Assessing the Relationship between Litter + Duff Consumption and Post-Fire Soil Temperature Regimes
Abstract
:1. Introduction
2. Materials and Methods
- 0:
- Control—no burn.
- 1:
- Low—litter charred to partially consumed and no changes to duff.
- 2:
- Moderate—litter is almost completely consumed with ash and a charred duff layer; some fine woody fuels may remain.
- 3:
- High—complete consumption of all litter, duff and fine woody fuels.
Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agee, J.K. The Landscape Ecology of Western Forest Fire Regimes. Northwest Sci. 1998, 72, 24–34. [Google Scholar]
- Knapp, E.E.; Estes, B.L.; Skinner, C.N. Ecological Effects of Prescribed Fire Season: A Literature Review and Synthesis for Managers; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2009; p. 5.
- van Lear, D.H.; Waldrop, T.A. History, Uses, and Effects of Fire in the Appalachians; U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1989; pp. 1–3.
- Hollingsworth, T.N.; Johnstone, J.F.; Bernhardt, E.L.; Chapin, F.S. Fire Severity Filters Regeneration Traits to Shape Community Assembly in Alaska’s Boreal Forest. PLoS ONE 2013, 8, e56033. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin III, F.S.; Foote, J.; Kemmett, S.; Price, K.; Viereck, L. Decadal observations of tree regeneration following fire in boreal forests. Can. J. For. Res. 2004, 34, 267–273. [Google Scholar] [CrossRef]
- Reich, P.B.; Abrams, M.D.; Ellsworth, D.S.; Kruger, E.L.; Tabone, T.J. Fire Affects Ecophysiology and Community Dynamics of Central Wisconsin Oak Forest Regeneration. Ecology 1990, 71, 2179–2190. [Google Scholar] [CrossRef]
- Reilly, M.J.; Wimberly, M.C.; Newell, C.L. Wildfire Effects on Plant Species Richness at Multiple spatial Scales in Forest Communities of the Southern Appalachians. J. Ecol. 2006, 94, 118–130. [Google Scholar] [CrossRef]
- van Lear, D.H.; Waldrop, T.A. Effect of Fire on Natural Hardwood Regeneration in the Appalachian Mountains. In Proceedings: Guidelines for Regenerating Appalachian Hardwood Stands; Smith, H.C., Perkey, A.W., Kidd, W.E., Jr., Eds.; SAF Publication 88-03; West Virginia University Books: Morgantown, WV, USA, 1988; pp. 56–70. [Google Scholar]
- Wan, H.Y.; Olson, A.C.; Muncey, K.D.; St. Clair, S.B. Legacy effects of fire size and severity on forest regeneration, recruitment, and wildlife activity in aspen forests. For. Ecol. Manag. 2014, 329, 59–68. [Google Scholar] [CrossRef]
- Kaplan, D.; Gutman, M. Phenology of Quercus ithaburensis with emphasis on the effect of fire. For. Ecol. Manag. 1999, 10, 61–70. [Google Scholar] [CrossRef]
- Paritsis, J.; Raffaele, E.; Veblen, T.T. Vegetation disturbance by fire affects plant reproductive phenology in a shrubland community in northwestern Patagonia, Argentina. N. Zeal. J. Ecol. 2006, 30, 387–395. [Google Scholar]
- Cushwa, C.T.; Martin, R.E.; Miller, R.L. The Effects of Fire on Seed Germination. J. Range Manag. 1968, 21, 250. [Google Scholar] [CrossRef]
- Baeza, M.J.; Roy, J. Germination of an obligate seeder (Ulex parviflorus) and consequences for wildfire management. For. Ecol. Manag. 2008, 256, 685–693. [Google Scholar] [CrossRef]
- Garlough, E.C.; Keyes, C.R. Influences of moisture content, mineral content and bulk density on smouldering combustion of ponderosa pine duff mounds. Int. J. Wildland Fire 2011, 20, 589. [Google Scholar] [CrossRef]
- Klimas, K.; Hiesl, P.; Hagan, D.; Park, D. Prescribed fire effects on sediment and nutrient exports in forested environments: A review. J. Environ. Qual. 2020, 49, 793–811. [Google Scholar] [CrossRef]
- Valette, J.; Gomendy, V.; Marechal, J.; Houssard, C.; Gillon, D. Heat-Transfer in the Soil during Very Low-Intensity Experimental Fires—The Role of Duff and Soil-Moisture Content. Int. J. Wildland Fire 1994, 4, 225. [Google Scholar] [CrossRef]
- Varner, J.M.; Hiers, J.K.; Ottmar, R.D.; Gordon, D.R.; Putz, F.E.; Wade, D.D. Overstory tree mortality resulting from reintroducing fire to long-unburned longleaf pine forests: The importance of duff moisture. Can. J. For. Res. 2007, 37, 1349–1358. [Google Scholar] [CrossRef]
