A Field Study of Tropical Peat Fire Behaviour and Associated Carbon Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rate of Peat Fire Spread
2.2. Volume of Peat Consumed through Burning
2.3. Peat Moisture Content
2.4. Water Table Depth
3. Results
3.1. General Environmental Conditions
3.2. Moisture Content and Bulk Density
3.3. Rate of Peat Fire Spread
3.4. Peat Volume Loss through Burning
3.5. Calculating Carbon Emissions
4. Discussion
4.1. Rate of Peat Fire Spread and Current Environmental Factors
4.2. Total Peat Volume Loss and Current Environmental Factors
4.3. Differing Peat Depth Methodology and Results
4.4. Carbon Emission Calculations Sensitivity to Parametrization Factors
4.4.1. Total Area of Peat Burned
4.4.2. Depth of Burn
4.4.3. Bulk Density
4.4.4. Combustion Factor
4.4.5. Emission Factors
4.4.6. Total Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and Regional Importance of the Tropical Peatlands Carbon Pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef] [Green Version]
- Page, S.E.; Rieley, J.O.; Shotyk, Ø.W.; Weiss, D. Interdependence of Peat and Vegetation in a Tropical Peat Swamp Forest. Philos. Trans. R. Soc. Lond. B 1999, 354, 1885–1897. [Google Scholar] [CrossRef] [PubMed]
- Dommain, R.; Couwenberg, J.; Joosten, H. Hydrological Regulation of Domed Peatlands in South-East Asia and Consequences for Conservation and Restoration. Mires Peat 2010, 6, 1–17. [Google Scholar]
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; van der Werf, G.R.; Watts, A. Global Vulnerability of Peatlands to Fire and Carbon Loss. Nat. Geosci. 2015, 8, 11–14. [Google Scholar] [CrossRef]
- Harrison, M.E.; Ottay, J.B.; D’Arcy, L.J.; Cheyne, S.M.; Anggodo; Belcher, C.; Cole, L.; Dohong, A.; Ermiasi, Y.; Feldpausch, T.; et al. Tropical Forest and Peatland Conservation in Indonesia: Challenges and Directions. People Nat. 2020, 2, 4–28. [Google Scholar] [CrossRef] [Green Version]
- Langner, A.; Miettinen, J.; Siegert, F. Land Cover Change 2002–2005 in Borneo and the Role of Fire Derived from MODIS Imagery. Glob. Chang. Biol. 2007, 13, 2329–2340. [Google Scholar] [CrossRef]
- Dohong, A.; Aziz, A.A.; Dargusch, P. A Review of the Drivers of Tropical Peatland Degradation in South-East Asia. Land Use Policy 2017, 69, 349–360. [Google Scholar] [CrossRef]
- Medrilzam, M.; Smith, C.; Aziz, A.A.; Herbohn, J.; Dargusch, P. Smallholder Farmers and the Dynamics of Degradation of Peatland Ecosystems in Central Kalimantan, Indonesia. Ecol. Econ. 2017, 136, 101–113. [Google Scholar] [CrossRef]
- Miettinen, J.; Liew, S.C. Degradation and Development of Peatlands in Peninsular Malaysia and in the Islands of Sumatra and Borneo since 1990. Land Degrad. Dev. 2010, 21, 285–296. [Google Scholar] [CrossRef]
- Page, S.E.; Siegert, F.; Rieley, J.O.; Boehm, H.-D.D.V.; Jaya, A.; Limin, S. The Amount of Carbon Released from Peat and Forest Fires in Indonesia in 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef]
- Ballhorn, U.; Siegert, F.; Mason, M.; Limin, S.; Limin, S. Derivation of Burn Scar Depths and Estimation of Carbon Emissions with LIDAR in Indonesian Peatlands. Proc. Natl. Acad. Sci. USA 2009, 106, 21213–21218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; Defries, R.S.; Jin, Y.; Van Leeuwen, T.T. Global Fire Emissions and the Contribution of Deforestation, Savanna, Forest, Agricultural, and Peat Fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, J.; Shi, C.; Liew, S.C. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires. Environ. Manag. 2017, 60, 747–757. [Google Scholar] [CrossRef]
- Jayarathne, T.; Stockwell, C.E.; Gilbert, A.A.; Daugherty, K.; Cochrane, M.A.; Ryan, K.C.; Putra, E.I.; Saharjo, B.H.; Nurhayati, A.D.; Albar, I.; et al. Chemical Characterization of Fine Particulate Matter Emitted by Peat Fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 2018, 18, 2585–2600. [Google Scholar] [CrossRef] [Green Version]
- Stockwell, C.E.; Jayarathne, T.; Cochrane, M.A.; Ryan, K.C.; Putra, E.I.; Saharjo, B.H.; Nurhayati, A.D.; Albar, I.; Blake, D.R.; Simpson, I.J.; et al. Field Measurements of Trace Gases and Aerosols Emitted by Peat Fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 2016, 16, 11711–11732. [Google Scholar] [CrossRef] [Green Version]
- BMKG. Badan Meteorologi, Klimatologi dan Geofisika—Kualitas Udara—Informasi Konsentrasi Partikulat (PM10). Available online: http://www.bmkg.go.id/kualitas-udara/informasi-partikulat-pm10.bmkg (accessed on 20 October 2015).
