Leveraging a Wildfire Risk Prediction Metric with Spatial Clustering
Abstract
:1. Introduction
2. Risk Metric
3. Methods and Procedures
3.1. Study Area
3.2. Wildfire Simulation Tool—Spark
3.3. Fire Simulations Inputs
3.4. Fire Risk Categories
3.5. Wildfire Risk Zones Assignment Using Spatial Clustering
3.6. Computing Environment for Wildfire Simulations
3.7. Fire Simulations Dataset
3.8. Evaluation Metrics
4. Results and Discussion
4.1. Risk Zone Characterization by Using Spatial Clustering
4.2. Comparison against the FFDI and the Risk Metric
5. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. The McArthur FFDI
References
- Yang, J. Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environ. Model. Softw. 2011, 26, 444–457. [Google Scholar] [CrossRef]
- Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modeling in water resources. Water Resour. Res. 2012, 48, 1527. [Google Scholar] [CrossRef]
- Yang, C.; Xu, Y.; Nebert, D. Redefining the possibility of digital Earth and geosciences with spatial cloud computing. Int. J. Digit. Earth 2013, 6, 297–312. [Google Scholar] [CrossRef]
- Kaizer, J.S.; Heller, A.K.; Oberkampf, W.L. Scientific computer simulation review. Reliab. Eng. Syst. Saf. 2015, 138, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; He, H.S.; Liang, Y.; Wu, Z.; Huang, C. Analysis of the uncertainty of fuel model parameters in wildland fire modelling of a boreal forest in north-east China. Int. J. Wildland Fire 2019, 28, 205–215. [Google Scholar] [CrossRef]
- KC, U.; Garg, S.; Hilton, J.; Aryal, J.; Forbes-Smith, N. Cloud Computing in natural hazard modeling systems: Current research trends and future directions. Int. J. Disaster Risk Reduct. 2019, 38, 101188. [Google Scholar] [CrossRef]
- KC, U.; Garg, S.; Hilton, J. An efficient framework for ensemble of natural disaster simulations as a service. Geosci. Front. 2020, 11, 1859–1873. [Google Scholar] [CrossRef]
- Weber, R. Toward a comprehensive wildlife spread model. Int. J. Wildland Fire 1991, 1, 245–248. [Google Scholar] [CrossRef]
- Linn, R.; Reisner, J.; Colman, J.J.; Winterkamp, J. Studying wildfire behavior using FIRETEC. Int. J. Wildland Fire 2002, 11, 233–246. [Google Scholar] [CrossRef]
- Forbes, L.K. A two-dimensional model for large-scale bushfire spread. ANZIAM J. 1997, 39, 171–194. [Google Scholar] [CrossRef]
- Grishin, A. Mathematical Modeling of Forest Fires and New Methods of Fighting Them; Publishing House of Tomsk University: Tomsk, Russia, 1997. [Google Scholar]
- Morvan, D.; Dupuy, J.L. Modeling of fire spread through a forest fuel bed using a multiphase formulation. Combust. Flame 2001, 127, 1981–1994. [Google Scholar] [CrossRef]
- Asensio, M.; Ferragut, L. On a wildland fire model with radiation. Int. J. Numer. Methods Eng. 2002, 54, 137–157. [Google Scholar] [CrossRef]
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P. A physics-based approach to modelling grassland fires. Int. J. Wildland Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- McAlpine, R.; Wakimoto, R. The acceleration of fire from point source to equilibrium spread. For. Sci. 1991, 37, 1314–1337. [Google Scholar]
- Burrows, N. Experimental Development of a Fire Management Model for Jarrah (Eucalyptus Marginata) Forest. Ph.D. Thesis, Department of Forestry, Australian National University, Canberra, Australia, 1994. [Google Scholar]
- Cheney, N.; Gould, J.; Catchpole, W.R. Prediction of fire spread in grasslands. Int. J. Wildland Fire 1998, 8, 1–13. [Google Scholar] [CrossRef]
- Fernandes, P.A.M. Fire spread prediction in shrub fuels in Portugal. For. Ecol. Manag. 2001, 144, 67–74. [Google Scholar] [CrossRef]
- Tanskanen, H.; Granström, A.; Larjavaara, M.; Puttonen, P. Experimental fire behaviour in managed Pinus sylvestris and Picea abies stands of Finland. Int. J. Wildland Fire 2007, 16, 414–425. [Google Scholar] [CrossRef]
- Gould, J.S.; McCaw, W.; Cheney, N.; Ellis, P.; Knight, I.; Sullivan, A. Project Vesta: Fire in Dry Eucalypt Forest: Fuel Structure, Fuel Dynamics and Fire Behaviour; Csiro Publishing: Canberra, Australia, 2008. [Google Scholar]
- McARTHUR, A. Fire Behavior in Eucalypt Forest; Department of Development, Forestry and Timber Bureau: Canberra, Australia, 1967.
