 116, 7192–7197. [Google Scholar] [CrossRef] [Green Version]
- Raimi, M.O.; Abiola, I.; Alima, O.; Omini, D.E. Exploring how human activities disturb the balance of biogeochemical cycles: Evidence from the carbon, nitrogen and hydrologic cycles. Res. World Agric. Econ. 2021, 2, 23–44. [Google Scholar] [CrossRef]
- Losey, D.J.; Sihvonen, S.K.; Veghte, D.P.; Chong, E.; Freedman, M.A. Acidic processing of fly ash: Chemical characterization, morphology, and immersion freezing. Environ. Sci. Process. Impacts 2018, 20, 1581–1592. [Google Scholar] [CrossRef]
- David, E.; Niculescu, V.C. Volatile organic compounds (VOCs) as environmental pollutants: Occurrence and mitigation using nanomaterials. Int. J. Environ. Health Res. 2021, 18, 13147. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, D.K.; Singh, D.R.; Biswas, H.; Praveen, K.V.; Sharma, V. Estimating loss of ecosystem services due to paddy straw burning in North-west India. Int. J. Agric. Sustain. 2019, 17, 146–157. [Google Scholar] [CrossRef]
- Singh, G.; Kaur, K.; Meetei, T.T. Effect of in stubble burning on physico chemical properties of soil, yield and environmental qualities. Pharma Innov. J. 2021, 10, 298–305. [Google Scholar]
- NPMCR. National Policy for Management of Crop Residues (NPMCR). Available online: https://agricoop.nic.in (accessed on 27 January 2023).
- Junpen, A.; Pansuk, J.; Kamnoet, O.; Cheewaphongphan, P.; Garivait, S. Emission of air pollutants from rice residue open burning in Thailand, 2018. Atmosphere 2018, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Amk, E.S. Environmental and health impact of open burning rice straw. Egypt. J. Occup. Med. 2020, 44, 679–708. [Google Scholar] [CrossRef]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Montero, G.; Coronado, M.A.; García, C.; Campbell, H.E.; Montes, D.G.; Torres, R.; Pérez, L.; León, J.A.; Ayala, J.R. Wheat Straw Open Burning: Emissions and Impact on Climate Change. In Global Wheat Production; InTech: London, UK, 2018. [Google Scholar]
- Satyendra, T.; Singh, R.N.; Shaishav, S. Emissions from crop/biomass residue burning risk to atmospheric quality. Int. Res. J. Earth Sci. 2013, 1, 24–30. [Google Scholar]
- Kanokkanjana, K.; Garivait, S. Estimation of emission from open burning of sugarcane residues before harvesting. GMSARN Int. J. 2012, 6, 157–162. [Google Scholar]
- Cançado, J.E.D.; Saldiva, P.H.N.; Pereira, L.A.A.; Lara, L.B.L.S.; Artaxo, P.; Martinelli, L.A.; Arbex, M.A.; Zanobetti, A.; Braga, A.L.F. The impact of sugar cane-burning emissions on the respiratory system of children and the elderly. Environ. Health Perspect. 2006, 114, 725–729. [Google Scholar] [CrossRef] [Green Version]
- Bilgin, S. Determination of flue gas emission values of cotton and sesame stalk briquettes. Tarım Makinaları Bilim. Derg. 2010, 6, 37–43. [Google Scholar]
- Windeatt, J.H.; Ross, A.B.; Williams, P.T.; Forster, P.M.; Nahil, M.A.; Singh, S. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manag. 2014, 146, 189–197. [Google Scholar] [CrossRef]
- Rein, G.; Huang, X. Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives. Curr. Opin. Environ. Sci. Health 2021, 24, 100296. [Google Scholar] [CrossRef]
- Fan, Y.J.; Zhao, Y.Y.; Hu, X.M.; Wu, M.Y.; Xue, D. A novel fire prevention and control plastogel to inhibit spontaneous combustion of coal: Its characteristics and engineering applications. Fuel 2019, 263, 116693. [Google Scholar] [CrossRef]
- Yue, X.; Unger, N. Fire air pollution reduces global terrestrial productivity. Nat. Commun. 2018, 9, 5413. [Google Scholar] [CrossRef] [Green Version]
- Coppoletta, M.; Merriam, K.E.; Collins, B.M. Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecol. Appl. 2016, 26, 686–699. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Morillo, N.T.; Almendros, G.; José, M.; Jordán, A.; Zavala, L.M.; Granged, A.J.; González-Pérez, J.A. Effect of a wildfire and of post-fire restoration actions in the organic matter structure in soil fractions. Sci. Total Environ. 2020, 728, 138715. [Google Scholar] [CrossRef] [PubMed]
- World Fire Statistics International Association of Fire and Rescue Service. 2022. Available online: https://ctif.org/sites/default/files/2022-08/CTIF_Report27_ESG_0.pdf (accessed on 25 January 2023).
