Assessment of the Effects of the 2021 Caldor Megafire on Soil Physical Properties, Eastern Sierra Nevada, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics
2.2. Field Measurements
Water Drop Penetration Time (WDPT) Tests
2.3. Soil Sampling Protocols
2.4. Laboratory Analyses
2.4.1. Qualitative Assessment of Soil Structure
2.4.2. Measurement of Soil Hydraulic Properties
2.4.3. Measurement of Soil Thermal Properties
2.4.4. Determination of Particle/Aggregate Size Distribution and SOM Content
2.4.5. Soil Hydrophobicity and Apparent Contact Angle
3. Results
3.1. Particle Size Distributions, Soil Structure, and SOM Content
3.2. Soil Hydraulic Properties
3.3. Soil Thermal Properties
3.4. Soil Hydrophobicity
4. Discussion
4.1. Apparent Modifications Soil Physical Properties
4.2. Fire, Soil Water Repellency, and Their Effects on Infiltration and Runoff
4.3. Implications and Directions for Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khorshidi, M.S.; Dennison, P.E.; Nikoo, M.R.; AghaKouchak, A.; Luce, C.H.; Sadegh, M. Increasing concurrence of wildfire drivers tripled megafire critical danger days in Southern California between1982 and 2018. Environ. Res. Lett. 2020, 15, 104002. [Google Scholar] [CrossRef]
- DeBano, L.F. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231, 195–206. [Google Scholar] [CrossRef]
- DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. Fire Effects on Ecosystems; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland Fire in Ecosystems: Effects of Fire on Soils and Water; General Technical Report RMRS-GTR-42-vol. 4; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2005; Volume 42, 250p.
- Albalasmeh, A.A.; Berli, M.; Shafer, D.S.; Ghezzehei, T.A. Degradation of moist soil aggregates by rapid temperature rise under low intensity fire. Plant Soil 2013, 362, 335–344. [Google Scholar] [CrossRef]
- García-Corona, R.; Benito, E.; De Blas, E.; Varela, M. Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils. Int. J. Wildland Fire 2004, 13, 195–199. [Google Scholar] [CrossRef]
- Jian, M.; Berli, M.; Ghezzehei, T. Soil structural degradation during low-severity burns. Geophys. Res. Lett. 2018, 45, 5553–5561. [Google Scholar] [CrossRef]
- DeBano, L.; Savage, S.; Hamilton, D. The transfer of heat and hydrophobic substances during burning. Soil Sci. Soc. Am. J. 1976, 40, 779–782. [Google Scholar] [CrossRef]
- Savage, S. Mechanism of fire-induced water repellency in soil. Soil Sci. Soc. Am. J. 1974, 38, 652–657. [Google Scholar] [CrossRef]
- Savage, S.; Osborn, J.; Letey, J.; Heaton, C. Substances contributing to fire-induced water repellency in soils. Soil Sci. Soc. Am. J. 1972, 36, 674–678. [Google Scholar] [CrossRef]
- Samburova, V.; Shillito, R.M.; Berli, M.; Khlystov, A.Y.; Moosmüller, H. Effect of Biomass-Burning Emissions on Soil Water Repellency: A Pilot Laboratory Study. Fire 2021, 4, 24. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; MacDonald, L.H. Soil water repellency: A key factor in post-fire erosion. In Fire Effects on Soils and Restoration Strategies; CRC Press: Enfield, NH, USA, 2009; pp. 213–240. [Google Scholar]
- Larsen, I.J.; MacDonald, L.H.; Brown, E.; Rough, D.; Welsh, M.J.; Pietraszek, J.H.; Libohova, Z.; de Dios Benavides-Solorio, J.; Schaffrath, K. Causes of post-fire runoff and erosion: Water repellency, cover, or soil sealing? Soil Sci. Soc. Am. J. 2009, 73, 1393–1407. [Google Scholar] [CrossRef] [Green Version]
- Massman, W. Modeling soil heating and moisture transport under extreme conditions: Forest fires and slash pile burns. Water Resour. Res. 2012, 48, 10548. [Google Scholar] [CrossRef]
- Cannon, S.H.; Gartner, J.E.; Rupert, M.G.; Michael, J.A.; Rea, A.H.; Parrett, C. Predicting the probability and volume of postwildfire debris flows in the intermountain western United States. Bulletin 2010, 122, 127–144. [Google Scholar] [CrossRef]
- Meyer, G.A.; Wells, S.G. Fire-related sedimentation events on alluvial fans, Yellowstone National Park, USA. J. Sediment. Res. 1997, 67, 776–791. [Google Scholar]
- USDA. USDA Forest Service. Caldor Post-Fire BAER Assessment Report. Available online: https://inciweb.nwcg.gov/incident/7842/ (accessed on 12 April 2022).