- McArthur, A. Weather and grassland fire behaviour. Commonwealth Department of National Development. For. Timber Bur. Leafl. 1966, 100. [Google Scholar]
- Mathews, S.; Fox-Hughes, P.; Grootemaat, S.; Hollis, J.J.; Kenny, B.J.; Sauvage, S. Australian Fire Danger Rating System: Research Prototype; NSW Rural Fire Service: Lidcombe, NSW, Australia, 2019; 384p. [Google Scholar]
- Douglas, D. Forest Fire Weather Studies in South Australia; Woods and Forests Department: Meadows, Australia, 1957.
- McArthur, A. The preparation and use of fire danger tables. In Proceedings of the Fire Weather Conference, Australia Bureau of Meteorology, Melbourne, VIC, Australia, July 1958. [Google Scholar]
- Gisborne, H. The wood cylinder method of measuring forest inflammability. J. For. 1933, 31, 673–679. [Google Scholar]
- McArthur, A.G.; McArthur, M. Fire Danger Rating Tables for Annual Grasslands; Forestry and Timber Bureau: Canberra, Australia, 1960.
- Peet, G. Fire danger rating and controlled burning guide for the Northern Jarrah (Euc. marginata SM) Forest, of Western Australia; Forests Department: Perth, Australia, 1965.
- AEMC-National Bushfire Warnings Taskforce. Australia’s Revised Arrangements for Bushfire Advice and Alerts; AEMC-National Bushfire Warnings Taskforce: Melbourne, VIC, Australia, 2009. [Google Scholar]
- Cohen, J.D. The National Fire-Danger Rating System: Basic Equations; US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Rating System: Berkeley, CA, USA, 1985; Volume 82.
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture: Ogden, UT, USA, 1972; Volume 115.
- Van Wagner, C.E.; Canadian Forestry Service. Development and Structure of the Canadian Forest Fireweather Index System; Forestry Technical Report 35; Canadian Forestry Service: Ottawa, ON, Canada, 1987. [Google Scholar]
- Stocks, B.; Lawson, B.; Alexander, M.; Van Wagner, C.; McAlpine, R.; Lynham, T.; Dubé, D. The Canadian system of forest fire danger rating. In Proceedings of the Conference on Bushfire Modelling and Fire Danger Rating Systems, Canberra, Australia, 11–12 July 1988; pp. 11–12. [Google Scholar]
- Meikle, S.; Heine, J. A fire danger index system for the Transvaal Lowveld and adjoining escarpment areas. South Afr. For. J. 1987, 143, 55–56. [Google Scholar] [CrossRef]
- Laing, M. Forecasting Bush and Forest Fire Weather in Rhodesia; Meteorological Notes, Series B; Department Meteorological Services: Rhodesia, 1978.
- Chandler, C.C. Risk rating for fire prevention planning. J. For. 1961, 59, 93–96. [Google Scholar]
- Nesterov, V. Flammability of the Forest and Methods for Its Determination, (Gorimost lesa i metodi eio opredelenia); Goslesbumizdat, USSR State Ind.: Moscow, Russia, 1949. [Google Scholar]
- Nesterov, V. Forest Fires and Methods of Fire Risk Determination; Goslesbumizdat: Moscow, Russia, 1949. [Google Scholar]
- Sol, B. Numerical meteorological hazard of forest fires in the Méditerran Rêgionéenne: Examination of the summer 1988 test and proposals for improvements. Work note SMIR/SE, Nº1, France. 1989. [Google Scholar]
- Drouet, J.C.; Sol, B. Development of a numerical index of meteorological risk of forest fires. Dossier 1993, 14, 155–162, Forets and fires 1991–1992. [Google Scholar]
- Alexander, M. Feasibility Study for the Setting up of a Global Wildland Fire Danger Rating System; European Commission, Joint Research Centre, Institute of Environment and Sustainability: Ispra, Italy, 2010. [Google Scholar]
- Di Giuseppe, F.; Pappenberger, F.; Wetterhall, F.; Krzeminski, B.; Camia, A.; Libertá, G.; San Miguel, J. The potential predictability of fire danger provided by numerical weather prediction. J. Appl. Meteorol. Climatol. 2016, 55, 2469–2491. [Google Scholar] [CrossRef]
- Pettinari, M.L.; Chuvieco, E. Fire behavior simulation from global fuel and climatic information. Forests 2017, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Ottmar, R.D.; Sandberg, D.V.; Riccardi, C.L.; Prichard, S.J. An overview of the fuel characteristic classification system—quantifying, classifying, and creating fuelbeds for resource planning. Can. J. For. Res. 2007, 37, 2383–2393. [Google Scholar] [CrossRef]
- Ujjwal, K.; Hilton, J.; Garg, S.; Aryal, J. A probability-based risk metric for operational wildfire risk management. Environ. Model. Softw. 2022, 148, 105286. [Google Scholar]
- Berry, D.A.; Berry, D.A. Statistics: A Bayesian Perspective; Number 04; QA279. 5, B4; Duxbury Press: Belmont, CA, USA, 1996. [Google Scholar]
- Tasmania Fire Service. State Fire Commission Annual Report; Tasmania Fire Service: Tasmania, Australia, 2019.
