Evaluating Socioecological Wildfire Effects in Greece with a Novel Numerical Index
Abstract
:1. Introduction
2. The FIRE Index
2.1. Fire Effects Categories and Criteria
2.1.1. Effects on Landscape and Vegetation
Criterion | Contribution to the FIRE Index Score (%) | Relative Importance | Assessment Scale | References |
---|---|---|---|---|
Ecosystem location/type | 7.34 | Mountainous and wildland urban interface ranked highest | Dominant type of the affected landscape | [22,24,25,26,27,28,29,30] |
Dominant land use/land cover type | 1.88 | Higher elevation conifer and cold climate broadleaf forests ranked highest | Portion of landscape relative to dominant species type | [31,32,33,34,35,36,37,38,39,40] |
Protected forested area type | 1.15 | Old-growth and national parks weighted highest, with recreational areas also considered | Landscape-level ratio of protected to non-protected | [41,42,43,44,45,46] |
Air quality and smoke impacts | 0.46 | Smoke impacts or visibility reduction in proximity to populated large areas weighted higher than lower or no impacts on population | Broad landscape categories | [47,48,49,50,51,52,53,54] |
Probability of land degradation, erosion, and soil loss | 3.17 | The higher the proportion of any of these categories, especially associated with high burned area proportion, the higher the weight | Proportion of landscape relative to burned area | [55,56,57,58,59,60,61,62,63,64] |
2.1.2. General Environmental Impacts
Criterion | Contribution to the FIRE Index Score (%) | Relative Importance | Assessment Scale | References |
---|---|---|---|---|
Insect and invertebrate habitat losses | 2.13 | Weighted based on broad loss categories | Broad landscape categories | [68,69,70,71,72,73,74] |
Small sized mammal/reptile habitat losses | 1.56 | Weighted based on broad loss categories | Broad landscape categories | [70,75,76,77,78,79,80,81,82,83] |
Fish habitat losses | 0.37 | Weighted based on broad loss categories | Broad landscape categories | [84,85,86,87,88,89,90,91,92,93] |
Bird habitat losses | 3.06 | Weighted based on broad loss categories | Broad landscape categories | [70,94,95,96,97,98,99,100] |
Large sized mammal habitat losses | 0.66 | Weighted based on broad loss categories | Broad landscape categories | [70,76,101,102,103,104] |
Losses of Important/Rare Flora Habitats | 4.29 | Weighted based on broad loss categories | Broad landscape categories | [66,105,106,107] |
Threat from Alien Species/Changes in Species Composition (Flora) | 1.07 | Weighted based on broad change categories | Broad landscape categories | [67,104,108,109,110,111,112,113] |
Threat from Alien Species/Changes in Species Composition (Fauna) | 0.86 | Weighted based on broad change categories | Broad landscape categories relative to the proportion of reserve area | [114,115,116,117,118] |
2.1.3. Regeneration Potential and Vegetation Recovery
Criterion | Contribution to the FIRE Index Score (%) | Relative Importance | Assessment Scale | References |
---|---|---|---|---|
Conifer forest age | 1.41 | Regeneration more difficult in younger forests | Age at stand level | [119,120,121,123,144,145,146] |
Broadleaf/evergreen shrubland forest age | 1.09 | Regeneration more difficult in older or very young forests | Age at stand level | [147,148,149,150,151,152] |
Slope (°) | 2.25 | Lower likelihood of successful regeneration in more rugged (steep) landscapes | Portion of landscape in slope category | [59,126,127,153,154,155] |
Recent fire activity | 1.77 | Higher regeneration success with longer fire return intervals | Broad landscape categories | [156,157,158,159,160] |
Unburned forest patches and individual trees | 0.33 | Higher regeneration success in more dispersed and abundant unburned patches (fire refugia), thus the lower the weight | Broad landscape categories | [131,161,162,163,164,165] |
Grazing/browsing threat | 3.63 | The higher the grazing frequency or rate, the lower the regeneration success | Amount of livestock within or near burned area | [128,152,166,167] |
Illegal activities/land use changes | 1.51 | The higher the level, estimated from pre-fire conditions, the greater the weight | Broad landscape categories | [133,168,169,170] |
Urban/tourism pressure | 0.66 | The higher the level, estimated from pre-fire conditions, the greater the weight | Broad landscape categories | [64,134,135,171] |
Smoldering | 0.37 | Negative effects on soil properties decrease seed germination and resprouting | Broad landscape categories | [136,172,173,174] |
Threat from insects and disease | 0.16 | Negative effect on surviving vegetation | Broad landscape categories | [138,139,175,176,177,178,179] |
Soil type | 0.81 | Deeper soils more correlated with successful regeneration of vegetation than skeletal soils | Proportion of landscape in broad categories relative to proportion of burned, scorched or unburned area | [141,142,180,181] |
2.1.4. Firefighting and Wildfire Suppression
Criterion | Contribution to the FIRE Index Score (%) | Relative Importance | Assessment Scale | References |
---|---|---|---|---|
Fire behavior type | 4.19 | Active crown fire weighted higher than passive or surface | Broad landscape categories | [136,182,187,188] |
Fire reignition—spotting | 2.81 | The higher the spotting and reignition the higher the weight | Broad landscape categories | [189,190] |
Number of people participating in fire suppression | 1.91 | The higher the number the higher the weight | Broad incident categories | Table S1; [36,191] |
Number of firefighting vehicles | 1.22 | The higher the number the higher the weight | Broad incident categories | Table S1; [36,191] |
Number of firefighting aircraft | 1.80 | The higher the number the higher the weight | Broad incident categories | Table S1; [36,191] |
International aid and reinforcements | 0.34 | Aircraft weighted higher than vehicles or personnel | Broad incident categories | [186] |
Declaration of the area in a state of emergency | 1.01 | Binary with yes weighted higher | Yes/No | [192] |
Community evacuation | 0.73 | The higher the number the higher the weight | Broad incident categories relative to fire duration | [36,191] |
2.1.5. Casualties and Fatalities
2.1.6. Destruction and Damages to Infrastructure
Criterion | Contribution to the FIRE Index Score (%) | Relative Importance | Assessment Scale | References |
---|---|---|---|---|
Destroyed houses | 4.17 | The higher the number the higher the weight | Broad incident categories | [36,191] |
Destroyed household stables, warehouses, or auxiliary buildings | 0.58 | The higher the number the higher the weight | Broad incident categories | [36,191] |
Damage to monuments or cultural heritage sites | 1.86 | World Heritage Sites weighted higher than historic or recent monuments | Broad landscape categories | [203,205] |
Cost of damages to vehicles and machinery | 0.24 | The higher the cost the higher the weight | Broad incident categories | [36,191] |
Cost of damages to electricity grid | 1.55 | The higher the cost the higher the weight | Broad incident categories | [204,206,207] |
Cost of damages to telecommunications | 0.83 | The higher the cost the higher the weight | Broad incident categories | n/a |
Cost of damages to water supply network | 2.42 | The higher the cost the higher the weight | Broad incident categories | [208,209] |
Cost of damages to public transportation network | 0.45 | The higher the cost the higher the weight | Broad incident categories | [52,199,210,211] |
Cost of damages to military facilities/equipment | 0.24 | The higher the cost the higher the weight | Broad incident categories | n/a |
Cost of damages to factories, renewable energy sources and industrial warehouses | 0.33 | The higher the cost the higher the weight | Broad incident categories | n/a |
Cost of damages to agricultural/livestock installations | 1.33 | The higher the cost the higher the weight | Broad incident categories | [212] |
2.1.7. Economic Losses
Criterion | Contribution to the FIRE Index Score (%) | Relative Importance | Assessment Scale | References |
---|---|---|---|---|
Timber and wood products lost revenue | 0.26 | The higher the losses the higher the weight | Broad landscape categories | [5,207,216,217] |
Non-wood forest products lost revenue | 0.55 | The higher the losses the higher the weight | Broad landscape categories | [218,219] |
Agricultural production lost revenue | 1.85 | The higher the losses the higher the weight | Broad landscape categories | [212] |
Livestock production lost revenue | 0.92 | The higher the losses the higher the weight | Broad landscape categories | [212] |
Cost to restore industrial and electricity production | 0.92 | The higher the losses the higher the weight | Broad landscape categories | [204,220] |
Compensation and funding for house and building restoration | 4.18 | The higher the losses the higher the weight | Broad landscape categories | [207,221,222,223,224] |
Effect on tourism and recreation | 1.85 | Forested area use weighted higher than scenery, ocean tourism and non-tourist areas | Broad landscape categories | [31,225,226] |