- Conservation Biology Institute. California Fire Perimeters (1898–2020). Available online: https://databasin.org/datasets/bf8db57ee6e0420c8ecce3c6395aceeb/ (accessed on 18 November 2022).
- Ellsworth, T.; Stamer, M. 2021 Caldor Fire Burned Area Emergency Response (BAER) Assessment Report Summary; USDA Forest Service: Washington, DC, USA, 2021; p. 16.
- Letey, J. Measurement of contact angle, water drop penetration time, and critical surface tension. In Proceedings of the Symposium on Water-Repellent Soils, University of California, Riverside, CA, USA, 6–10 May 1968; pp. 43–47. [Google Scholar]
- Doerr, S.H. On standardizing the ‘water drop penetration time’and the ‘molarity of an ethanol droplet’techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surf. Process. Landf. J. Br. Geomorphol. Group 1998, 23, 663–668. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Thomson, W. On the equilibrium of vapour at a curved surface of liquid. Proc. R. Soc. Edinb. 1872, 7, 63–68. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards Applied Mathematics Series 55, Tenth Printing; US Government Printing Office: Washington, DC, USA, 1972.
- Lu, N.; Dong, Y. Closed-Form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature. J. Geotech. Geoenvironmental Eng. 2015, 141, 04015016. [Google Scholar] [CrossRef]
- Storer, D.A. A simple high sample volume ashing procedure for determination of soil organic matter. Commun. Soil Sci. Plant Anal. 1984, 15, 759–772. [Google Scholar] [CrossRef]
- Bachmann, J.; Horton, R.; Van Der Ploeg, R.; Woche, S. Modified sessile drop method for assessing initial soil–water contact angle of sandy soil. Soil Sci. Soc. Am. J. 2000, 64, 564–567. [Google Scholar] [CrossRef]
- Bachmann, J.; Woche, S.; Goebel, M.O.; Kirkham, M.; Horton, R. Extended methodology for determining wetting properties of porous media. Water Resour. Res. 2003, 39, 12. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 2008, 74, 256–263. [Google Scholar] [CrossRef]
- Dlapa, P.; Bodí, M.B.; Mataix-Solera, J.; Cerdà, A.; Doerr, S.H. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena 2013, 108, 35–43. [Google Scholar] [CrossRef]
- Debano, L.F.; Krammes, J. Water repellent soils and their relation to wildfire temperatures. Hydrol. Sci. J. 1966, 11, 14–19. [Google Scholar] [CrossRef]
- Woods, S.W.; Balfour, V.N. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils. J. Hydrol. 2010, 393, 274–286. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Bigham, J.M.; Laperche, V. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 2000, 64, 1108–1117. [Google Scholar] [CrossRef]
- Ebel, B.A.; Martin, D.A. Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment. Hydrol. Process. 2017, 31, 3682–3696. [Google Scholar] [CrossRef]
- Moody, J.A.; Ebel, B.A.; Nyman, P.; Martin, D.A.; Stoof, C.; McKinley, R. Relations between soil hydraulic properties and burn severity. Int. J. Wildland Fire 2015, 25, 279–293. [Google Scholar] [CrossRef]
- Moody, J.A.; Kinner, D.A.; Úbeda, X. Linking hydraulic properties of fire-affected soils to infiltration and water repellency. J. Hydrol. 2009, 379, 291–303. [Google Scholar] [CrossRef]
- Ebel, B.A.; Romero, O.C.; Martin, D.A. Thresholds and relations for soil-hydraulic and soil-physical properties as a function of burn severity 4 years after the 2011 Las Conchas Fire, New Mexico, USA. Hydrol. Process. 2018, 32, 2263–2278. [Google Scholar] [CrossRef]
- Robichaud, P.R. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. J. Hydrol. 2000, 231, 220–229. [Google Scholar] [CrossRef]