- Johnston, F.H.; Melody, S.; Bowman, D.M.J.S. The Pyrohealth Transition: How Combustion Emissions Have Shaped Health through Human History. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150173. [Google Scholar] [CrossRef] [Green Version]
- Koplitz, S.N.; Mickley, L.J.; Marlier, M.E.; Buonocore, J.J.; Kim, P.S.; Liu, T.; Sulprizio, M.P.; DeFries, R.S.; Jacob, D.J.; Schwartz, J.; et al. Public Health Impacts of the Severe Haze in Equatorial Asia in September–October 2015: Demonstration of a New Framework for Informing Fire Management Strategies to Reduce Downwind Smoke Exposure. Environ. Res. Lett. 2016, 11, 094023. [Google Scholar] [CrossRef]
- Kok, L.M. Haze in Singapore: A Problem Dating Back 40 Years. Available online: https://www.straitstimes.com/singapore/environment/haze-in-singapore-a-problem-dating-back-40-years (accessed on 14 February 2019).
- Goldstein, J.E. Lots of Smoke, but Where’s the Fire? Contested Causality and Shifting Blame in Southeast Asia’s Smoke-Haze Crisis. In The Quotidian Anthropocene: Reconfiguring Environments in Urbanizing Asia; Vaughn, E.T., Elinoff, K.F., Eds.; University of Pennsylvania Press: Philadelphia, PA, USA, 2017. [Google Scholar] [CrossRef]
- Huijnen, V.; Wooster, M.J.; Kaiser, J.W.; Gaveau, D.L.A.; Flemming, J.; Parrington, M.; Inness, A.; Murdiyarso, D.; Main, B.; van Weele, M. Fire Carbon Emissions over Maritime Southeast Asia in 2015 Largest since 1997. Sci. Rep. 2016, 6, 26886. [Google Scholar] [CrossRef] [Green Version]
- van der Werf, G.R.; Morton, D.C.; DeFries, R.S.; Olivier, J.G.J.; Kasibhatla, P.S.; Jackson, R.B.; Collatz, G.J.; Randerson, J.T. CO2 Emissions from Forest Loss. Nat. Geosci. 2009, 2, 737–738. [Google Scholar] [CrossRef]
- Hu, Y.; Fernandez-Anez, N.; Smith, T.E.L.; Rein, G. Review of Emissions from Smouldering Peat Fires and Their Contribution to Regional Haze Episodes. Int. J. Wildl. Fire 2018, 27, 293–312. [Google Scholar] [CrossRef]
- Drosler, M.; Verchott, L.V.; Freibauer, A. Chapter 2: Drained Inland Organic Soils. In 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Jamsranjav, B., Fukuda, M., Troxler, T., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 2.1–2.74. [Google Scholar]
- Konecny, K.; Ballhorn, U.; Navratil, P.; Jubanski, J.; Page, S.E.; Tansey, K.; Hooijer, A.; Vernimmen, R.; Siegert, F. Variable Carbon Losses from Recurrent Fires in Drained Tropical Peatlands. Glob. Chang. Biol. 2016, 22, 1469–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, J.E.; Wooster, M.J.; Smith, T.E.L.; Trivedi, M.; Vernimmen, R.R.E.; Dedi, R.; Shakti, M.; Dinata, Y. Tropical Peatland Burn Depth and Combustion Heterogeneity Assessed Using Uav Photogrammetry and Airborne LiDAR. Remote Sens. 2016, 8, 1000. [Google Scholar] [CrossRef] [Green Version]
- Krisnawati, H.; Imanuddin, R.; Adinugroho, W.C.; Hutabarat, S. Chapter 7: Standard Method—Peatland GHG Emissions. In Standard Methods for Estimating Greenhouse Gas Emissions from Forests and Peatlands in Indonesia (Version 2); Research, Development and Innovation Agency of the Ministry of Environment and Forestry: Bogor, Indonesia, 2015; pp. 44–51. [Google Scholar]