Landscape rehabilitation cost | 3.47 | The higher the scale of loss the higher the weight | Broad landscape categories relative to the area of the landscape burned | [63,227] |
2.2. FIRE Index Design
2.2.1. Additive Terms
2.2.2. Criterion Descriptors
2.2.3. General Multipliers
2.3. Prioritization of Criteria Using the Analytical Hierarchical Process
2.4. Expert Evaluation of Relative Criterion Importance
2.5. Fire Effects Assessment
2.6. Sensitivity Analysis
2.7. Example Application of the FIRE Index
3. Results
3.1. Sensitivity Analysis
3.2. Connecting Governance Actions and Post-Fire Mitigation Measures with Fire Effects Category Scores
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Weight | Total Weight (%) | ID | Type | Name/Details | No Effect | Low | Moderate | High | |||
---|---|---|---|---|---|---|---|---|---|---|---|
General Multiplier Value | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | ||||
Criterion Value (0–100) | 0 | 10 | 20 | 40 | 60 | 80 | 100 | ||||
0.524 | 7.34 | A.1 | CR | Ecosystem location/type | n/a | n/a | Flat terrain/Agricultural land | Highlands | Wildland-urban interface | Mountainous | |
0.134 | 1.88 | A.2 | CR | Dominant land use/land cover type | n/a | Bare soil | Grass or short shrub | Shrubland | Agricultural land or orchard | Mixed or broadleaf forest | Conifer forest |
CRD | Cover (0–100%)- Sum must be = 100% | n/a | 0–100% | 0–100% | 0–100% | 0–100% | 0–100% | 0–100% | |||
AT | Broadleaf/evergreen shrubland species | n/a | Quercus spp. or Olea sylvestris | Juglans regia or Castanea spp. | Fagus spp. or cold climate broadleaf evergreens | Mixed conifer/broadleaf forest | |||||
AT | Conifer forest dominant species | n/a | Pinus brutia or Pinus halepensis | Juniperus spp. or Cupressus spp. | Pinus nigra or Pinus pinea | Abies spp. or mixed Fir/Pine forest or Pinus sylvestris or Pinus heldreichii | |||||
0.082 | 1.15 | A.3 | CR | Protected forested area type | None | Lake or seashore forests | Recreational forests | National parks | Old-growth forest | ||
AT | Ratio of protected forested area vs. non-protected area inside the burned perimeter | n/a | <10% | 11–20% | 21–30% | 31–40% | 41–50% | >50% | |||
0.033 | 0.46 | A.4 | CR | Air quality and smoke impacts | Away from settlements | Small-scale visibility reduction and smoke impacts near small villages | Visibility reduction inside medium sized populated areas | Visibility reduction inside large sized populated areas | Severe smoke impacts inside medium sized populated areas | Severe smoke impacts inside large sized populated areas | |
0.226 | 3.17 | A.5 | CR | Probabilities of land degradation, erosion, and soil loss | None | Low | Moderate | High | |||
CRD | Cover (0–100%)- Sum must be = 100% | 0–100% | 0–100% | 0–100% | 0–100% | ||||||
GM | Burned area (ha) | n/a | <10 | 10–100 | >100–500 | >500–2000 | >2000–7000 | >7000 |
Weight | Total Weight (%) | ID | Type | Name/Details | No Effect | Low | Moderate | High | |||
---|---|---|---|---|---|---|---|---|---|---|---|
General Multiplier Value | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | ||||
Criterion Value (0–100) | 0 | 10 | 20 | 40 | 60 | 80 | 100 | ||||
0.152 | 2.13 | Β.1 | CR | Insect and invertebrate habitat losses | None | Few | Several | Extended | |||
0.111 | 1.56 | Β.2 | CR | Small sized mammal/reptile habitat losses | None | Few | Several | Extended | |||
0.026 | 0.37 | Β.3 | CR | Fish habitat losses | None | Few | Several | Extended | |||
0.219 | 3.06 | Β.4 | CR | Bird habitat losses | None | Few | Several | Extended | |||
0.047 | 0.66 | Β.5 | CR | Large sized mammal habitat losses | None | Few | Several | Extended | |||
0.306 | 4.29 | Β.6 | CR | Losses of important/rare flora habitats | Zero due to the lack of important/rare species | Few with regeneration potential | Extended with alteration on habitat conditions and strong population stresses | Intense, with possible species extinction or disappearance from the area | |||
0.076 | 1.07 | Β.7 | CR | Threat from alien species/Changes in species composition (Flora) | None | Local | Extended | Intense | |||
0.062 | 0.86 | Β.8 | CR | Threat from alien species/Changes in species composition (Fauna) | None | Local | Extended | Intense | |||
GM | Affected area under protection status | None | Wildlife habitats/NATURA 2000 areas | Protected natural areas | Areas of complete and strict protection | Biogenetic/biosphere reserves | |||||
AT | Cover (0–100%) | <10% | 11–20% | 21–30% | 31–40% | 41–50% | >50% |
Weight | Total Weight (%) | ID | Type | Name/Details | No Effect | Low | Moderate | High | |||
---|---|---|---|---|---|---|---|---|---|---|---|
General Multiplier Value | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | ||||
Criterion Value (0–100) | 0 | 10 | 20 | 40 | 60 | 80 | 100 | ||||
0.101 | 1.41 | C.1 | CR | Conifer forest age | Not applicable | 60–100 | 20–60 | >100 | 15–20 | <15 | |
0.078 | 1.09 | C.2 | CR | Broadleaf/evergreen shrubland forest age | Not applicable | 20–60 | 15–20 | 10–15 | 60–80 | >80 ή < 10 | |
0.161 | 2.25 | C.3 | CR | Slope (°) | 0–5 | 5–10 | 10–15 | 15–20 | 20–30 | 30–45 | >45 |
CRD | Cover (0–100%)- Sum must be = 100% | 0–100% | 0–100% | 0–100% | 0–100% | 0–100% | 0–100% | 0–100% | |||
0.127 | 1.77 | C.4 | CR | Recent fire activity | >100 years | >50 years | >30 years | >20 years | <10 years | ||
0.023 | 0.33 | C.5 | CR | Unburned forest patches and individual trees | Many (dispersed) | Many (Clustered) | Few (dispersed) | Few (Clustered) | None | ||
0.259 | 3.63 | C.6 | CR | Grazing/browsing threat | None | Partial | Extended | Intense | |||
0.108 | 1.51 | C.7 | CR | Illegal activities/land use changes | None | Partial | Extended | Intense | |||
0.047 | 0.66 | C.8 | CR | Urban/tourism pressure | None | Partial | Extended | Intense | |||
0.026 | 0.37 | C.9 | CR | Smoldering | None | Partial | Extended | Intense | |||
0.012 | 0.16 | C.10 | CR | Threat from Insects and Disease | None | Partial | Extended | Intense | |||
0.058 | 0.81 | C.11 | CR | Soil type | Deep soils with small amount of rocks | Deep soils with moderate amount of rocks | Moderate depth soils with small amount of rocks | Moderate depth soils with moderate amount of rocks | Shallow soils with moderate amount of rocks | Shallow exposed soils with large amount of rocks | |
CRD | Cover (0–100%)- Sum must be = 100% | 0–100% | 0–100% | 0–100% | 0–100% | 0–100% | 0–100% | 0–100% | |||
GM | Define the percentage of burned, scorched and unburned vegetation (black, brown and green); average value of the three responses below | ||||||||||
Burned (Black) | None | 5–20% | 60% | >85% | 100% with consumed branches | ||||||
Scorched (Brown) | None | 5–20% | 40–80% | <40 ή >80% | Non due to torching | ||||||
Unburned (Green) | 100% | 80% | 40% | <10% | None |
Weight | Total Weight (%) | ID | Type | Name/Details | No Effect | Low | Moderate | High | |||
---|---|---|---|---|---|---|---|---|---|---|---|
General Multiplier Value | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | ||||
Criterion Value (0–100) | 0 | 10 | 20 | 40 | 60 | 80 | 100 | ||||
0.299 | 4.19 | D.1 | CR | Fire behavior type | Surface fire | Torching/passive crown fire | Active crown fire | ||||
0.201 | 2.81 | D.2 | CR | Fire reignition - spotting | None | Few | Constant | ||||
0.136 | 1.91 | D.3 | CR | Number of people participating in fire suppression | <10 | 10–24 | 25–39 | 40–54 | 55–69 | >70 | |
0.087 | 1.22 | D.4 | CR | Number of firefighting vehicles | 1–4 | 5–9 | 10–14 | 15–19 | 20–24 | >25 | |
0.128 | 1.80 | D.5 | CR | Number of firefighting aircraft | 0 | <=2 | 3–5 | 6–10 | >10 | ||
0.024 | 0.34 | D.6 | CR | International aid and reinforcements | None | Personnel | Vehicles | Aircraft | |||
0.072 | 1.01 | D.7 | CR | Declaration of the area in a state of emergency | No | Yes | |||||
0.052 | 0.73 | D.8 | CR | Community evacuation | No | <2 communities | 2 to 5 communities | >5 communities | |||
GM | Fire duration | 0–3 h | >3–15 h | >15–24 h | >24–48 h | >48–72 h | > 72h |
Weight | Total Weight (%) | ID | Type | Name/Details | No Effect | Low | Moderate | High | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Criterion Value (0–100) | 0 | 10 | 20 | 40 | 60 | 80 | 100 | ||||
0.401 | 6.28 | Ε.1 | CR | Civilian fatalities | 0 | 1 | 2–5 | 6–10 | >10 | ||
0.303 | 4.76 | Ε.2 | CR | Firefighting personnel fatalities | 0 | 1 | 2–3 | 4–5 | >5 | ||
0.104 | 2.12 | Ε.3 | CR | Injured | 0 | 1 | 2–5 | 6–10 | 11–20 | 21–30 | >30 |
0.044 | 0.71 | Ε.4 | CR | Firefighting vehicle losses | 0 | 1 | 2 | 3 | 4–5 | >5 | |
0.147 | 2.12 | Ε.5 | CR | Firefighting aircraft losses | 0 | 1 | 2 | >2 |
Weight | Total Weight (%) | ID | Type | Name/Details | No Effect | Low | Moderate | High | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Criterion Value (0–100) | 0 | 10 | 20 | 40 | 60 | 80 | 100 | ||||
0.298 | 4.17 | F.1 | CR | Destroyed houses | 0 | 1 | 3 | 5 | 6–10 | >10 | |
0.041 | 0.58 | F.2 | CR | Destroyed household stables, warehouses, or auxiliary buildings | 0 | 1 | 3 | 5 | 6–10 | 11–20 | >20 |
0.133 | 1.86 | F.3 | CR | Damage to monuments or cultural heritage sites | None | Recent monuments aged <200 years | Historic monuments aged >200 years | World heritage sites and monuments | |||