- Valzano, F.; Greene, R.; Murphy, B. Direct effects of stubble burning on soil hydraulic and physical properties in a direct drill tillage system. Soil Tillage Res. 1997, 42, 209–219. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A. Rethinking infiltration in wildfire-affected soils. Hydrol. Process. 2013, 27, 1510–1514. [Google Scholar] [CrossRef]
- Massman, W.; Frank, J.; Reisch, N. Long-term impacts of prescribed burns on soil thermal conductivity and soil heating at a Colorado Rocky Mountain site: A data/model fusion study. Int. J. Wildland Fire 2008, 17, 131–146. [Google Scholar] [CrossRef]
- Smits, K.M.; Kirby, E.; Massman, W.J.; Baggett, L.S. Experimental and modeling study of forest fire effect on soil thermal conductivity. Pedosphere 2016, 26, 462–473. [Google Scholar] [CrossRef]
- Jiang, Y.; Rocha, A.V.; O’Donnell, J.A.; Drysdale, J.A.; Rastetter, E.B.; Shaver, G.R.; Zhuang, Q. Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest. J. Geophys. Res. Earth Surf. 2015, 120, 363–378. [Google Scholar] [CrossRef]
- Hewelke, E.; Oktaba, L.; Gozdowski, D.; Kondras, M.; Olejniczak, I.; Górska, E.B. Intensity and persistence of soil water repellency in pine forest soil in a temperate continental climate under drought conditions. Water 2018, 10, 1121. [Google Scholar] [CrossRef]
- Rodríguez-Alleres, M.; Benito, E.; de Blas, E. Extent and persistence of water repellency in north-western Spanish soils. Hydrol. Process. Int. J. 2007, 21, 2291–2299. [Google Scholar] [CrossRef]
- Carrà, B.G.; Bombino, G.; Denisi, P.; Plaza-Àlvarez, P.A.; Lucas-Borja, M.E.; Zema, D.A. Water infiltration after prescribed fire and soil mulching with fern in mediterranean forests. Hydrology 2021, 8, 95. [Google Scholar] [CrossRef]
- Letey, J. Causes and consequences of fire-induced soil water repellency. Hydrol. Process. 2001, 15, 2867–2875. [Google Scholar] [CrossRef]
- Lewis, S.A.; Wu, J.Q.; Robichaud, P.R. Assessing burn severity and comparing soil water repellency, Hayman Fire, Colorado. Hydrol. Process. Int. J. 2006, 20, 1–16. [Google Scholar] [CrossRef]
- Stoof, C.R.; Moore, D.; Ritsema, C.J.; Dekker, L.W. Natural and fire-induced soil water repellency in a Portuguese shrubland. Soil Sci. Soc. Am. J. 2011, 75, 2283–2295. [Google Scholar] [CrossRef]
- Granged, A.J.; Jordán, A.; Zavala, L.M.; Bárcenas, G. Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrol. Process. 2011, 25, 1614–1629. [Google Scholar] [CrossRef]
- Shillito, R.M.; Berli, M.; Ghezzehei, T.A. Quantifying the effect of subcritical water repellency on sorptivity: A physically based model. Water Resour. Res. 2020, 56, e2020WR027942. [Google Scholar] [CrossRef]
- Fenner, M. Ecology of seed banks. In Seed Development and Germination; Routledge: Milton Park, UK, 2017; pp. 507–528. [Google Scholar]
- Roberts, H. Seed banks in soils. Adv. Appl. Biol. 1981, 6, 1–55. [Google Scholar]
- Tiebel, K.; Huth, F.; Wagner, S. Soil seed banks of pioneer tree species in European temperate forests: A review. Iforest-Biogeosciences For. 2018, 11, 48. [Google Scholar] [CrossRef]
- Bao, T.; Liu, S.; Qin, Y.; Liu, Z.L. 3D modeling of coupled soil heat and moisture transport beneath a surface fire. Int. J. Heat Mass Transf. 2020, 149, 119163. [Google Scholar] [CrossRef]
- Valette, J.-C.; Gomendy, V.; Maréchal, J.; Houssard, C.; Gillon, D. Heat-transfer in the soil during very low-intensity experimental fires-the role of duff and soil-moisture content. Int. J. Wildland Fire 1994, 4, 225–237. [Google Scholar] [CrossRef]