- Monitoring, and Program, TasVeg 3.0; Tasmanian Department of Primary Industries, Parks, Water & Environment: Hobart, Australia, 2013.
- IBRA7. Available online: http://www.environment.gov.au/system/files/pages/5b3d2d31-2355-4b60-820c-e370572b2520/files/bioregions-new.pdf (accessed on 12 May 2021).
- Miller, C.; Hilton, J.; Sullivan, A.; Prakash, M. SPARK–A bushfire spread prediction tool. In Proceedings of the International Symposium on Environmental Software Systems, Melbourne, VIC, Australia, 25–27 March 2015; pp. 262–271. [Google Scholar]
- Spark: Predicting Bushfire Spread. Available online: https://data61.csiro.au/en/Our-Research/Our-Work/Safety-and-Security/Disaster-Management/Spark (accessed on 12 May 2021).
- Ujjwal, K.; Garg, S.; Hilton, J.; Aryal, J. A cloud-based framework for sensitivity analysis of natural hazard models. Environ. Model. Softw. 2020, 134, 104800. [Google Scholar]
- Tasmania. List Data. Available online: https://listdata.thelist.tas.gov.au/opendata/ (accessed on 12 March 2021).
- Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Steinley, D. K-means clustering: A half-century synthesis. Br. J. Math. Stat. Psychol. 2006, 59, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Nectar Cloud. Available online: https://nectar.org.au/research-cloud/ (accessed on 12 May 2018).
- Google Cloud. Available online: https://cloud.google.com/ (accessed on 12 May 2020).
- KC, U.; Garg, S.; Hilton, J.; Aryal, J. Fire Simulation Data Set for Tasmania; CSIRO: Clayton South, VIC, Australia, 2021. [Google Scholar] [CrossRef]
- Ayyadevara, V.K. Basics of machine learning. In Pro Machine Learning Algorithms; Springer: New York, NY, USA, 2018; pp. 1–15. [Google Scholar]
- Wain, A.; Kepert, J.; Tory, K. A Comprehensive, Nationally Consistent Climatology of Fire Weather Parameters for Australia; Technical Report, CAWCR Technical Report; Centre for Australian Weather and Climate Research: Melbourne, Australia, 2013. [Google Scholar]
- Noble, I.; Gill, A.; Bary, G. McArthur’s fire-danger meters expressed as equations. Aust. J. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
Parameters (Unit) | Range | Labels with Interval |
---|---|---|
Air Temperature (°C) | [10, 40] | Low (L) [10, 18] |
Medium (M) (18, 33) | ||
High (H) (33, 40] | ||
Relative Humidity (%) | [10, 90] | Low (L) [70, 90] |
Medium (M) (30, 70) | ||
High (H) [10, 30] | ||
Wind Speed (kmh) | [10, 60] | Low (L) [10, 23] |
Medium (M) (23, 48) | ||
High (H) [48, 60] |
Fire Risk Category | Fire Area Size (ha) |
---|---|
High | ≥1057.42 |
Medium | [267.79, 1057.42) |
Low | [0, 267.79) |
FDR Category | FFDI Range | Adapted Risk Category |
---|---|---|
Low-Moderate | 0–11 | Low |
High | 12–23 | Medium |
Very High | 24–49 | |
Severe | 50–74 | High |
Extreme | 75–99 | |
Catastrophic | >100 |
Evaluation | Three Categories | Two Categories | ||||
---|---|---|---|---|---|---|
Metric | Cluster-Based | Previous Metric | McArthur FFDI | Cluster-Based | Previous Metric | McArthur FFDI |
Accuracy | 66.81% | 74.55% | 51.99% | 85.32% | 87.43% | 76.03% |
Underfit | 24.98% | 15.88% | 38.87% | 9.56% | 10.27% | 10.48% |
Overfit | 8.2% | 9.66% | 9.14% | 5.12% | 2.3% | 13.49% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
KC, U.; Aryal, J. Leveraging a Wildfire Risk Prediction Metric with Spatial Clustering. Fire 2022, 5, 213. https://doi.org/10.3390/fire5060213
KC U, Aryal J. Leveraging a Wildfire Risk Prediction Metric with Spatial Clustering. Fire. 2022; 5(6):213. https://doi.org/10.3390/fire5060213
Chicago/Turabian StyleKC, Ujjwal, and Jagannath Aryal. 2022. "Leveraging a Wildfire Risk Prediction Metric with Spatial Clustering" Fire 5, no. 6: 213. https://doi.org/10.3390/fire5060213
APA StyleKC, U., & Aryal, J. (2022). Leveraging a Wildfire Risk Prediction Metric with Spatial Clustering. Fire, 5(6), 213. https://doi.org/10.3390/fire5060213