- Tansey, K.; Beston, J.; Hoscilo, A.; Page, S.E.; Paredes, H.C.U. Relationship between MODIS Fire Hot Spot Count and Burned Area in a Degraded Tropical Peat Swamp Forest in Central Kalimantan, Indonesia. J. Geophys. Res. D Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Rogan, J.; Schneider, L.; Cochrane, M. Evaluating MODIS Active Fire Products in Subtropical Yucatán Forest. Remote Sens. Lett. 2013, 4, 455–464. [Google Scholar] [CrossRef]
- Toomey, M.; Roberts, D.A.; Caviglia-Harris, J.; Cochrane, M.A.; Dewes, C.F.; Harris, D.; Numata, I.; Sales, M.H.; Sills, E.; Souza, C.M., Jr. Long-Term, High-Spatial Resolution Carbon Balance Monitoring of the Amazonian Frontier: Predisturbance and Postdisturbance Carbon Emissions and Uptake. J. Geophys. Res. Biogeosciences 2013, 118, 400–411. [Google Scholar] [CrossRef] [Green Version]
- Jessup, T.C.; Vayda, A.P.; Cochrane, M.A.; Applegate, G.B.; Ryan, K.C.; Saharjo, B.H. Why Estimates of the Peat Burned in Fires in Sumatra and Kalimantan Are Unreliable and Why It Matters. Singap. J. Trop. Geogr. 2022, 43, 7–25. [Google Scholar] [CrossRef]
- Watts, A.C. Organic Soil Combustion in Cypress Swamps: Moisture Effects and Landscape Implications for Carbon Release. For. Ecol. Manag. 2013, 294, 178–187. [Google Scholar] [CrossRef]
- Smith, T.E.L.; Evers, S.; Yule, C.M.; Gan, J.Y. In Situ Tropical Peatland Fire Emission Factors and Their Variability, as Determined by Field Measurements in Peninsula Malaysia. Glob. Biogeochem. Cycles 2018, 32, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Prat-Guitart, N.; Rein, G.; Hadden, R.M.; Belcher, C.M.; Yearsley, J.M. Propagation Probability and Spread Rates of Self-Sustained Smouldering Fires under Controlled Moisture Content and Bulk Density Conditions. Int. J. Wildl. Fire 2016, 25, 456. [Google Scholar] [CrossRef] [Green Version]
- Prat-Guitart, N.; Rein, G.; Hadden, R.M.; Belcher, C.M.; Yearsley, J.M. Effects of Spatial Heterogeneity in Moisture Content on the Horizontal Spread of Peat Fires. Sci. Total Environ. 2016, 572, 1422–1430. [Google Scholar] [CrossRef]
- Huang, X.; Rein, G. Upward-and-Downward Spread of Smoldering Peat Fire. Proc. Combust. Inst. 2018, 37, 4025–4033. [Google Scholar] [CrossRef]
- Huang, X.; Restuccia, F.; Gramola, M.; Rein, G. Experimental Study of the Formation and Collapse of an Overhang in the Lateral Spread of Smouldering Peat Fires. Combust. Flame 2016, 168, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Rein, G. Fire Phenomena in the Earth System: An Interdisciplinary Approach to Fire Science; Belcher, C., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Rollins, M.S.; Cohen, A.D.; Durig, J.R. Effects of Fires on the Chemical and Petrographic Composition of Peat in the Snuggedy Swamp, South Carolina. Int. J. Coal Geol. 1993, 22, 101–117. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Donahue, W.F.; Benscoter, B.W. Experimental Drying Intensifies Burning and Carbon Losses in a Northern Peatland. Nat. Commun. 2011, 2, 514. [Google Scholar] [CrossRef]