- Auld, T.D.; Denham, A.J. How much seed remains in the soil after a fire? Plant Ecol. 2006, 187, 15–24. [Google Scholar] [CrossRef]
- Choczynska, J.; Johnson, E.A. A soil heat and water transfer model to predict belowground grass rhizome bud death in a grass fire. J. Veg. Sci. 2009, 20, 277–287. [Google Scholar] [CrossRef]
- Johnson, D.W. Effects of forest management on soil carbon storage. In Natural Sinks of CO2; Springer: Dordrecht, The Netherlands, 1992; pp. 83–120. [Google Scholar]
Sample ID | Sand | Silt | Clay | SOM Content | Ks | α | n | θr | θs | λs | mt | θf | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[%] | [%] | [%] | [%] | [cm/d] | [-] | [-] | [-] | [-] | [W/m2/K] | [-] | [-] | ||
Control | MU-01 | 79.7 | 19.3 | 1.0 | 16.2 | 900 | 0.0381 | 1.907 | 0.000 | 0.478 | 0.913 | 2.15 | 0.12 |
MU-02 | 79.2 | 19.6 | 1.2 | 13.5 | 1108 | 0.0624 | 1.533 | 0.026 | 0.605 | 0.945 | 2.69 | 0.18 | |
MU-03 | 78.7 | 20.5 | 0.7 | 11.2 | 5047 | 0.2211 | 1.386 | 0.000 | 0.536 | 0.850 | 1.96 | 0.14 | |
MU-04 | 81.0 | 18.0 | 1.0 | 14.3 | 2365 | 0.0811 | 1.589 | 0.009 | 0.481 | 0.912 | 2.46 | 0.19 | |
MU-05 | 79.8 | 19.2 | 1.1 | 4.5 | 653 | 0.0342 | 1.923 | 0.000 | 0.329 | 0.842 | 1.40 | 0.01 | |
mean | 79.7 | 19.3 | 1.0 | 11.9 | 2015 | 0.0874 | 1.668 | 0.007 | 0.486 | 0.892 | 2.13 | 0.13 | |
median | 79.7 | 19.3 | 1.0 | 13.5 | 1108 | 0.0624 | 1.589 | 0.000 | 0.481 | 0.912 | 2.15 | 0.14 | |
Burned | MB-01 | 67.7 | 28.5 | 3.9 | 8.1 | 111 | 0.0833 | 4.733 | 0.009 | 0.133 | 0.981 | 1.86 | 0.01 |
MB-02 | 58.8 | 36.2 | 5.0 | 4.2 | 6241 | 0.0236 | 1.582 | 0.000 | 0.476 | 0.900 | 1.91 | 0.08 | |
MB-03 | 52.0 | 41.6 | 6.4 | 5.8 | 883 | 0.0224 | 1.677 | 0.004 | 0.418 | 0.914 | 1.92 | 0.07 | |
MB-04 | 81.1 | 17.3 | 1.7 | 5.5 | 135 | 0.0729 | 1.550 | 0.004 | 0.388 | 0.945 | 1.90 | 0.04 | |
MB-05 | 79.7 | 18.9 | 1.5 | 6.8 | 201 | 0.2352 | 1.231 | 0.000 | 0.517 | 0.982 | 3.19 | 0.16 | |
MB-06 | 74.4 | 23.3 | 2.4 | 3.8 | 185 | 0.0204 | 1.623 | 0.000 | 0.350 | 0.898 | 1.65 | 0.03 | |
MB-07 | 62.2 | 34.5 | 3.4 | 12.9 | 827 | 0.0391 | 1.662 | 0.014 | 0.462 | 0.924 | 1.97 | 0.07 | |
MB-08 | 41.3 | 50.1 | 8.6 | 3.1 | 10781 | 0.1392 | 1.603 | 0.021 | 0.489 | 0.961 | 2.22 | 0.07 | |
mean | 64.6 | 31.3 | 4.1 | 6.3 | 2421 | 0.0795 | 1.958 | 0.007 | 0.404 | 0.938 | 2.08 | 0.07 | |
median | 64.9 | 31.5 | 3.6 | 5.6 | 514 | 0.0560 | 1.613 | 0.004 | 0.440 | 0.935 | 1.92 | 0.07 | |
p-values | 0.018 | 0.021 | 0.009 | 0.011 | 0.418 | 0.429 | 0.294 | 0.463 | 0.120 | 0.031 | 0.423 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sion, B.; Samburova, V.; Berli, M.; Baish, C.; Bustarde, J.; Houseman, S. Assessment of the Effects of the 2021 Caldor Megafire on Soil Physical Properties, Eastern Sierra Nevada, USA. Fire 2023, 6, 66. https://doi.org/10.3390/fire6020066
Sion B, Samburova V, Berli M, Baish C, Bustarde J, Houseman S. Assessment of the Effects of the 2021 Caldor Megafire on Soil Physical Properties, Eastern Sierra Nevada, USA. Fire. 2023; 6(2):66. https://doi.org/10.3390/fire6020066
Chicago/Turabian StyleSion, Brad, Vera Samburova, Markus Berli, Christopher Baish, Janelle Bustarde, and Sally Houseman. 2023. "Assessment of the Effects of the 2021 Caldor Megafire on Soil Physical Properties, Eastern Sierra Nevada, USA" Fire 6, no. 2: 66. https://doi.org/10.3390/fire6020066
APA StyleSion, B., Samburova, V., Berli, M., Baish, C., Bustarde, J., & Houseman, S. (2023). Assessment of the Effects of the 2021 Caldor Megafire on Soil Physical Properties, Eastern Sierra Nevada, USA. Fire, 6(2), 66. https://doi.org/10.3390/fire6020066