- Sofia, D.; Gioiella, F.; Lotrecchiano, N.; Giuliano, A. Mitigation strategies for reducing air pollution. Environ. Sci. Pollut. Res. 2020, 27, 19226–19235. [Google Scholar] [CrossRef]
- Ozgen, S.; Cernuschi, S.; Caserini, S. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renew. Sustain. Energy Rev. 2021, 135, 110113. [Google Scholar] [CrossRef]
- Gholami, F.; Tomas, M.; Gholami, Z.; Vakili, M. Technologies for the nitrogen oxides reduction from flue gas: A review. Sci. Total Environ. 2020, 714, 136712. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wang, X.; Wei, Z.; Wang, L.; Wang, C.; Chen, Z. A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels. Sci. Total Environ. 2021, 766, 144319. [Google Scholar] [CrossRef] [PubMed]
- Majewski, W.A.; Jääskeläinen, H. Engine Emission Control. Diesel-Net Technology Guide. 2015. Available online: https://dieselnet.com/tech/engine_emission-control.php (accessed on 25 January 2023).
- Fuentes García, G.; Echeverría, R.S.; Reynoso, A.G.; Baldasano Recio, J.M.; Rueda, V.M.; Retama Hernández, A.; Kahl, J.D. Sea port SO2 atmospheric emissions influence on air quality and exposure at Veracruz, Mexico. Atmosphere 2022, 13, 1950. [Google Scholar] [CrossRef]
- Shamshirband, S.; Hadipoor, M.; Baghban, A.; Mosavi, A.; Bukor, J.; Várkonyi-Kóczy, A.R. Developing an ANFIS-PSO model to predict mercury emissions in combustion flue gases. Mathematics 2019, 7, 965. [Google Scholar] [CrossRef] [Green Version]
- Bukhari, A.H.; Raja, M.A.Z.; Shoaib, M.; Kiani, A.K. Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution. Chaos Solitons Fractals 2022, 161, 112375. [Google Scholar] [CrossRef]
- Cheng, J.; Su, J.; Cui, T.; Li, X.; Dong, X.; Sun, F.; Yang, Y.; Tong, D.; Zheng, Y.; Li, Y.; et al. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: A model-based decomposition analysis. Atmos. Chem. Phys. 2019, 19, 6125–6146. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Ma, Q.; Wang, S.; Zhao, B.; Brauer, M.; Cohen, A.; Martin, R.V.; Zhang, Q.; Li, Q.; Wang, Y.; et al. Impact of air pollution control policies on future PM2.5 concentrations and their source contributions in China. J. Environ. Manag. 2018, 227, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Liu, T.; Feiock, R.; Li, F. The impacts of China’s provincial energy policies on major air pollutants: A spatial econometric analysis. Energy Policy 2019, 132, 392–403. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; Division for Sustainable Development Goals, United Nations: Incheon, Republic of Korea, A/RES/70/1; 2022; Available online: https://sdgs.un.org/2030agenda (accessed on 25 January 2023).
- East, J.; Montealegre, J.S.; Pachon, J.E.; Garcia-Menendez, F. Air quality modeling to inform pollution mitigation strategies in a Latin American megacity. Sci. Total Environ. 2021, 776, 145894. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.P.; Mathimani, T.; Deviram, G.; Rajendran, K.; Pugazhendhi, A. Biofuel policy in India: A review of policy barriers in sustainable marketing of biofuel. J. Clean. Prod. 2018, 193, 734–747. [Google Scholar] [CrossRef]
- Shaffer, R.M.; Sellers, S.P.; Baker, M.G.; de Buen Kalman, R.; Frostad, J.; Suter, M.K.; Anenberg, S.C.; Balbus, J.; Basu, N.; Bellinger, D.C.; et al. Improving and expanding estimates of the global burden of disease due to environmental health risk factors. Environ. Health Perspect. 2019, 127, 105001. [Google Scholar] [CrossRef] [Green Version]
- 31.5% Reduction in Paddy Stubble Burning Recorded in These North-Indian States. News on Air. 2022. Available online: https://newsonair.com/2022/12/06/31-5-reduction-in-paddy-stubble-burning-recorded-in-these-north-indian-states/ (accessed on 25 January 2023).
- Porichha, G.K.; Hu, Y.; Rao, K.T.; Xu, C.C. Crop residue management in India: Stubble burning vs. other utilizations including bioenergy. Energies 2021, 14, 4281. [Google Scholar] [CrossRef]
- Chaitanya, A.K. Crop residue management: Strategies and challenges. Management 2022. Available online: https://www.krishisewa.com/postharvest/1388-crop-residue-management-strategies-and-challenges.html (accessed on 25 January 2023).