- Applegate, G.; Graham, L.L.B.; Thomas, A.; Yunan, A.; Didie; Agus; Ato; Saharjo, B.H.; Cochrane, M. Fire Scene Evaluation Field Manual; IPB Press: Bogor, Indonesia, 2018. [Google Scholar]
- Sinclair, A.L.; Graham, L.L.B.; Putra, E.I.; Saharjo, B.H.; Applegate, G.; Grover, S.P.; Cochrane, M.A. Effects of Distance from Canal and Degradation History on Peat Bulk Density in a Degraded Tropical Peatland. Sci. Total Environ. 2020, 699, 134199. [Google Scholar] [CrossRef]
- Wedeux, B.; Dalponte, M.; Schlund, M.; Hagen, S.; Cochrane, M.; Graham, L.; Usup, A.; Thomas, A.; Coomes, D. Dynamics of a Human-Modified Tropical Peat Swamp Forest Revealed by Repeat Lidar Surveys. Glob. Chang. Biol. 2020, 26, 3947–3964. [Google Scholar] [CrossRef]
- Dephut. Rencana Induk (Master Plan) Rehabilitasi dan Konservasi Kawasan Pengembangan Lahan Gambut di Propinsi Kalimantan Tengah. In Pusat Rencana dan Statistik Kehutanan; Kehutanan, B.P., Ed.; Badan Planologi Kehutanan: Jakarta, Indonesia, 2007. [Google Scholar]
- Vetrita, Y.; Cochrane, M.A. Annual Burned Area from Landsat, Mawas, Central Kalimantan, Indonesia, 1997–2015; ORNL DAAC: Oak Ridge, TN, USA, 2019. [Google Scholar] [CrossRef]
- Goldstein, J.E.; Graham, L.; Ansori, S.; Vetrita, Y.; Thomas, A.; Applegate, G.; Vayda, A.P.; Saharjo, B.H.; Cochrane, M.A. Beyond Slash-and-Burn: The Roles of Human Activities, Altered Hydrology and Fuels in Peat Fires in Central Kalimantan, Indonesia. Singap. J. Trop. Geogr. 2020, 41, 190–208. [Google Scholar] [CrossRef]
- Phillips, T. The Mathematics of Surveying. Available online: http://www.ams.org/samplings/feature-column/fcarc-surveying-one (accessed on 2 May 2018).
- Ichsan, N.; Hooijer, A.; Vernimmen, R.; Applegate, G.B. KFCP Hydrology and Peat Monitoring Methodology; Scientific Report. 2014. Available online: http://simlit.puspijak.org/files/buku/KFCP_Hydrology_and_Peat_Monitoring_Methodology_S1.pdf (accessed on 15 October 2021).
- Hooijer, A.; Page, S.E.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and Carbon Loss in Drained Tropical Peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef] [Green Version]
- Putra, E.I.; Cochrane, M.A.; Vetrita, Y.; Graham, L.; Saharjo, B.H. Determining Critical Groundwater Level to Prevent Degraded Peatland from Severe Peat Fire. IOP Conf. Ser. Earth Environ. Sci. 2018, 149, 012027. [Google Scholar] [CrossRef]
- Vetrita, Y.; Cochrane, M.A.; Suwarsono; Priyatna, M.; Sukowati, K.A.D.; Khomarudin, M.R. Evaluating Accuracy of Four MODIS-Derived Burned Area Products for Tropical Peatland and Non-Peatland Fires. Environ. Res. Lett. 2021, 16, 035015. [Google Scholar] [CrossRef]
- Huang, X.; Rein, G. Computational Study of Critical Moisture and Depth of Burn in Peat Fires. Int. J. Wildl. Fire 2015, 24, 798. [Google Scholar] [CrossRef] [Green Version]
- Benscoter, B.W.; Thompson, D.; Waddington, J.M.; Flannigan, M.; Wotton, B.M.; De Groot, W.J.; Turetsky, M.R. Interactive Effects of Vegetation, Soil Moisture and Bulk Density on Depth of Burning of Thick Organic Soils. Int. J. Wildl. Fire 2011, 20, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Garlough, E.C.; Keyes, C.R. Influences of Moisture Content, Mineral Content and Bulk Density on Smouldering Combustion of Ponderosa Pine Duff Mounds. Int. J. Wildl. Fire 2011, 20, 589–596. [Google Scholar] [CrossRef]