0.017 | 0.24 | F.4 | CR | Cost of damages to vehicles and machinery | None | Minor (<15,000 €) | Small (<30,000 €) | Medium (<100,000 €) | Important high cost damages (>200,000 €) | ||
0.111 | 1.55 | F.5 | CR | Cost of damages to electricity grid | None | Minor (<15,000 €) | Small (<30,000 €) | Medium (<100,000 €) | Important high cost damages (>200,000 €) | ||
0.059 | 0.83 | F.6 | CR | Cost of damages to telecommunications | None | Minor (<15,000 €) | Small (<30,000 €) | Medium (<100,000 €) | Important high cost damages (>200,000 €) | ||
0.173 | 2.42 | F.7 | CR | Cost of damages to water supply network | None | Minor (<15,000 €) | Small (<30,000 €) | Medium (<100,000 €) | Important high cost damages (>200,000 €) | ||
0.032 | 0.45 | F.8 | CR | Cost of damages to public transportation network | None | Minor (<15,000 €) | Small (<30,000 €) | Medium (<100,000 €) | Important high cost damages (>200,000 €) | ||
0.017 | 0.24 | F.9 | CR | Cost of damages to military facilities/equipment | None | Minor (<50,000 €) | Small (<100,000 €) | Medium (<200,000 €) | Important high cost damages (>300,000 €) | ||
0.024 | 0.33 | F.10 | CR | Cost of damages to factories, renewable energy sources and industrial warehouses | None | Minor (<50,000 €) | Small (<100,000 €) | Medium (<200,000 €) | Important high cost damages (>300,000 €) | ||
0.095 | 1.33 | F.11 | CR | Cost of damages to agricultural/livestock installations | None | Minor (<50,000 €) | Small (<100,000 €) | Medium (<200,000 €) | Important high cost damages (>300,000 €) |
Weight | Total Weight (%) | ID | Type | Name/Details | No Effect | Low | Moderate | High | |||
---|---|---|---|---|---|---|---|---|---|---|---|
General Multiplier Value | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | ||||
Criterion Value (0–100) | 0 | 10 | 20 | 40 | 60 | 80 | 100 | ||||
0.019 | 0.26 | G.1 | CR | Timber and wood products lost revenue | None | Minor | Small | Moderate | High | Complete destruction | |
0.039 | 0.55 | G.2 | CR | Non-wood forest products lost revenue | None | Minor | Small | Moderate | High | Complete destruction | |
0.132 | 1.85 | G.3 | CR | Agricultural production lost revenue | None | Minor | Small | Moderate | High | Complete destruction | |
0.066 | 0.92 | G.4 | CR | Livestock production lost revenue | None | Minor | Small | Moderate | High | Complete destruction | |
0.066 | 0.92 | G.5 | CR | Cost to restore industrial and electricity production | No cost | Minor | Small | Moderate | High | Very high | |
0.298 | 4.18 | G.6 | CR | Compensation and funding for house and building restoration | No cost | Minor | Small | Moderate | High | ||
0.132 | 1.85 | G.7 | CR | Effect on tourism and recreation | Non tourism area | Sea related tourism area | Scenery landscape close to intensely developed tourism areas | Forested area used for recreational or tourism purposes | |||
0.248 | 3.47 | G.8 | CR | Landscape rehabilitation cost | No Investments | Small scale reforestation and flood or erosion prevention measures | Moderate scale reforestation and flood or erosion prevention measures | Large scale reforestation and flood or erosion prevention measures | |||
GM | Burned area (ha) | <10 | 10–100 | 100–500 | 500–2000 | 2000–7000 | >7000 |
Appendix B
Rank | Criteria | Weight | ||||
---|---|---|---|---|---|---|
R1 | Ecosystem location/type | 0.524 | ||||
R2 | Probability of land degradation, erosion, and soil loss | 0.226 | ||||
R3 | Dominant land use/land cover type | 0.135 | ||||
R4 | Protected forested area type | 0.082 | ||||
R5 | Air quality and smoke impacts | 0.033 | ||||
R1 | R2 | R3 | R4 | R5 | ||
R1 | 1.00 | 4.00 | 6.00 | 7.00 | 8.00 | |
R2 | 0.25 | 1.00 | 3.00 | 4.00 | 7.00 | |
R3 | 0.17 | 0.33 | 1.00 | 3.00 | 6.00 | |
R4 | 0.14 | 0.25 | 0.33 | 1.00 | 5.00 | |
R5 | 0.13 | 0.14 | 0.17 | 0.20 | 1.00 | |
SUM | 1.7 | 5.7 | 10.5 | 15.2 | 27.0 | |
N = 5 | RCI = 1.12; CI = 0.126; CR = 0.112; λmax = 5.50 |
Rank | Criteria | Weight | ||||||
---|---|---|---|---|---|---|---|---|
R1 | Losses of important/rare flora habitats | 0.306 | ||||||
R2 | Bird habitat losses | 0.219 | ||||||
R3 | Insect and invertebrate habitat losses | 0.152 | ||||||
R4 | Small sized mammal/reptile habitat losses | 0.112 | ||||||
R5 | Threat from alien species/Changes in species composition (Flora) | 0.076 | ||||||
R6 | Threat from alien species/Changes in species composition (Fauna) | 0.062 | ||||||
R7 | Large sized mammal habitat losses | 0.047 | ||||||
R8 | Fish habitat losses | 0.026 | ||||||
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | |
R1 | 1.00 | 2.00 | 3.00 | 4.00 | 4.00 | 5.00 | 5.00 | 6.00 |
R2 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 4.00 | 4.00 | 6.00 |
R3 | 0.33 | 0.50 | 1.00 | 2.00 | 3.00 | 3.00 | 4.00 | 5.00 |
R4 | 0.25 | 0.33 | 0.50 | 1.00 | 2.00 | 3.00 | 3.00 | 5.00 |
R5 | 0.25 | 0.25 | 0.33 | 0.50 | 1.00 | 2.00 | 2.00 | 4.00 |
R6 | 0.20 | 0.25 | 0.33 | 0.33 | 0.50 | 1.00 | 2.00 | 4.00 |
R7 | 0.20 | 0.25 | 0.25 | 0.33 | 0.50 | 0.50 | 1.00 | 3.00 |
R8 | 0.17 | 0.17 | 0.20 | 0.20 | 0.25 | 0.25 | 0.33 | 1.00 |
SUM | 2.9 | 4.8 | 7.6 | 11.4 | 15.3 | 18.8 | 21.3 | 34.0 |
N = 8 | RCI = 1.41; CI = 0.063; CR = 0.044; λmax = 8.43 |
Rank | Criteria | Weight | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R1 | Grazing/browsing threat | 0.259 | |||||||||
R2 | Slope (°) | 0.161 | |||||||||
R3 | Recent fire activity | 0.127 | |||||||||
R4 | Illegal activities/land use changes | 0.108 | |||||||||
R5 | Conifer forest age | 0.101 | |||||||||
R6 | Broadleaf/evergreen shrubland forest age | 0.078 | |||||||||
R7 | Soil type | 0.058 | |||||||||
R8 | Urban/tourism pressure | 0.047 | |||||||||
R9 | Smoldering | 0.026 | |||||||||
R10 | Unburned forest patches and individual trees | 0.023 | |||||||||
R11 | Threat from insects and disease | 0.012 | |||||||||
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | |
R1 | 1.00 | 3.00 | 3.00 | 4.00 | 4.00 | 4.00 | 5.00 | 5.00 | 7.00 | 7.00 | 9.00 |
R2 | 0.33 | 1.00 | 2.00 | 2.00 | 3.00 | 3.00 | 4.00 | 4.00 | 6.00 | 6.00 | 8.00 |
R3 | 0.33 | 0.50 | 1.00 | 2.00 | 2.00 | 2.00 | 3.00 | 4.00 | 6.00 | 6.00 | 8.00 |
R4 | 0.25 | 0.50 | 0.50 | 1.00 | 2.00 | 2.00 | 3.00 | 3.00 | 6.00 | 6.00 | 8.00 |
R5 | 0.25 | 0.33 | 0.50 | 0.50 | 1.00 | 2.00 | 3.00 | 5.00 | 6.00 | 6.00 | 8.00 |
R6 | 0.25 | 0.33 | 0.50 | 0.50 | 0.33 | 1.00 | 2.00 | 3.00 | 5.00 | 6.00 | 8.00 |
R7 | 0.20 | 0.25 | 0.33 | 0.33 | 0.50 | 0.50 | 1.00 | 2.00 | 4.00 | 5.00 | 7.00 |
R8 | 0.20 | 0.25 | 0.25 | 0.33 | 0.20 | 0.33 | 0.50 | 1.00 | 4.00 | 4.00 | 7.00 |
R9 | 0.14 | 0.17 | 0.17 | 0.17 | 0.17 | 0.20 | 0.25 | 0.25 | 1.00 | 2.00 | 6.00 |
R10 | 0.14 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.20 | 0.25 | 0.50 | 1.00 | 6.00 |
R11 | 0.11 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.14 | 0.14 | 0.17 | 0.17 | 1.00 |
SUM | 3.21 | 6.63 | 8.54 | 11.13 | 13.49 | 15.33 | 22.09 | 27.64 | 45.67 | 49.17 | 76.00 |
N = 11 | RCI = 1.51; CI = 0.127; CR = 0.084; λmax = 12.26 |
Rank | Criteria | Weight | ||||||
---|---|---|---|---|---|---|---|---|
R1 | Fire behavior type | 0.299 | ||||||
R2 | Fire reignition—spotting | 0.201 | ||||||
R3 | Number of people participating in firefighting | 0.136 | ||||||
R4 | Number of firefighting aircraft | 0.129 | ||||||
R5 | Number of ground vehicles | 0.087 | ||||||
R6 | Declaration of the area in a state of emergency | 0.072 | ||||||
R7 | Community evacuation | 0.052 | ||||||
R8 | International aid and reinforcements | 0.024 | ||||||
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | |
R1 | 1.00 | 2.00 | 3.00 | 3.00 | 4.00 | 4.00 | 5.00 | 6.00 |
R2 | 0.50 | 1.00 | 2.00 | 2.00 | 3.00 | 3.00 | 4.00 | 6.00 |
R3 | 0.33 | 0.50 | 1.00 | 1.00 | 2.00 | 3.00 | 3.00 | 6.00 |
R4 | 0.33 | 0.50 | 1.00 | 1.00 | 2.00 | 2.00 | 3.00 | 6.00 |
R5 | 0.25 | 0.33 | 0.50 | 0.50 | 1.00 | 2.00 | 2.00 | 5.00 |
R6 | 0.25 | 0.33 | 0.33 | 0.50 | 0.50 | 1.00 | 2.00 | 5.00 |
R7 | 0.20 | 0.25 | 0.33 | 0.33 | 0.50 | 0.50 | 1.00 | 4.00 |
R8 | 0.17 | 0.17 | 0.17 | 0.17 | 0.20 | 0.20 | 0.25 | 1.00 |
SUM | 3.0 | 5.1 | 8.3 | 8.5 | 13.2 | 15.7 | 20.3 | 39.0 |
N = 8 | RCI = 1.41; CI = 0.051; CR = 0.036; λmax = 8.35 |
Rank | Criteria | Weight | |||
---|---|---|---|---|---|
R1 | Civilian fatalities | 0.401 | |||
R2 | Firefighting personnel fatalities | 0.304 | |||
R3 | Firefighting aircraft losses | 0.147 | |||
R4 | Injured | 0.104 | |||
R5 | Firefighting vehicle losses | 0.044 | |||
R1 | R2 | R3 | R4 | R5 | |
R1 | 1.00 | 2.00 | 3.00 | 4.00 | 6.00 |
R2 | 0.5 | 1.00 | 3.00 | 4.00 | 6.00 |
R3 | 0.3 | 0.3 | 1.00 | 2.00 | 4.00 |
R4 | 0.3 | 0.3 | 0.5 | 1.00 | 4.00 |
R5 | 0.2 | 0.2 | 0.3 | 0.3 | 1.00 |
SUM | 2.3 | 3.8 | 7.8 | 11.3 | 21.0 |
N = 5 | RCI = 1,12; CI = 0.053; CR = 0.047; λmax = 5.21 |
Rank | Criteria | Weight | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R1 | Destroyed houses | 0.298 | |||||||||
R2 | Cost of damages to water supply network | 0.173 | |||||||||
R3 | Damages to monuments cultural heritage sites | 0.133 | |||||||||
R4 | Cost of damages to electricity grid | 0.111 | |||||||||
R5 | Cost of damages to agricultural/livestock installations | 0.095 | |||||||||