- Siddiqi, H.; Mishra, A.; Kumari, U.; Maiti, P.; Meikap, B.C. Utilizing agricultural residue for the cleaner biofuel production and simultaneous air pollution mitigation due to stubble burning: A net energy balance and total emission assessment. ACS Sustain. Chem. Eng. 2021, 9, 15963–15972. [Google Scholar] [CrossRef]
- Akhlaq, S.; Ara, S.A.; Ahmad, B.; Fazil, M.; Akram, U.; Haque, M.; Khan, A.A. Interventions of Unani medicine for maintenance of health with special reference to air quality: An evidence-based review. Environ. Health Rev. 2021. [Google Scholar] [CrossRef]
- Pełka, G.; Wygoda, M.; Luboń, W.; Pachytel, P.; Jachimowski, A.; Paprocki, M.; Wyczesany, P.; Kotyza, J. Analysis of the efficiency of a batch boiler and emissions of harmful substances during combustion of various types of wood. Energies 2021, 14, 6783. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Singh, M.; Kumar, P.; Purohit, H.J.; Kalia, V.C. Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 2012, 36, 218–225. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, M.; Mehariya, S.; Patel, S.K.S.; Lee, J.-K.; Kalia, V.C. Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J. Microbiol. 2014, 54, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.K.S.; Lee, J.-K.; Kalia, V.C. Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J. Microbiol. 2017, 57, 171–176. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Gupta, R.K.; Das, D.; Lee, J.K.; Kalia, V.C. Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J. Clean. Prod. 2021, 287, 125037. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Kumar, P.; Kalia, V.C. Enhancing biological hydrogen production through complementary microbial metabolisms. Int. J. Hydrog. Energy 2012, 37, 10590–10603. [Google Scholar] [CrossRef]
- Kondaveeti, S.; Patel, S.K.S.; Poglu, R.; Li, J.; Kalia, V.C.; Choi, M.-S.; Lee, J.K. Conversion of simulated biogas to electricity: Sequential operation of methanotrophic reactor effluents in microbial fuel cell. Energy 2019, 189, 116309. [Google Scholar] [CrossRef]
- Satpathy, P.; Pradhan, C. Biogas as an alternative to stubble burning in India. Biomass Convers. Biorefinery 2023, 13, 31–42. [Google Scholar] [CrossRef]
- Machineni, L.; Anupoju, G.R. Review on valorization of lignocellulosic biomass for green plastics production: Sustainable and cleaner approaches. Sustain. Energy Technol. Assess. 2022, 53, 102698. [Google Scholar] [CrossRef]
- Demirdogen, A.; Guldal, H.T.; Sanli, H. Monoculture, crop rotation policy, and fire. Ecol. Econ. 2023, 203, 107611. [Google Scholar] [CrossRef]
- Kant, Y.; Chauhan, P.; Natwariya, A.; Kannaujiya, S.; Mitra, D. Long term influence of groundwater preservation policy on stubble burning and air pollution over North-West India. Sci. Rep. 2022, 12, 2090. [Google Scholar] [CrossRef]
- Parihar, D.S.; Dogra, B.; Narang, M.K.; Singh, S.K.; Khurana, R. Development and evaluation of notched concave disc seed drill for direct seeding of wheat in paddy stubble field. J. Agric. Food Res. 2022, 10, 100421. [Google Scholar] [CrossRef]
- Rathour, R.K.; Devi, M.; Dahiya, P.; Sharma, N.; Kaushik, N.; Kumari, D.; Kumar, P.; Baadhe, R.R.; Walia, A.; Bhatt, A.K.; et al. Recent trends, opportunities and challenges in sustainable management of rice straw waste biomass for green biorefinery. Energies 2023, 16, 1429. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Navarro-Pedreño, J.; Gómez Lucas, I.; Almendro Candel, M.B.; Pérez Gimeno, A.; Zorpas, A.A. Soluble Elements Released from Organic Wastes to Increase Available Nutrients for Soil and Crops. Appl. Sci. 2023, 13, 1151. [Google Scholar] [CrossRef]
- Jia, G.; Tian, G.; Zhang, D. Effects of plateau environment on combustion and emission characteristics of a plateau high-pressure common-rail diesel engine with different blending ratios of biodiesel. Energies 2022, 15, 550. [Google Scholar] [CrossRef]