- Kiely, L.; Spracklen, D.V.; Wiedinmyer, C.; Conibear, L.; Reddington, C.L.; Archer-Nicholls, S.; Lowe, D.; Arnold, S.R.; Knote, C.; Khan, M.F.; et al. New Estimate of Particulate Emissions from Indonesian Peat Fires in 2015. Atmos. Chem. Phys. 2019, 19, 11105–11121. [Google Scholar] [CrossRef] [Green Version]
FSE Code | Vertical Burn Depth (cm h−1) | Horizontal Burn Spread (cm h−1) | n (Number of Rod Sets) | ||||
---|---|---|---|---|---|---|---|
Ave. | Max. | Min. | Ave. | Max. | Min. | ||
MTU-002 | 0.9 ± 0.5 | 2.3 | 0.2 | 3.6 ± 1.9 | 9.3 | 0.3 | 6 |
AHS-002 | 0.4 ± 0.2 | 1.0 | 0.2 | 0.9 ± 0.4 | 2.2 | 0.4 | 2 |
MTU-005 | 1.1 ± 0.2 | 1.5 | 0.9 | 3.7 ± 2.5 | 8.2 | 1.1 | 1 |
Overall average | 0.8 ± 0.3 | 2.3 | 0.2 | 2.7 ± 1.6 | 9.3 | 0.3 |
FSE Code | Date of Initial FSE | Peat Volume Loss (m3 ha−1) | Depth of Burn from Volume Grids (cm) | Area of Grid Burned (Avg.) (%) | n | ||
---|---|---|---|---|---|---|---|
Avg. | All Grids (Avg.) | Max.* | Burned Only (Avg.) | ||||
MTU-001 | 20/08/15 | 50 ± 47 | 0.7 ± 0.6 | 11.3 | 4.2 ± 1.3 | 14 ± 0.1% | 2 |
MTU-003 | 23/08/15 | 154 ± 0 | 1.6 ± 0 | 11.2 | 1.7 ± 0 | 94 ± 0% | 1 |
KTP-001 | 09/09/15 | 754 ± 90 | 7.3 ± 0.8 | 27.4 | 7.6 ± 0.3 | 96 ± 0.1% | 2 |
AHS-002 | 06/09/15 | 704 ± 407 | 6.8 ± 4.0 | 26.6 | 7.9 ± 4.4 | 85 ± 0.0% | 2 |
MTU-005 | 15/09/15 | 804 ± 78 | 8.5 ± 0.5 | 30.0 | 10.2 ± 1.9 | 86 ± 0.2% | 2 |
Aug Average | 102 ± 74 | 1.2 ± 0.6 | 11.3 | 3.0 ± 1.8 | 54 ± 0.6% | ||
Sept Average | 754 ± 50 | 7.5 ± 0.9 | 28.0 | 8.6 ± 1.4 | 89 ± 0.1% | ||
Overall Average | 493 ± 361 | 5.0 ± 3.2 | 21.3 | 6.3 ± 3.0 | 75 ± 34% |
Total Emissions | Total Carbon Emission | Burn Volume | Bulk Density | Combustion Factor | Emission Factor (Total Gas Weight) ** | Carbon Emission Factors by Gas | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Formula Components | E | A × D | BD | CF | EF | ||||||||||
Units | t ha−1 | C-t ha−1 | m3 ha−1 | g cm−3 | Dimensionless | g kg−1 | Carbon Weight % * | gC kg−1 | |||||||
August 2015 | ± | ± | average | ± | average | ± | ± | average | ± | average | ± | ||||
Total (CF = 1) | 27.2 | 20.2 | 8.1 | 6.0 | 102 | 74 | 0.1428 | 0.0218 | 1 | 1864.51 | 91.39 | 0.300 | 558.735 | 29.928 | |
Total (CF = %) | 27.2 | 26.1 | 8.1 | 7.8 | 237 | 103 | 0.1428 | 0.0218 | 0.43 | 0.71 | 1864.51 | 91.39 | 0.300 | 558.735 | 29.928 |
Carbon dioxide | 22.8 | 21.9 | 6.2 | 6.0. | 237 | 103 | 0.1428 | 0.0218 | 0.43 | 0.71 | 1564.00 | 77.00 | 0.273 | 426.834 | 21.014 |
Carbon monoxide | 4.2 | 4.1 | 1.8 | 1.8 | 237 | 103 | 0.1428 | 0.0218 | 0.43 | 0.71 | 291.00 | 49.00 | 0.429 | 124.781 | 21.011 |
Methane | 0.1 | 0.1 | 0.1 | 0.1 | 237 | 103 | 0.1428 | 0.0218 | 0.43 | 0.71 | 9.51 | 4.74 | 0.749 | 7.120 | 3.549 |
September 2015 | ± | ± | average | ± | average | ± | average | ± | |||||||
Total (CF = 1) | 200.7 | 34.8 | 60.2 | 10.5 | 754 | 50 | 0.1428 | 0.0218 | 1 | 1864.51 | 91.39 | 0.300 | 558.735 | 29.928 | |