R6 | Cost of damages to telecommunications | 0.059 | |||||||||
R7 | Cost of damages to factories, renewable energy sources installations and industrial warehouses | 0.041 | |||||||||
R8 | Cost of damages to public transportation network | 0.032 | |||||||||
R9 | Cost of damages to factories, renewable energy sources and industrial warehouses | 0.024 | |||||||||
R10 | Cost of damages to military facilities/equipment | 0.017 | |||||||||
R11 | Destroyed household stables, warehouses, or auxiliary buildings | 0.017 | |||||||||
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | |
R1 | 1.00 | 4.00 | 4.00 | 5.00 | 5.00 | 6.00 | 7.00 | 7.00 | 7.00 | 8.00 | 8.00 |
R2 | 0.25 | 1.00 | 2.00 | 3.00 | 3.00 | 5.00 | 6.00 | 6.00 | 6.00 | 7.00 | 7.00 |
R3 | 0.25 | 0.50 | 1.00 | 2.00 | 2.00 | 4.00 | 5.00 | 6.00 | 6.00 | 6.00 | 6.00 |
R4 | 0.20 | 0.33 | 0.50 | 1.00 | 2.00 | 4.00 | 4.00 | 5.00 | 6.00 | 6.00 | 6.00 |
R5 | 0.20 | 0.33 | 0.50 | 0.50 | 1.00 | 3.00 | 4.00 | 5.00 | 5.00 | 6.00 | 6.00 |
R6 | 0.17 | 0.20 | 0.25 | 0.25 | 0.33 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 5.00 |
R7 | 0.14 | 0.17 | 0.20 | 0.25 | 0.25 | 0.50 | 0.20 | 2.00 | 3.00 | 4.00 | 4.00 |
R8 | 0.14 | 0.17 | 0.17 | 0.20 | 0.20 | 0.33 | 0.50 | 1.00 | 2.00 | 3.00 | 3.00 |
R9 | 0.14 | 0.17 | 0.17 | 0.17 | 0.20 | 0.25 | 0.33 | 0.50 | 1.00 | 2.00 | 2.00 |
R10 | 0.13 | 0.14 | 0.17 | 0.17 | 0.17 | 0.20 | 0.25 | 0.33 | 0.50 | 1.00 | 1.00 |
R11 | 0.13 | 0.14 | 0.17 | 0.17 | 0.17 | 0.20 | 0.25 | 0.33 | 0.50 | 1.00 | 1.00 |
SUM | 2.7 | 7.2 | 9.1 | 12.7 | 14.3 | 24.5 | 29.5 | 36.2 | 41.0 | 49.0 | 49.0 |
N = 11 | RCI = 1.51; CI = 0.096; CR = 0.064; λmax = 11.96 |
Rank | Criteria | Weight | ||||||
---|---|---|---|---|---|---|---|---|
R1 | Compensation and funding for house and building restoration | 0.298 | ||||||
R2 | Landscape rehabilitation measures cost | 0.248 | ||||||
R3 | Agricultural production lost revenue | 0.132 | ||||||
R4 | Effect on tourism and recreation | 0.132 | ||||||
R5 | Cost to restore industrial and electricity production | 0.066 | ||||||
R6 | Livestock production lost revenue | 0.066 | ||||||
R7 | Non-wood forest products lost revenue | 0.039 | ||||||
R8 | Timber and wood products lost revenue | 0.019 | ||||||
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | |
R1 | 1.00 | 2.00 | 3.00 | 3.00 | 5.00 | 5.00 | 6.00 | 8.00 |
R2 | 0.50 | 1.00 | 3.00 | 3.00 | 5.00 | 5.00 | 6.00 | 8.00 |
R3 | 0.33 | 0.33 | 1.00 | 1.00 | 3.00 | 3.00 | 5.00 | 7.00 |
R4 | 0.33 | 0.33 | 1.00 | 1.00 | 3.00 | 3.00 | 5.00 | 7.00 |
R5 | 0.20 | 0.20 | 0.33 | 0.33 | 1.00 | 1.00 | 3.00 | 6.00 |
R6 | 0.20 | 0.20 | 0.33 | 0.33 | 1.00 | 1.00 | 3.00 | 6.00 |
R7 | 0.17 | 0.17 | 0.20 | 0.20 | 0.33 | 0.33 | 1.00 | 5.00 |
R8 | 0.13 | 0.13 | 0.14 | 0.14 | 0.17 | 0.17 | 0.20 | 1.00 |
SUM | 2.9 | 4.4 | 9.0 | 9.0 | 18.5 | 18.5 | 29.2 | 48.0 |
N = 8 | RCI = 1.41; CI = 0.088; CR = 0.062; λmax = 8.61 |
Appendix C. Evaluation of the FIRE Index for the 2011 Evros Fire
Appendix C.1. Landscape and Vegetation Fire Effects Category
Weight | ID | Type | Evaluation | 1st Value | 2nd Value | 3rd Value | Value | Weighted Value |
---|---|---|---|---|---|---|---|---|
0.524 | A.1 | CR | 70% Highlands/30% flat terrain/agricultural land | 50 | 26.20 | |||
0.134 | A.2 | CR | 14% Agricultural land, 12% Shrubland, 1% Bare soil, 23% Mixed or broadleaf forest, 50% Conifer forest | 62.1 | 8.35 | |||
CRD | 14% Agricultural land, 12% Shrubland, 1% Bare soil | 0.14 × 60; 0.12 × 40; 0.01 × 10 | 13.3 (SC0) | |||||
AT | 23% Quercus spp. or Olea sylvestris | 0.23 × 80 = 18.4 (SC1) | 0.23 × 40 = 9.2 (SC2) | SC1+ SC2 = 27.6 (SC3) | SC3/2 = 13.8 | |||
AT | 50% Pinus brutia or Pinus halepensis | 0.5 × 100 = 50 (SC4) | 0.5 × 40 = 20 (SC5) | SC1+ SC2 = 70 (SC6) | SC6/2 = 35 | |||
0.082 | A.3 | CR | National park | 80 (SC7) | (SC7+ SC8)/2 = 80 | 80 | 6.58 | |
AT | 41–50% | 80 (SC8) | ||||||
0.033 | A.4 | CR | Small-scale visibility reduction and smoke impacts near small villages | 10 | 0.33 | |||
0.226 | A.5 | CR | 61.6 | 13.94 | ||||
CRD | 7% less than low; 37% less than moderate; 33% more than moderate; 23% high | 0.07 × 10; 0.37 × 40; 0.33 × 70; 0.23 × 100 | ||||||
Sum (A.1–A.5) | 55.40 | |||||||
General Multiplier | 5900 ha | 2.5 | 2.5 × 55.40 = 138.5 | |||||
Higher Value | 300 | Lower Value | 5.91 | |||||
Final Category Score = 45.08/100 |
Appendix C.2. General Environmental Impacts Fire Effects Category
Weight | ID | Type | Evaluation | 1st Value | Value | Weighted Value |
---|---|---|---|---|---|---|
0.152 | B.1 | CR | More than few | 30 | 4.57 | |
0.111 | B.2 | CR | Few | 20 | 2.22 | |
0.026 | B.3 | CR | Few | 20 | 0.53 | |
0.219 | B.4 | CR | Several to extended | 80 | 17.49 | |
0.047 | B.5 | CR | Few to none | 10 | 0.47 | |
0.306 | B.6 | CR | Few with regeneration potential | 20 | 6.13 | |
0.076 | B.7 | CR | Extended | 60 | 4.58 | |
0.062 | B.8 | CR | Local | 10 | 0.62 | |
Sum (B.1–B.8) | 36.60 | |||||
General Multiplier | NATURA 2000 | 1.5 (SC1) | SC1 + SC2/2 = 2 | 2 × 36.60 = 73.21 | ||
AT | 41–50% | 2.5 (SC2) | ||||
Higher Value | 300 | Lower Value | 0 | |||
Final Category Score = 24.40/100 |
Appendix C.3. Regeneration Potential and Vegetation Recovery Fire Effects Category
Weight | ID | Type | Evaluation | 1st value | Value | Weighted Value |
---|---|---|---|---|---|---|
0.101 | C.1 | CR. | 45–65 years | 40 | 4.04 | |
0.078 | C.2 | CR. | 40–60 years | 20 | 1.56 | |
0.161 | C.3 | CR. | 20 | 3.22 | ||
CRD | 19.5% (0–5°); 29% (5–10°); 26% (10–15°); 17% (15–20°); 8.5% (20–30°) | 0.195Χ0 + 0.29Χ10 + 0.26 Χ20 + 0.17Χ40 + 0.085Χ60 = 20 | ||||
0.127 | C.4 | CR. | 50 years | 20 | 2.53 | |
0.023 | C.5 | CR. | Many (Clustered) | 20 | 0.46 | |
0.259 | C.6 | CR. | Partial | 20 | 5.19 | |
0.108 | C.7 | CR. | Intense | 100 | 10.76 | |
0.047 | C.8 | CR. | None | 0 | 0.00 | |
0.026 | C.9 | CR. | Extended | 60 | 1.59 | |
0.012 | C.10 | CR. | Partial to None | 10 | 0.12 | |
0.058 | C.11 | CR. | 43.4 | 2.52 | ||
CRD | 36% Deep soils with small amount of rocks; 38% Moderate depth soils with small amount of rocks; 26% Shallow soils with moderate amount of rocks | 0.36 × 10 + 0.38 × 50 + 0.26 × 80 = 43.4 | ||||
Sum (C.1–C.11) | 31.99 | |||||
General Multiplier | Burned 58% | 2 (SC1) | SC1 + SC2+ SC3/3 = 1.75 | 55.98 | ||
Scorched 20% | 1 (SC2) | |||||
Unburned 22% | 2.25 (SC3) | |||||
Higher Value | 300 | Lower Value | 0 | |||
Final Category Score = 18.66/100 |
Appendix C.4. Firefighting and Wildfire Suppression Activities Fire Effects Category
Weight | ID | Type | Evaluation | Value | Weighted Value |
---|---|---|---|---|---|
0.299 | D.1 | CR | Torching/passive crown fire with active crown fire | 80 | 23.95 |
0.201 | D.2 | CR | Few | 80 | 16.07 |
0.136 | D.3 | CR | More than 70 people | 100 | 13.63 |
0.087 | D.4 | CR | More than 25 vehicles | 100 | 8.71 |
0.128 | D.5 | CR | More than 10 aircraft | 100 | 12.83 |
0.024 | D.6 | CR | Aircraft | 100 | 2.42 |
0.072 | D.7 | CR | Yes | 100 | 7.19 |
0.052 | D.8 | CR | 2 communities—partial evacuation | 40 | 2.08 |
Sum (D.1–D.8) | 89.95 | ||||
General Multiplier | 72 h | 2.5 | 217.19 | ||
Higher Value | 300 | Lower Value | 4.11 | ||
Final Category Score = 72.01/100 |
Appendix C.5. Fatalities and Casualties Fire Effects Category
Appendix C.6. Destruction and Damages to Infrastructure Fire Effects Category
Weight | ID | Type | Evaluation | Value | Weighted Value |
---|---|---|---|---|---|
0.298 | F.1 | CR | None | 0 | 0.00 |
0.041 | F.2 | CR | 1 | 10 | 0.41 |
0.133 | F.3 | CR | None | 0 | 0.00 |
0.017 | F.4 | CR | Minor (<15,000 €) | 10 | 0.17 |
0.111 | F.5 | CR | Minor (<15,000 €) to Small (<30,000 €) | 15 | 1.67 |
0.059 | F.6 | CR | None | 0 | 0.00 |
0.173 | F.7 | CR | Minor (<15,000 €) | 10 | 1.73 |
0.032 | F.8 | CR | Minor (<15,000 €) to Small (<30,000 €) | 20 | 0.64 |
0.017 | F.9 | CR | None | 0 | 0.00 |
0.024 | F.10 | CR | None | 0 | 0.00 |
0.095 | F.11 | CR | None | 0 | 0.00 |
Sum (F.1–F.11) | 4.62 | ||||
Higher Value | 100 | Lower Value | 0 | ||
Final Category Score = 4.62/100 |
Appendix C.7. Economic Losses, Compensation, and Revenue Losses Fire Effects Category
Weight | ID | Type | Evaluation | Value | Weighted Value |
---|---|---|---|---|---|
0.019 | G.1 | CR | Moderate losses | 60 | 1.12 |
0.039 | G.2 | CR | High losses | 80 | 3.15 |
0.132 | G.3 | CR | Small losses | 20 | 2.64 |
0.066 | G.4 | CR | Moderate losses | 40 | 2.63 |
0.066 | G.5 | CR | Small cost | 20 | 1.31 |
0.298 | G.6 | CR | No cost | 0 | 0.00 |
0.132 | G.7 | CR | Scenery landscape and Forested area used for recreational/tourism purposes | 70 | 9.24 |
0.248 | G.8 | CR | Large scale reforestation and flood or erosion prevention measures | 100 | 24.79 |
Sum (G.1–G.8) | 44.89 | ||||
General Multiplier | 5900 ha | 2.5 | 112.23 | ||
Higher Value | 300 | Lower Value | 0 | ||
Final Category Score = 37.41/100 |
Appendix D
- High landscape and vegetation fire effects category score: mountainous landscape where conifer forests cover >80% of the area with Pinus nigra or Pinus pinea, with a national park/forest >30% inside the burned perimeter, visibility reduction inside large sized populated areas and moderate probabilities of land degradation, erosion, and soil losses, from a fire that burned >100 ha.