- Koundinya, K.K.; Dobhal, P.; Ahmad, T.; Mondal, S.; Sharma, A.K.; Singh, V.K. A technical review on thermochemical pathways for production of energy from corncob residue. Renew. Energy Focus 2023, 44, 174–185. [Google Scholar] [CrossRef]
- Xue, D.; Hu, X.; Cheng, W.; Wei, J.; Zhao, Y.; Shen, L. Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: Characteristics and engineering applications. Fuel 2020, 264, 116903. [Google Scholar] [CrossRef]
Crop | Crop Residues | Residue Produced per Year | Pollutant Concentration Generated from Burning | Effect on Human Health | Effect on Vegetation/Soil | References |
---|---|---|---|---|---|---|
Rice | Husk, bran | 170 Mt | 5.34 M of CO2, 0.04 Mt of CH4, 0.42 of CO, 2000 tonnes of NOX, 2000 tonnes of SO2, 0.04 Mt of PM2.5, 0.04 Mt of PM10, 2000 tonnes of BC, and 14,000 tonnes of organic carbon from 4.54 Mt residue burning | A pulmonary disease resembling asbestosis, namely pleural fibrosis and possibly bronchogenic carcinoma, and acute bronchitis | Soil nutrient loss (1995–2009, India): N of 0.24 Mt per year, P of 0.01 Mt per year, and K of 0.2 Mt per year | [81,82,83] |
Wheat | Bran, straw | 110 Mt | 6185 tonnes of PM, 35,983 tonnes of CO, and 1125 tonnes of CH4 considering a head fire burning or 3373 tonnes of PM, 30,360 tonnes of CO, and 731 tonnes of CH4 by backfire burning were estimated from 6.2 tonnes of wheat straw | Chronic obstructive pulmonary disease, pneumoconiosis, pulmonary tuberculosis, bronchitis, cataract, corneal opacity, and blindness | Soil nutrient loss (1995–2009, India): N of 0.08 Mt per year, P of 0.004 Mt per year, and K of 0.06 Mt per year | [4,83,84,85] |
Sugarcane | Tops, bagasse, molasses | 12 Mt | CO of 929 Gg, CO2 of 8864 Gg, and PM2.5 of 152 Gg from 1007 gdm per m2 sugarcane residual biomass | Increases of 10.2 μg/m3 in PM2.5 and 42.9 μg/m3 in PM10 were associated with increases of 21.4% [95% confidence interval (CI), 4.3–38.5] and 31.0% (95% CI, 1.25–60.21) in child and elderly respiratory hospital admissions, respectively | Soil nutrient loss (1995–2009, India): N of 0.08 Mt per year, P of 0.001 Mt per year, and K of 0.03 Mt per year | [83,86,87] |
Cotton | Linter, staple, stalks | 53 Mt | 57 ppm CO, 196 NOX, H2S 37 ppm, CO2 7.92%, 12.81% O2 for cotton stalks | Respiratory system disorders, and cardiovascular mortality | N of 0.2 kg, P of 0.8 kg, K of 6.1 kg, and S of 1.5 kg | [85,86,88,89] |
Country | Average No. of Deaths per Year | Average No. of Deaths per 100,000 Inhabitants | Average No. of Deaths per 100 Fires |
---|---|---|---|
China | 1183 | 0.09 | 0.47 |
India | 13,429 | 0.99 | 0.84 |
USA | 3530 | 1.06 | 0.27 |
Russia | 8270 | 5.63 | 3.08 |
Republic of Korea | 329 | 0.63 | 0.79 |
Spain | 169 | 0.36 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanana, I.; Sharma, A.; Kumar, P.; Kumar, L.; Kulshreshtha, S.; Kumar, S.; Patel, S.K.S. Combustion and Stubble Burning: A Major Concern for the Environment and Human Health. Fire 2023, 6, 79. https://doi.org/10.3390/fire6020079
Chanana I, Sharma A, Kumar P, Kumar L, Kulshreshtha S, Kumar S, Patel SKS. Combustion and Stubble Burning: A Major Concern for the Environment and Human Health. Fire. 2023; 6(2):79. https://doi.org/10.3390/fire6020079
Chicago/Turabian StyleChanana, Ishita, Aparajita Sharma, Pradeep Kumar, Lokender Kumar, Sourabh Kulshreshtha, Sanjay Kumar, and Sanjay Kumar Singh Patel. 2023. "Combustion and Stubble Burning: A Major Concern for the Environment and Human Health" Fire 6, no. 2: 79. https://doi.org/10.3390/fire6020079
APA StyleChanana, I., Sharma, A., Kumar, P., Kumar, L., Kulshreshtha, S., Kumar, S., & Patel, S. K. S. (2023). Combustion and Stubble Burning: A Major Concern for the Environment and Human Health. Fire, 6(2), 79. https://doi.org/10.3390/fire6020079