Total (CF = %) | 200.7 | 45.6 | 60.2 | 13.7 | 852 | 88 | 0.1428 | 0.0218 | 0.88 | 0.02 | 1864.51 | 91.39 | 0.300 | 558.735 | 29.928 |
Carbon dioxide | 168.4 | 38.2 | 46.0 | 10.4 | 852 | 88 | 0.1428 | 0.0218 | 0.88 | 0.02 | 1564.00 | 77.00 | 0.273 | 426.834 | 21.014 |
Carbon monoxide | 31.3 | 8.7 | 13.4 | 3.7 | 852 | 88 | 0.1428 | 0.0218 | 0.88 | 0.02 | 291.00 | 49.00 | 0.429 | 124.781 | 21.011 |
Methane | 1.0 | 0.6 | 0.8 | 0.4 | 852 | 88 | 0.1428 | 0.0218 | 0.88 | 0.02 | 9.51 | 4.74 | 0.749 | 7.120 | 3.549 |
Applied Assumption Variable | Total Emissions | Volume | Bulk Density | Combustion Factor | Emission Factor | Carbon Emission Factor | Total Emissions | ||
---|---|---|---|---|---|---|---|---|---|
t ha−1 | C-t ha−1 | m3 ha−1 | g cm−3 | Dimensionless | g kg−1 | gC kg−1 | t ha−1 | C-t ha−1 | |
This study—August 2015 | 27.2 | 8.1 | 237 | 0.1428 | 0.43 | 1864.51 | 558.73 | effect of assumption variable—percent change to this study’s data | |
This study—September 2015 | 200.7 | 60.2 | 852 | 0.1428 | 0.88 | 1864.51 | 558.73 | ||
This study—Aug—burn depth: rods method | 243.8 | 73.0 | 2130 | 0.1428 | 0.43 | 1864.51 | 558.73 | 798% | 798% |
This study—Sept—burn depth: rods method | 494.7 | 148.3 | 2100 | 0.1428 | 0.88 | 1864.51 | 558.73 | 146% | 146% |
This study—Aug—country-scale Indonesian bulk density data | 20.1 | 6.0 | 237 | 0.106 | 0.43 | 1864.51 | 558.73 | −26% | −26% |
This study—Sept—country-scale Indonesian bulk density data | 149.0 | 44.7 | 852 | 0.106 | 0.88 | 1864.51 | 558.73 | −26% | −26% |
This study—Aug—Combustion factor of one | 63.2 | 18.9 | 237 | 0.1428 | 1 | 1864.51 | 558.73 | 133% | 133% |
This study—Sept—Combustion factor of one | 226.9 | 68.0 | 852 | 0.1428 | 1 | 1864.51 | 558.73 | 13% | 13% |
This study—Aug—IPCC EFs | 28.2 | 8.3 | 237 | 0.1428 | 0.43 | 1934.10 | 570.70 | 4% | 2% |
This study—Sep—IPCC EFs | 208.2 | 61.4 | 852 | 0.1428 | 0.88 | 1934.10 | 570.70 | 4% | 2% |
This study plus all general assumptions—Aug | 436.7 | 128.9 | 2130 | 0.106 | 1 | 1934.10 | 570.70 | 1509% | 1484% |
This study plus all general assumptions—Sep | 430.5 | 127.0 | 2100 | 0.106 | 1 | 1934.10 | 570.70 | 114% | 111% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graham, L.L.B.; Applegate, G.B.; Thomas, A.; Ryan, K.C.; Saharjo, B.H.; Cochrane, M.A. A Field Study of Tropical Peat Fire Behaviour and Associated Carbon Emissions. Fire 2022, 5, 62. https://doi.org/10.3390/fire5030062
Graham LLB, Applegate GB, Thomas A, Ryan KC, Saharjo BH, Cochrane MA. A Field Study of Tropical Peat Fire Behaviour and Associated Carbon Emissions. Fire. 2022; 5(3):62. https://doi.org/10.3390/fire5030062
Chicago/Turabian StyleGraham, Laura L. B., Grahame B. Applegate, Andri Thomas, Kevin C. Ryan, Bambang H. Saharjo, and Mark A. Cochrane. 2022. "A Field Study of Tropical Peat Fire Behaviour and Associated Carbon Emissions" Fire 5, no. 3: 62. https://doi.org/10.3390/fire5030062
APA StyleGraham, L. L. B., Applegate, G. B., Thomas, A., Ryan, K. C., Saharjo, B. H., & Cochrane, M. A. (2022). A Field Study of Tropical Peat Fire Behaviour and Associated Carbon Emissions. Fire, 5(3), 62. https://doi.org/10.3390/fire5030062