- High environmental impacts fire effects category score: habitat losses of insects and invertebrates—several; small sized mammals/reptiles—few; fish—several; birds—several; large sized mammals—few. Extended losses of important/rare flora habitats, threat from alien species/changes in species composition for flora extended and for fauna local, with burned perimeter of >50% wildlife habitat or NATURA 2000 area.
- High regeneration potential fire effects category score: conifer forest age is 15–20 years, broadleaf/evergreen shrubland forest age is 15–20 years, slope is 15–20 degrees, the recent fire activity was >20 years but <30 years, with few clustered patches of unburned vegetation, with extended grazing pressure, and a history of illegal activities in the area, few tourism or urban pressures, extended smoldering, a small threat from insects and disease and shallow soils with moderate amount of rocks, and >85% burned vegetation.
- High firefighting and suppression fire effects category score: torching/passive crown fire, limited fire reignition–spotting, >55 people participated in fire suppression with more than 20 firefighting vehicles and three aircraft, with international aid in aircraft and declaration of the area to be in a state of emergency, >2 evacuated communities and a fire duration of at least 48 h.
- High casualties and fatalities fire effects category score: more than five fatalities, including at least one fatality from the firefighting personnel, more than 10 injured and at least one destroyed firefighting vehicle.
- High destruction and damages of infrastructure fire effects category score: >10 houses, 10 household stables, warehouses, or auxiliary buildings, high cost damages on vehicles and machinery, minor cost to electricity grid, small cost to water supply network, minor damages on public transportation network, moderate damages on agricultural/livestock installations.
- High economic losses fire effects category score: high losses of timber and wood products, high losses of non-wood forest products and high lost revenue from agricultural production, moderate losses of livestock production, moderate cost of compensations and funding for house and building restoration, where the fire burned close to a scenery landscape close to intensely developed tourism areas and with moderate scale reforestation and flood or erosion prevention measures, from a fire that burned >100 ha.
References
- DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. Fire Effects on Ecosystems; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Viegas, D.X.; Ribeiro, L.M.; Viegas, M.T.; Pita, L.P.; Rossa, C. Impacts of Fire on Society: Extreme Fire Propagation Issues. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 97–109. [Google Scholar]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.C.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Ellingwood, B.; Corotis, R.B.; Boland, J.; Jones, N.P. Assessing cost of dam failure. J. Water Resour. Plan. Manag. 1993, 119, 64–82. [Google Scholar] [CrossRef]
- Butry, D.T.; Mercer, E.D.; Prestemon, J.P.; Pye, J.M.; Holmes, T.P. What Is the price of catastrophic wildfire? J. For. 2001, 99, 9–17. [Google Scholar]
- Steelman, T.A.; Burke, C.A. Is wildfire policy in the United States sustainable? J. For. 2007, 105, 67–72. [Google Scholar] [CrossRef]
- Shakesby, R.; Doerr, S. Wildfire as a hydrological and geomorphological agent. Earth Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin?—A review. Int. J. Wildland Fire 2008, 17, 713–723. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulous, G.; et al. Landscape—Wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFayden, C.B.; Boychuk, D.; Woolford, D.G.; Wheatley, M.J.; Johnston, L. Impacts of wildland fire effects on resources and assets through expert elicitation to support fire response decisions. Int. J. Wildland Fire 2019, 28, 885–900. [Google Scholar] [CrossRef]
- Scott, J.H.; Thompson, M.P.; Calkin, D.E. A Wildfire Risk Assessment Framework for Land and Resource Management; RMRS-GTR-315; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2013; p. 83. [Google Scholar]
- Kaloudis, S.; Tocatlidou, A.; Lorentzos, N.A.; Sideridis, A.B.; Karteris, M. Assessing wildfire destruction danger: A decision support system incorporating uncertainty. Ecol. Model. 2005, 181, 25–38. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Lutes, D.C. FOFEM 6.5. First Order Fire Effects Model; USDA Forest Service: Washington, DC, USA, 2018; p. 84. [Google Scholar]
- Reinhardt, E.D.; Keane, R.E.; Brown, J.K. Modeling fire effects. Int. J. Wildland Fire 2001, 10, 373–380. [Google Scholar] [CrossRef]
- Stephan, K.; Miller, M.; Dickinson, M.B. First-order fire effects on herbs and shrubs: Present knowledge and process modeling needs. Fire Ecol. 2010, 6, 95–114. [Google Scholar] [CrossRef]
- Reinhardt, E.D.; Dickinson, M.B. First-order fire effects models for land management: Overview and issues. Fire Ecol. 2010, 6, 131–142. [Google Scholar] [CrossRef]
- Massman, W.J.; Frank, J.M.; Mooney, S.J. Advancing investigation and physical modeling of first-order fire effects on soils. Fire Ecol. 2010, 6, 36–54. [Google Scholar] [CrossRef]
- Engstrom, R.T. First-order fire effects on animals: Review and recommendations. Fire Ecol. 2010, 6, 115–130. [Google Scholar] [CrossRef]
- Prichard, S.J.; Karau, E.C.; Ottmar, R.D.; Kennedy, M.C.; Cronan, J.B.; Wright, C.S.; Keane, R.E. Evaluation of the CONSUME and FOFEM fuel consumption models in pine and mixed hardwood forests of the eastern United States. Can. J. For. Res. 2014, 44, 784–795. [Google Scholar] [CrossRef]
- Zybach, B.; Dubrasich, M.; Brenner, G.; Marker, J. US Wildfire Cost-Plus-Loss Economics Project: The ‘One-Pager’ Checklist. Available online: http://wildfire-economics.org/Library/Zybach_et_al_2009a.pdf (accessed on 1 September 2020).
- López-Rodríguez, A.; Escribano-Bombín, R.; Hernández-Jiménez, V.; Bell, S. Perceptions of ecological and aesthetic quality by natural resource professionals and local people. A qualitative exploration in a mountainous landscape (La Rioja, Spain). Landsc. Res. 2019, 44, 241–255. [Google Scholar] [CrossRef]
- Canter, D. The Psychology of Place; The Architectural Press Ltd.: London, UK, 1977. [Google Scholar]
- Olsen, C.S.; Kline, J.D.; Ager, A.A.; Olsen, K.A.; Short, K.C. Examining the influence of biophysical conditions on WUI homeowners’ wildfire risk mitigation activities in fire-prone landscapes. Ecol. Soc. 2017, 22, 20. [Google Scholar] [CrossRef] [Green Version]
- Lampin-Maillet, C.; Jappiot, M.; Long, M.; Bouillon, C.; Morge, D.; Ferrier, J.P. Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. J. Environ. Manag. 2010, 91, 732–741. [Google Scholar] [CrossRef] [Green Version]
- Beriatos, E. Urban forests, the green “walls” of greek cities: A policy for their protection and management (In Greek). Ser. Geogr. Res. 2002, 8, 420–427. [Google Scholar]
- Blondel, J.; Aronson, J. Biology and Wildlife of the Mediterranean Region; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Darra, A.; Kavouras, M.; Tzelepis, N. Characterization of Greek municipalities and sub-municipalities according to their topographic relief. Geogr. Tech. 2010, 8, 12–19. [Google Scholar]
- Darra, A.; Kavouras, M.; Tzelepis, N. A rational characterization and visualization of topographic relief into mountainous, semi-mountainous and plane terrain. In Proceedings of the 21st International Cartographic Conference (ICC), Durban, South Africa, 10–16 August 2003. [Google Scholar]
- Christopoulou, O.; Polyzos, S.; Minetos, D. Peri-urban and urban forests in Greece: Obstacle or advantage to urban development? Manag. Environ. Qual. Int. J. 2007, 18, 382–395. [Google Scholar] [CrossRef]
- Stamou, Z.; Xystrakis, F.; Koutsias, N. The role of fire as a long-term landscape modifier: Evidence from long-term fire observations (1922–2000) in Greece. Appl. Geogr. 2016, 74, 47–55. [Google Scholar] [CrossRef]
- Arianoutsou, M. Landscape changes in Mediterranean ecosystems of Greece: Implications for fire and biodiversity issues. J. Mediterr. Ecol. 2001, 2, 165–178. [Google Scholar]
- Konstantinidis, P.; Tsiourlis, G.; Xofis, P.; Buckley, G.P. Taxonomy and ecology of Castanea sativa Mill. forests in Greece. Plant Ecol. 2008, 195, 235–256. [Google Scholar] [CrossRef]
- Tsiourlis, G.; Konstantinidis, P.; Xofis, P. Taxonomy and ecology of phryganic communities with Sarcopoterium spinosum (L.) Spach of the Aegean (Greece). Isr. J. Plant Sci. 2007, 55, 15–34. [Google Scholar] [CrossRef]
- Konstantinidis, P.; Chatziphilippidis, G.; Tsiourlis, G.; Tsiontsis, A. Taxonomy and ecology of plant communities of Quercus frainetto Ten.(Q. conferta Kit.) forests in Greece. Isr. J. Plant Sci. 2002, 50, 145–154. [Google Scholar] [CrossRef]
- Kailidis, D.; Karanikola, P. Forest Fires 1900–2000; Giahoudi Press: Thessaloniki, Greece, 2004; p. 434. (In Greek) [Google Scholar]
- Rodrigo, A.; Quintana, V.; Retana, J. Fire reduces Pinus pinea distribution in the northeastern Iberian Peninsula. Ecoscience 2007, 14, 23–30. [Google Scholar] [CrossRef]
- Chrysopolitou, V.; Apostolakis, A.; Avtzis, D.; Avtzis, N.; Diamandis, S.; Kemitzoglou, D.; Papadimos, D.; Perlerou, C.; Tsiaoussi, V.; Dafis, S. Studies on forest health and vegetation changes in Greece under the effects of climate changes. Biodivers. Conserv. 2013, 22, 1133–1150. [Google Scholar] [CrossRef]
- Arianoutsou, M.; Leone, V.; Moya, D.; Lovreglio, R.; Delipetrou, P.; de las Heras, J. Management of threatened, high conservation value, forest hotspots under changing fire regimes. In Post-Fire Management and Restoration of Southern European Forests; Springer: Berlin, Germany, 2012; pp. 257–291. [Google Scholar]