- Hahn, G.E.; Coates, T.A.; Latham, R.E.; Majidzadeh, H. Prescribed Fire Effects on Water Quality and Freshwater Ecosystems in Moist-Temperate Eastern North America. Nat. Areas J. 2019, 39, 46. [Google Scholar] [CrossRef]
- Klimas, K.; Hiesl, P.; Hagan, D.; Park, D. Burn Severity Effects on Sediment and Nutrient Exports from Southeastern Forests Using Simulated Rainfall. For. Sci. 2020, fxaa029. [Google Scholar] [CrossRef]
- Jain, T.B.; Pilliod, D.S.; Graham, R.T.; Lentile, L.B.; Sandquist, J.E. Index for Characterizing Post-Fire Soil Environments in Temperate Coniferous Forests. Forests 2012, 3, 445–466. [Google Scholar] [CrossRef] [Green Version]
- Varner, M.J.; Putz, F.E.; O’Brien, J.J.; Kevin Hiers, J.; Mitchell, R.J.; Gordon, D.R. Post-fire tree stress and growth following smoldering duff fires. For. Ecol. Manag. 2009, 258, 2467–2474. [Google Scholar] [CrossRef]
- Kreye, J.K.; Varner, J.M.; Kobziar, L.N. Long-Duration Soil Heating Resulting from Forest Floor Duff Smoldering in Longleaf Pine Ecosystems. For. Sci. 2020, 66, 291–303. [Google Scholar] [CrossRef]
- Willson, K.G.; Barefoot, C.R.; Hart, J.L.; Schweitzer, C.J.; Dey, D.C. Temporal patterns of ground flora response to fire in thinned Pinus—Quercus stands. Can. J. For. Res. 2018, 48, 1171–1183. [Google Scholar] [CrossRef] [Green Version]
- Stoof, C.R.; Wesseling, J.G.; Ritsema, C.J. Effects of fire and ash on soil water retention. Geoderma 2010, 159, 276–285. [Google Scholar] [CrossRef]
- Cary, J.W. The drying of soil: Thermal regimes and ambient pressures. Agric. Meteorol. 1967, 4, 353–365. [Google Scholar] [CrossRef]
- Post, D.F.; Fimbres, A.; Matthias, A.D.; Sano, E.E.; Accioly, L.; Batchily, A.K.; Ferreira, L.G. Predicting Soil Albedo from Soil Color and Spectral Reflectance Data. Soil Sci. Soc. Am. J. 2000, 64, 1027–1034. [Google Scholar] [CrossRef]
- Wondafrash, T.T.; Sancho, I.M.; Miguel, V.G.; Serrano, R.E. Relationship between Soil Color And Temperature In The Surface Horizon Of Mediterranean Soils: A Laboratory Study. Soil Sci. 2005, 170, 495–503. [Google Scholar] [CrossRef]
- Mallek, S.B.; Prather, T.S.; Stapleton, J.J. Interaction effects of Allium spp. residues, concentrations and soil temperature on seed germination of four weedy plant species. Appl. Soil Ecol. 2007, 37, 233–239. [Google Scholar] [CrossRef]
- Santana, V.M.; Bradstock, R.A.; Ooi, M.K.J.; Denham, A.J.; Auld, T.D.; Baeza, M.J. Effects of soil temperature regimes after fire on seed dormancy and germination in six Australian Fabaceae species. Aust. J. Bot. 2010, 58, 539. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.; Grime, J.P.; Mason, G. Seed germination in response to diurnal fluctuations of temperature. Nature 1977, 267, 147–149. [Google Scholar] [CrossRef]
- Raison, R.; Woods, P.; Jakobsen, B.; Bary, G. Soil temperatures during and following low-intensity prescribed burning in a Eucalyptus pauciflora forest. Soil Res. 1986, 24, 33. [Google Scholar] [CrossRef]
- Fawcett, S.; Sistla, S.; Dacosta-Calheiros, M.; Kahraman, A.; Reznicek, A.A.; Rosenberg, R.; Wettberg, E.J.B. Tracking microhabitat temperature variation with iButton data loggers. Appl. Plant Sci. 2019, 7, e01237. [Google Scholar] [CrossRef] [PubMed]
- Gehrig-Fasel, J.; Guisan, A.; Zimmermann, N.E. Evaluating thermal treeline indicators based on air and soil temperature using an air-to-soil temperature transfer model. Ecol. Modell. 2008, 213, 345–355. [Google Scholar] [CrossRef]
- Robinson, S.I.; McLaughlin, Ó.B.; Marteinsdóttir, B.; O’Gorman, E.J. Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. J. Anim. Ecol. 2018, 87, 634–646. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, A.; Stolt, M.H. Estuarine Subaqueous Soil Temperature. Soil Sci. Soc. Am. J. 2011, 75, 1584–1587. [Google Scholar] [CrossRef] [Green Version]
- Interagency Fire Center. Andrew Pickens South Carolina. Available online: https://wrcc.dri.edu/cgi-bin/rawMAIN.pl?laSANP (accessed on 11 May 2020).
- Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online: http://websoilsurvey.sc.egov.usda.gov/ (accessed on 11 February 2020).
- Iverson, L.R.; Huchinson, T.F. Soil temperature and moisture fluctuations during and after prescribed fire in mixed-oak forests, USA. Nat. Areas J. 2002, 2, 296–304. [Google Scholar]
- Abu-Hamdeh, N.H. Thermal properties of soils as affected by density and water content. Biosyst. Eng. 2003, 97–102. [Google Scholar] [CrossRef]
- Kucharik, C.J.; Barford, C.C.; Maayar, M.E.; Wofsy, S.C.; Monson, R.K.; Baldocchi, D.D. A multiyear evaluation of a Dynamic Global Vegetation Model at three AmeriFlux forest sites: Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange. Ecol. Modell. 2006, 196, 1–31. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Reiter, B.E. Changes in North American spring. Int. J. Climatol. 2000, 20, 929–932. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Auld, T.D.; Bradstock, R.A. Soil temperatures after the passage of a fire: Do they influence the germination of buried seeds? Austral. Ecol. 1996, 21, 106–109. [Google Scholar] [CrossRef]
- Oswald, B.P.; Wellner, K.; Boyce, R.; Neuenschwander, L.F. Germination and Initial Growth of Four Coniferous Species on Varied Duff Depths in Northern Idaho. J. Sustain. For. 1998, 8, 11–21. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin, F.S. Effects of Soil Burn Severity on Post-Fire Tree Recruitment in Boreal Forest. Ecosystems 2006, 9, 14–31. [Google Scholar] [CrossRef]
- Palmer, H.D.; Denham, A.J.; Ooi, M.K.J. Fire severity drives variation in post-fire recruitment and residual seed bank size of Acacia species. Plant. Ecol. 2018, 219, 527–537. [Google Scholar] [CrossRef]
- Oakman, E.C.; Hagan, D.L.; Waldrop, T.A.; Barrett, K. Understory Vegetation Responses to 15 Years of Repeated Fuel Reduction Treatments in the Southern Appalachian Mountains, USA. Forests 2019, 10, 350. [Google Scholar] [CrossRef] [Green Version]
- Waldrop, T.A.; Hagan, D.L.; Simon, D.M. Repeated Application of Fuel Reduction Treatments in the Southern Appalachian Mountains, USA: Implications for Achieving Management Goals. Fire Ecol. 2016, 12, 28–47. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, C.N.; Hagan, D.L. Assessing the Relationship between Litter + Duff Consumption and Post-Fire Soil Temperature Regimes. Fire 2020, 3, 64. https://doi.org/10.3390/fire3040064
Smith CN, Hagan DL. Assessing the Relationship between Litter + Duff Consumption and Post-Fire Soil Temperature Regimes. Fire. 2020; 3(4):64. https://doi.org/10.3390/fire3040064
Chicago/Turabian StyleSmith, Crystal N., and Donald L. Hagan. 2020. "Assessing the Relationship between Litter + Duff Consumption and Post-Fire Soil Temperature Regimes" Fire 3, no. 4: 64. https://doi.org/10.3390/fire3040064
APA StyleSmith, C. N., & Hagan, D. L. (2020). Assessing the Relationship between Litter + Duff Consumption and Post-Fire Soil Temperature Regimes. Fire, 3(4), 64. https://doi.org/10.3390/fire3040064