- Touchan, R.; Baisan, C.; Mitsopoulos, I.D.; Dimitrakopoulos, A.P. Fire history in European black pine (Pinus nigra Arn.) forests of the Valia Kalda, Pindus mountains, Greece. Tree Ring Res. 2012, 68, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, K.; Vogiatzakis, I.N. Nature protection in Greece: An appraisal of the factors shaping integrative conservation and policy effectiveness. Environ. Sci. Policy 2006, 9, 476–486. [Google Scholar] [CrossRef]
- Kokkoris, I.P.; Drakou, E.G.; Maes, J.; Dimopoulos, P. Ecosystem services supply in protected mountains of Greece: Setting the baseline for conservation management. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Jones, N.; Malesios, C.; Ioannidou, E.; Kanakaraki, R.; Kazoli, F.; Dimitrakopoulos, P.G. Understanding perceptions of the social impacts of protected areas: Evidence from three NATURA 2000 sites in Greece. Environ. Impact Assess. Rev. 2018, 73, 80–89. [Google Scholar] [CrossRef]
- Christensen, V.; Ferdana, Z.; Steenbeek, J. Spatial optimization of protected area placement incorporating ecological, social and economical criteria. Ecol. Model. 2009, 220, 2583–2593. [Google Scholar] [CrossRef]
- Parviainen, J. Virgin and natural forests in the temperate zone of Europe. For. Snow Landsc. Res. 2005, 79, 9–18. [Google Scholar]
- Eleftheriadou, E.; Raus, T. The vascular flora of the nature reserve Frakto Virgin Forest of Nomos Dramas (E Makedonia, Greece). Willdenowia 1996, 25, 455–485. [Google Scholar]
- Barbosa, P.; Camia, A.; Kucera, J.; Liberta, G.; Palumbo, I.; San-Miguel-Ayanz, J.; Schmuck, G. Assessment of forest fire impacts and emissions in the European Union based on the European forest fire Information System. Dev. Environ. Sci. 2008, 8, 197–208. [Google Scholar]
- Lazaridis, M.; Latos, M.; Aleksandropoulou, V.; Hov, Ø.; Papayannis, A.; Tørseth, K. Contribution of forest fire emissions to atmospheric pollution in Greece. Air Qual. Atmos. Health 2008, 1, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Van Kamp, I.; Leidelmeijer, K.; Marsman, G.; De Hollander, A. Urban environmental quality and human well-being: Towards a conceptual framework and demarcation of concepts; a literature study. Landsc. Urban Plan. 2003, 65, 5–18. [Google Scholar] [CrossRef]
- Sastry, N. Forest fires, air pollution, and mortality in Southeast Asia. Demography 2002, 39, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, D.V.; Ottmar, R.D.; Peterson, J.L. Wildland Fire in Ecosystems: Effects of Fire on Air; CreateSpace Independent Publishing Platform RMRS-GTR-42-vol. 5; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2002; p. 79. [Google Scholar]
- Vedal, S.; Dutton, S.J. Wildfire air pollution and daily mortality in a large urban area. Environ. Res. 2006, 102, 29–35. [Google Scholar] [CrossRef]
- Ward, D.E.; Hardy, C.C. Smoke emissions from wildland fires. Environ. Int. 1991, 17, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Sofiev, M.; Lanne, M.; Vankevich, R.; Prank, M.; Karppinen, A.; Kukkonen, J. Impact of wild-land fires on European air quality in 2006–2008. WIT Trans. Ecol. Environ. 2008, 119, 353–361. [Google Scholar]
- Robichaud, P.R. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. J. Hydrol. 2000, 231–232, 220–229. [Google Scholar] [CrossRef]
- Parsons, A.; Robichaud, P.; Lewis, S.; Napper, C.; Clark, J.; Jain, T. Field Guide for Mapping Post-Fire Soil Burn Severity; Gen. Tech. Rep. RMRS-GTR-243; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010. [Google Scholar]
- Myronidis, D.I.; Emmanouloudis, D.A.; Mitsopoulos, I.A.; Riggos, E.E. Soil erosion potential after fire and rehabilitation treatments in Greece. Environ. Modeling Assess. 2010, 15, 239–250. [Google Scholar] [CrossRef]
- Mallinis, G.; Gitas, I.Z.; Tasionas, G.; Maris, F. Multitemporal monitoring of land degradation risk Due to soil loss in a fire-prone Mediterranean landscape using multi-decadal Landsat imagery. Water Resour. Manag. 2016, 30, 1255–1269. [Google Scholar] [CrossRef]
- Fox, D.; Berolo, W.; Carrega, P.; Darboux, F. Mapping erosion risk and selecting sites for simple erosion control measures after a forest fire in Mediterranean France. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2006, 31, 606–621. [Google Scholar] [CrossRef]
- Meneses, B.M. The impact of forest fires on soil loss from water erosion in Sierra de Sante Helena. Rev. Geográfica de Am. Cent. 2013, 51, 215–232. [Google Scholar]
- Flanagan, D.C.; Frankenberger, J.R.; Cochrane, T.A.; Renschler, C.S.; Elliot, W.J. Geospatial application of the water erosion prediction project WEPP model. Am. Soc. Agric. Biol. Eng. 2013, 56, 591–601. [Google Scholar]
- Myronidis, D.; Arabatzis, G. Evaluation of Greek post-fire erosion mitigation policy through spatial analysis. Pol. J. Environ. Stud. 2009, 18, 865–872. [Google Scholar]
- Raftoyannis, Y.; Spanos, I. Evaluation of log and branch barriers as post-fire rehabilitation treatments in a Mediterranean pine forest in Greece. Int. J. Wildland Fire 2005, 14, 183–188. [Google Scholar]
- Anthopoulou, B.; Panagopoulos, A.; Karyotis, T. The impact of land degradation on landscape in Northern Greece. Landslides 2006, 3, 289–294. [Google Scholar] [CrossRef]
- Pausas, J.G. Generalized fire response strategies in plants and animals. Oikos 2019, 128, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Phitos, D.; Strid, A.; Snogerup, S.; Greuter, W. The Red Data Book of Rare and Threatened Plants of Greece; World Wide Fund for Nature: Athens, Greece, 1995. [Google Scholar]
- Arianoutsoua, M.; Vilà, M. Fire and invasive plant species in the Mediterranean basin. Isr. J. Ecol. Evol. 2012, 58, 195–203. [Google Scholar]
- Lazarina, M.; Sgardelis, S.P.; Tscheulin, T.; Devalez, J.; Mizerakis, V.; Kallimanis, A.S.; Papakonstantinou, S.; Kyriazis, T.; Petanidou, T. The effect of fire history in shaping diversity patterns of flower-visiting insects in post-fire Mediterranean pine forests. Biodivers. Conserv. 2017, 26, 115–131. [Google Scholar] [CrossRef]
- Swengel, A.B. A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers. Conserv. 2001, 10, 1141–1169. [Google Scholar] [CrossRef]
- Lyon, L.J.; Huff, M.H.; Hooper, R.G.; Telfer, L.S.; Schreiner, D.S.; Smith, J.K. Wildland Fire in Ecosystems: Effects of Fire on Fauna; RMRS-GTR-42; U.S. Department of Agriculture, Forest Service: Ogden, UT, USA, 2000; Volume 1, p. 83. [Google Scholar]
- Kaynas, B.Y.; Gurkan, B. Species richness and abundance of insects during post-fire succession of Pinus brutia forest in Mediterranean region. Pol. J. Ecol. 2008, 56, 165. [Google Scholar]
- Radea, C.; Arianoutsou, M. Cellulose decomposition rates and soil arthropod community in a Pinus halepensis Mill. forest of Greece after a wildfire. Eur. J. Soil Biol. 2000, 36, 57–64. [Google Scholar] [CrossRef]
- Moretti, M.; Duelli, P.; Obrist, M.K. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 2006, 149, 312–327. [Google Scholar] [CrossRef] [Green Version]
- Izhaki, I. The impact of fire on vertebrates in the Mediterranean Basin: An overview. Isr. J. Ecol. Evol. 2012, 58, 221–233. [Google Scholar]
- Legakis, A.; Maragou, P. The Red Data Book of Threatened Animals of Greece; Greek Zoological Society: Yalou Spata, Athens, Greece, 2009; p. 528. [Google Scholar]
- Soyumert, A.; Tavsanoglu, C.; Macar, O.; Kainas, B.Y.; Gürkan, B. Presence of large and medium-sized mammals in a burned pine forest in southwestern Turkey. Hystrix Ital. J. Mammal. 2010, 21, 97–102. [Google Scholar]
- Sokos, C.; Birtsas, P.; Papaspyropoulos, K.G.; Tsachalidis, E.; Giannakopoulos, A.; Milis, C.; Spyrou, V.; Manolakou, K.; Valiakos, G.; Iakovakis, C. Mammals and habitat disturbance: The case of brown hare and wildfire. Curr. Zool. 2016, 62, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Ford, W.M.; Menzel, M.A.; McGill, D.W.; Laerm, J.; McCay, T.S. Effects of a community restoration fire on small mammals and herpetofauna in the southern Appalachians. For. Ecol. Manag. 1999, 114, 233–243. [Google Scholar] [CrossRef]
- Hailey, A. The effects of fire and mechanical habitat destruction on survival of the tortoise Testudo hermanni in northern Greece. Biol. Conserv. 2000, 92, 321–333. [Google Scholar] [CrossRef]
- Sanz-Aguilar, A.; Anadón, J.D.; Giménez, A.; Ballestar, R.; Graciá, E.; Oro, D. Coexisting with fire: The case of the terrestrial tortoise Testudo graeca in mediterranean shrublands. Biol. Conserv. 2011, 144, 1040–1049. [Google Scholar] [CrossRef]
- Russell, K.R.; Van Lear, D.H.; Guynn, D.C. Prescribed fire effects on herpetofauna: Review and management implications. Wildlife Soc. Bull. (1973–2006) 1999, 27, 374–384. [Google Scholar]
- Gibbons, J.W.; Scott, D.E.; Ryan, T.J.; Buhlmann, K.A.; Tuberville, T.D.; Metts, B.S.; Greene, J.L.; Mills, T.; Leiden, Y.; Poppy, S. The Global Decline of Reptiles, Déjà Vu Amphibians: Reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. BioScience 2000, 50, 653–666. [Google Scholar]
- Torre, I.; Díaz, M. Small mammal abundance in Mediterranean post-fire habitats: A role for predators? Acta Oecologica 2004, 25, 137–142. [Google Scholar] [CrossRef]
- Kottelat, M.; Barbieri, R. Pseudophoxinus laconicus, a new species of minnow from Peloponnese, Greece, with comments on the West Balkan Pseudophoxinus species (Teleostei: Cyprinidae). Ichthyol. Explor. Freshw. 2004, 15, 147–160. [Google Scholar]
- Economidis, P.S.; Banarescu, P.M. The distribution and origins of freshwater fishes in the Balkan Peninsula, especially in Greece. Inter. Rev. Gesamten Hydrobiol. Hydrogr. 1991, 76, 257–284. [Google Scholar] [CrossRef]
- Economou, A.; Giakoumi, S.; Vardakas, L.; Barbieri, R.; STOUMBOUDI, M.Τ.; Zogaris, S. The freshwater ichthyofauna of Greece-an update based on a hydrographic basin survey. Mediterr. Mar. Sci. 2007, 8, 91–166. [Google Scholar] [CrossRef] [Green Version]
- Economou, A.N.; Barbieri, R.; Stoumboudi, M.T. Threatened fishes of the world: Leuciscus keadicus (Stephanidis 1971) (Cyprinidae). Environ. Biol. Fishes 2005, 73, 252. [Google Scholar] [CrossRef]
- Economidis, P.S.; Dimitriou, E.; Pagoni, R.; Michaloudi, E.; Natsis, L. Introduced and translocated fish species in the inland waters of Greece. Fish. Manag. Ecol. 2000, 7, 239–250. [Google Scholar] [CrossRef]
- Reynolds, J.D.; Webb, T.J.; Hawkins, L.A. Life history and ecological correlates of extinction risk in European freshwater fishes. Can. J. Fish. Aquat. Sci. 2005, 62, 854–862. [Google Scholar] [CrossRef]
- Minshall, G.W. Responses of stream benthic macroinvertebrates to fire. For. Ecol. Manag. 2003, 178, 155–161. [Google Scholar] [CrossRef]
- Rieman, B.E.; Hessburg, P.F.; Luce, C.; Dare, M.R. Wildfire and management of forests and native fishes: Conflict or opportunity for convergent solutions? BioScience 2010, 60, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Rieman, B.; Clayton, J. Wildfire and native fish: Issues of forest health and conservation of sensitive species. Fisheries 1997, 22, 6–15. [Google Scholar] [CrossRef]
- Dunham, J.B.; Young, M.K.; Gresswell, R.E.; Rieman, B.E. Effects of fire on fish populations: Landscape perspectives on persistence of native fishes and nonnative fish invasions. For. Ecol. Manag. 2003, 178, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Apfelbaum, S.; Haney, A. Bird populations before and after wildfire in a Great Lakes pine forest. Condor 1981, 83, 347–354. [Google Scholar] [CrossRef]
- Pons, P.; Clavero, M. Bird responses to fire severity and time since fire in managed mountain rangelands. Anim. Conserv. 2010, 13, 294–305. [Google Scholar] [CrossRef]
- Zozaya, E.L.; Brotons, L.; Vallecillo, S. Bird community responses to vegetation heterogeneity following non-direct regeneration of Mediterranean forests after fire. Ardea 2011, 99, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Smucker, K.M.; Hutto, R.L.; Steele, B.M. Changes in bird abundance after wildfire: Importance of fire severity and time since fire. Ecol. Appl. 2005, 15, 1535–1549. [Google Scholar] [CrossRef] [Green Version]
- Izhaki, I.; Adar, M. The effects of post-fire management on bird community succession. Int. J. Wildland Fire 1997, 7, 335–342. [Google Scholar] [CrossRef]
- Williams, D.R.; Pople, R.G.; Showler, D.A.; Dicks, L.V.; Child, M.F.; Zu Ermgassen, E.K.; Sutherland, W.J. Bird Conservation: Global Evidence for the Effects of Interventions; Pelagic Publishing: Exeter, UK, 2013; Volume 2. [Google Scholar]
- Robinson, N.M.; Leonard, S.W.; Bennett, A.F.; Clarke, M.F. Refuges for birds in fire-prone landscapes: The influence of fire severity and fire history on the distribution of forest birds. For. Ecol. Manag. 2014, 318, 110–121. [Google Scholar] [CrossRef]
- Bond, M.L. Chapter 4—Mammals and Mixed- and High-severity Fire. In The Ecological Importance of Mixed-Severity Fires; DellaSala, D.A., Hanson, C.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 89–117. [Google Scholar]
- Papageorgiou, N.; Vlachos, C.; Sfougaris, A.; Tsachalidis, E. Status and diet of wolves in Greece. Acta Theriol. 1994, 39, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Karaiskou, N.; Tsakogiannis, A.; Gkagkavouzis, K.; Park, O.o.P.N.; Papika, S.; Latsoudis, P.; Kavakiotis, I.; Pantis, J.; Abatzopoulos, T.J.; Triantaphyllidis, C. Greece: A Balkan subrefuge for a remnant red deer (Cervus elaphus) population. J. Hered. 2014, 105, 334–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertzanis, G.A. Brown Bear in Greece: Distribution, Present Status: Ecology of a Northern Pindus Subpopulation. Bears Biol. Manag. 1994, 187–197. [Google Scholar] [CrossRef]
- Brown, J.K.; Smith, J.K. Wildland Fire in Ecosystems: Effects of Fire on Flora; Gen. Tech. Rep. RMRS-GTR-42; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2000; Volume 2, p. 257. [Google Scholar]
- Georghiou, K.; Delipetrou, P. Patterns and traits of the endemic plants of Greece. Bot. J. Linn. Soc. 2010, 162, 130–153. [Google Scholar] [CrossRef] [Green Version]
- De Montmollin, B.; Strahm, W. The Top 50 Mediterranean Island Plants: Wild Plants at the Brink of Extinction, and What Is Needed to Save Them; IUCN/SSC; Mediterranean Islands Plant Specialist Group: Cambridge, UK, 2005. [Google Scholar]
- Vitousek, P.M. Biological invasions and ecosystem processes: Towards an integration of population biology and ecosystem studies. In Ecosystem Management; Springer: New York, NY, USA, 1990; pp. 183–191. [Google Scholar]
- D’Antonio, C.M.; Vitousek, P.M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 1992, 23, 63–87. [Google Scholar] [CrossRef]
- Majumdar, S.K.; Brenner, F.J.; Lovich, J.E.; Schalles, J.F.; Miller, E.W. Biological Diversity: Problems and Challenges; Native plant biodiversity vs. the introduced invaders: Status of the conflict and future management options; Pennsylvania Academy of Science: Easton, PA, USA, 1994; pp. 92–113. [Google Scholar]
- Wilcove, D.S.; Rothstein, D.; Dubow, J.; Phillips, A.; Losos, E. Quantifying threats to imperiled species in the United States. BioScience 1998, 48, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D. Biological Invasionseconomic and Environmental Costs of Alien Plant, Animal, and Microbe Species; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Lambdon, P.; Pyšek, P.; Basnou, C.; Hejda, M.; Arianoutsou, M.; Essl, F.; Jarošík, V.; Pergl, J.; Winter, M.; Anastasiu, P. Alien flora of Europe: Species diversity, temporal trends, geographical patterns and research needs. Preslia 2008, 80, 101–149. [Google Scholar]
- Payne, C.J.; Ritchie, E.G.; Kelly, L.T.; Nimmo, D.G. Does fire influence the landscape-scale distribution of an invasive mesopredator? PLoS ONE 2014, 9, e107862. [Google Scholar] [CrossRef]
- Robinson, N.M.; Leonard, S.W.; Ritchie, E.G.; Bassett, M.; Chia, E.K.; Buckingham, S.; Gibb, H.; Bennett, A.F.; Clarke, M.F. Refuges for fauna in fire-prone landscapes: Their ecological function and importance. J. Appl. Ecol. 2013, 50, 1321–1329. [Google Scholar] [CrossRef]
- Adamopoulou, C.; Legakis, A. First account on the occurrence of selected invasive alien vertebrates in Greece. BioInvasions Rec. 2016, 5, 189–196. [Google Scholar] [CrossRef]
- Salata, S.; Georgiadis, C.; Borowiec, L. Invasive ant species (Hymenoptera: Formicidae) of Greece and Cyprus. North West. J. Zool. 2018, 15, 13–23. [Google Scholar]
- Demertzis, K.; Iliadis, L. The impact of climate change on biodiversity: The ecological consequences of invasive species in Greece. In Handbook of Climate Change Communication: Vol. 1: Theory of Climate Change Communication; Leal Filho, W., Manolas, E., Azul, A.M., Azeiteiro, U.M., McGhie, H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 15–38. [Google Scholar] [CrossRef]
- Thanos, C.A.; Daskalakou, E.N.; Nikolaidou, S. Early post-fire regeneration of a Pinus halepensis forest on Mount Párnis, Greece. J. Veg. Sci. 1996, 7, 273–280. [Google Scholar] [CrossRef]
- Tapias, R.; Gil, L.; Fuentes-Utrilla, P.; Pardos, J.A. Canopy seed banks in Mediterranean pines of south-eastern Spain: A comparison between Pinus halepensis Mill., P. pinaster Ait., P. nigra Arn. and P. pinea L. J. Ecol. 2001, 629–638. [Google Scholar] [CrossRef]
- Ne’eman, G.; Goubitz, S.; Nathan, R. Reproductive traits of Pinus halepensis in the light of fire—A critical review. Plant Ecol. 2004, 171, 69–79. [Google Scholar] [CrossRef]
- Thanos, C.A.; Daskalakou, E.N. Reproduction in Pinus halepensis and P. brutia. In Ecology, Biogeography and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean Basin; Ne’eman, G., Trabaud, L., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2000; pp. 79–90. [Google Scholar]
- Climent, J.; Prada, M.A.; Calama, R.; Chambel, M.R.; De Ron, D.S.; Alía, R. To grow or to seed: Ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). Am. J. Bot. 2008, 95, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Stroempl, G. Thinning Clumps of Northern Hardwood Stump Sprouts to Produce High Quality Timber; Ontario Ministry of Natural Resources: Peterborough, ON, Canada, 1983; Volume 104. [Google Scholar]
- Van Lear, D.H. Fire and oak regeneration in the southern Appalachians. In Proceedings of the Fire and the Environment: Ecological and Cultural Perspectives, Knoxville, TN, USA, 20–24 March 1990; pp. 15–21. [Google Scholar]
- Sohrabi, H.; Jourgholami, M.; Tavankar, F.; Venanzi, R.; Picchio, R. Post-harvest evaluation of soil physical properties and natural regeneration growth in steep-slope terrains. Forests 2019, 10, 1034. [Google Scholar] [CrossRef] [Green Version]
- Broncano, M.J.; Retana, J. Topography and forest composition affecting the variability in fire severity and post-fire regeneration occurring after a large fire in the Mediterranean basin. Int. J. Wildland Fire 2004, 13, 209–216. [Google Scholar] [CrossRef]
- Perevolotsky, A.; Haimov, Y. The effect of thinning and goat browsing on the structure and development of Mediterranean woodland in Israel. For. Ecol. Manag. 1992, 49, 61–74. [Google Scholar] [CrossRef]
- Campbell, K.; Donlan, C.J. Feral goat eradications on islands. Conserv. Biol. 2005, 19, 1362–1374. [Google Scholar] [CrossRef]
- Agee, J. The historical role of fire in Pacific Northwest forests. In Natural and Prescribed Fire in Pacific Northwest Forests; Walstead, J., Radosevich, S., Sandberg, D., Eds.; Oregon State University Press: Corvallis, OR, USA, 1990; pp. 25–38. [Google Scholar]
- Lentile, L.B.; Smith, F.W.; Shepperd, W.D. Patch structure, fire-scar formation, and tree regeneration in a large mixed-severity fire in the South Dakota Black Hills, USA. Can. J. For. Res. 2005, 35, 2875–2885. [Google Scholar] [CrossRef]
- Arianoutsou, M.; Christopoulou, A.; Kazanis, D.; Tountas, T.; Ganou, E.; Bazos, I.; Kokkoris, Y. Effects of fire on high altitude coniferous forests of Greece. In Proceedings of the VI International Forest Fire Research Conference, Coimbra, Portugal, 15–18 November 2010. [Google Scholar]
- Tacconi, L.; Boscolo, M.; Brack, D. National and International Policies to Control illegal Forest Activities. A Report for the Ministry of Foreign Affairs, Government of Japan; Center for International Forestry Research: Jakarta, Indonesia, 2003. [Google Scholar]
- Kuvan, Y. The use of forests for the purpose of tourism: The case of Belek Tourism Center in Turkey. J. Environ. Manag. 2005, 75, 263–274. [Google Scholar] [CrossRef]
- Atmiş, E.; Özden, S.; Lise, W. Urbanization pressures on the natural forests in Turkey: An overview. Urban. For. Urban. Green. 2007, 6, 83–92. [Google Scholar] [CrossRef]
- Ryan, K.C.; Noste, N.V. Evaluating Prescribed Fires; General Technical Report INT-182; USDA Forest Service Intermountain Forest and Range Experiment Station: Ogden, Utah, USA, 1985; pp. 230–238. [Google Scholar]
- De Dios, V.R.; Fischer, C.; Colinas, C. Climate change effects on Mediterranean forests and preventive measures. New For. 2007, 33, 29–40. [Google Scholar] [CrossRef]
- Hansen, E.M. Alien forest pathogens: Phytophthora species are changing world forests. Boreal Environ. Res. 2008, 13, 33–41. [Google Scholar]
- Winder, R.; Shamoun, S. Forest pathogens: Friend or foe to biodiversity? Can. J. Plant Pathol. 2006, 28, S221–S227. [Google Scholar] [CrossRef]
- López-Soria, L.; Castell, C. Comparative genet survival after fire in woody Mediterranean species. Oecologia 1992, 91, 493–499. [Google Scholar] [CrossRef]
- Minotta, G.; Pinzauti, S. Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings. For. Ecol. Manag. 1996, 86, 61–71. [Google Scholar] [CrossRef]
- Spanos, I.A.; Radoglou, K.M.; Raftoyannis, Y. Site Quality effects on post-fire regeneration of pinus brutia forest on a Greek Island. Appl. Veg. Sci. 2001, 4, 229–236. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape assessment (LA). In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; Gen. Tech. Rep. RMRS-GTR-164-CD, LA-1-55; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; p. 164. [Google Scholar]
- Thanos, C.Á.; Doussi, M.A. Post-fire regeneration of Pinus brutia forests. In Ecology, Biogeography and Management of Pinus Halepensis and P. brutia Forest Ecosystems in the Mediterranean Basin; Ne’eman, G., Trabaud, L., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2000; pp. 291–301. [Google Scholar]
- Arianoutsou, M. Aspects of demography in post-fire Mediterranean plant communities of Greece. In Landscape Disturbance and Biodiversity in Mediterranean-Type Ecosystems; Rundel, P., Montenegro, G., Jaksic, F.M., Eds.; Springer: New York, NY, USA, 1998; pp. 273–295. [Google Scholar]
- Ordóñez, J.L.; Retana, J.; Espelta, J.M. Effects of tree size, crown damage, and tree location on post-fire survival and cone production of Pinus nigra trees. For. Ecol. Manag. 2005, 206, 109–117. [Google Scholar] [CrossRef]
- Konstantinidis, P.; Tsiourlis, G.; Galatsidas, S. Effects of wildfire season on the resprouting of kermes oak (Quercus coccifera L.). For. Ecol. Manag. 2005, 208, 15–27. [Google Scholar] [CrossRef]
- Konstantinidis, P.; Tsiourlis, G.; Xofis, P. Effect of fire season, aspect and pre-fire plant size on the growth of Arbutus unedo L.(strawberry tree) resprouts. For. Ecol. Manag. 2006, 225, 359–367. [Google Scholar] [CrossRef]
- Cruz, A.; Pérez, B.; Quintana, J.R.; Moreno, J.M. Resprouting in the Mediterranean-type shrub Erica australis afffected by soil resource availability. J. Veg. Sci. 2002, 13, 641–650. [Google Scholar]
- Pausas, J.G. Resprouting of Quercus suber in NE Spain after fire. J. Veg. Sci. 1997, 8, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Espelta, J.M.; Barbati, A.; Quevedo, L.; Tárrega, R.; Navascués, P.; Bonfil, C.; Peguero, G.; Fernández-Martínez, M.; Rodrigo, A. Post-fire management of mediterranean broadleaved forests. In Post-Fire Management and Restoration of Southern European Forests; Moreira, F., Arianoutsou, M., Corona, P., De las Heras, J., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 171–194. [Google Scholar] [CrossRef]
- Vallejo, V.R.; Arianoutsou, M.; Moreira, F. Fire Ecology and Post-Fire Restoration Approaches in Southern European Forest Types. In Post-Fire Management and Restoration of Southern European Forests; Moreira, F., Arianoutsou, M., Corona, P., De las Heras, J., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 93–119. [Google Scholar] [CrossRef]
- Tsitsoni, T. Conditions determining natural regeneration after wildfires in the Pinus halepensis (Miller, 1768) forests of Kassandra Peninsula (North Greece). For. Ecol. Manag. 1997, 92, 199–208. [Google Scholar] [CrossRef]
- Miller, M.E.; MacDonald, L.H.; Robichaud, P.R.; Elliot, W.J. Predicting post-fire hillslope erosion in forest lands of the western United States. Int. J. Wildland Fire 2011, 20, 982–999. [Google Scholar] [CrossRef]
- Pausas, J.; Ribeiro, E.; Vallejo, R. Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula. For. Ecol. Manag. 2004, 203, 251–259. [Google Scholar] [CrossRef]
- Goudelis, G.; Ganatsas, P.; Spanos, I.; Karpi, A. Effect of repeated fire on plant community recovery in Penteli, central Greece. In Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability; Springer: Dordrecht, The Netherlands, 2007; pp. 337–343. [Google Scholar]
- Papanastasis, V.P. Effects of season and frequency of burning on a phryganic rangeland in Greece. Rangel. Ecol. Manag. J. Range Manag. Arch. 1980, 33, 251–255. [Google Scholar] [CrossRef]
- Malkisnon, D.; Wittenberg, L.; Beeri, O.; Barzilai, R. Effects of repeated fires on the structure, composition, and dynamics of Mediterranean maquis: Short-and long-term perspectives. Ecosystems 2011, 14, 478–488. [Google Scholar] [CrossRef]
- Eugenio, M.; Lloret, F. Effects of repeated burning on mediterranean communities of the northeastern Iberian Peninsula. J. Veg. Sci. 2006, 17, 755–764. [Google Scholar] [CrossRef]
- Abella, S.R.; Covington, W.W.; Fulé, P.Z.; Lentile, L.B.; Sanchez Meador, A.J.; Morgan, P. Past, present, and future old growth in frequent-fire conifer forests of the Western United States. Ecol. Soc. 2007, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.G.; Romme, W.H.; Tinker, D.B. Surprises and lessons from the 1988 Yellowstone fires. Front. Ecol. Environ. 2003, 1, 351–358. [Google Scholar] [CrossRef]
- Ordóñez, J.L.; Molowny-Horas, R.; Retana, J. A model of the recruitment of Pinus nigra from unburned edges after large wildfires. Ecol. Model. 2006, 197, 405–417. [Google Scholar] [CrossRef]
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A.; Smith, A.M.S.; Cansler, C.A.; Abatzoglou, J.T.; Meigs, G.W.; Downing, W.M.; Krawchuk, M.A. Fire Refugia: What are they, and why do they matter for global change? Bioscience 2018, 68, 944–954. [Google Scholar] [CrossRef]
- Coop, J.D.; DeLory, T.J.; Downing, W.M.; Haire, S.L.; Krawchuck, M.A.; Miller, C.; Parisien, M.A.; Walker, R.B. Contributions of fire refugia to resilient ponderosa pine and dry mixed-conifer forest landscapes. Ecosphere 2019, 10, e02809. [Google Scholar] [CrossRef]
- Christopoulou, A.; Fyllas, N.M.; Andriopoulos, P.; Koutsias, N.; Dimitrakopoulos, P.G.; Arianoutsou, M. Post-fire regeneration patterns of Pinus nigra in a recently burned area in Mount Taygetos, Southern Greece: The role of unburned forest patches. For. Ecol. Manag. 2014, 327, 148–156. [Google Scholar] [CrossRef]
- Carmel, Y.; Kadmon, R. Effects of grazing and topography on long-term vegetation changes in a Mediterranean ecosystem in Israel. Plant. Ecol. 1999, 145, 243–254. [Google Scholar] [CrossRef]
- Bergmeier, E. Combined effects of fire and grazing on phrygana vegetation-a case study in SW Crete (Greece). Ecol. Mediterr. 1997, 23, 1–10. [Google Scholar] [CrossRef]
- Henderson, M.; Kalabokidis, K.; Marmaras, E.; Konstantinidis, P.; Marangudakis, M. Fire and society: A comparative analysis of wildfire in Greece and the United States. Hum. Ecol. Rev. 2005, 12, 169–182. [Google Scholar]
- Tsilimigkas, G.; Kizos, T.; Gourgiotis, A. Unregulated urban sprawl and spatial distribution of fire events: Evidence from Greece. Environ. Hazards 2018, 17, 436–455. [Google Scholar] [CrossRef]
- Lekakis, J.N.; Kousis, M. Economic crisis, Troika and the environment in Greece. South. Eur. Soc. Politics 2013, 18, 305–331. [Google Scholar] [CrossRef] [Green Version]
- Stavros, S.; Fani, S.; Stergios, T.; Ioannis, S.; Olga, C. The environmental pressures and perspectives of tourism on coastal and insular zone. The case of Greece. Nat. Environ. Pollut. Technol. 2016, 15, 1009–1020. [Google Scholar]
- Morgan, P.; Neuenschwander, L.F. Shrub response to high and low severity burns following clearcutting in northern Idaho. West. J. Appl. For. 1988, 3, 5–9. [Google Scholar] [CrossRef]
- Varner, J.M.; Putz, F.E.; O’Brien, J.J.; Hiers, J.K.; Mitchell, R.J.; Gordon, D.R. Post-fire tree stress and growth following smoldering duff fires. For. Ecol. Manag. 2009, 258, 2467–2474. [Google Scholar] [CrossRef]
- Watts, A.C.; Kobziar, L.N. Smoldering combustion and ground fires: Ecological effects and multi-scale significance. Fire Ecol. 2013, 9, 124–132. [Google Scholar] [CrossRef]
- Markalas, S. Insects attacking burnt pine trees (Pinus halepensis, P. brutia, and P. nigra) in Greece. Anz. Schaedlingskunde Pflanzenschutz Umweltschutz 1991, 64, 72–75. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Meigs, G.W.; Cartwright, J.M.; Coop, J.D.; Davis, R.; Holz, A.; Kolden, C.; Meddens, A.J.H. Disturbance refugia within mosaics of forest fire, drought, and insect outbreaks. Front. Ecol. Environ. 2020, 18, 235–244. [Google Scholar] [CrossRef]
- McCullough, D.G.; Werner, R.A.; Neumann, D. Fire and insects in northern and boreal forest ecosystems of North America. Annu. Rev. Entomol. 1998, 43, 107–127. [Google Scholar] [CrossRef] [Green Version]
- Parmeter, J.R., Jr. Effects of fire on pathogens. In Proceedings of the Symposium on Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems, Palo Alto, Ca, USDA Forest Service Gen tech rep WO-3, Washington, DC, USA, 1–5 August 1977; pp. 58–64. [Google Scholar]
- Trabaud, L. Fire as an agent of plant invasion? A case study in the French mediterranean vegetation. In Biological Invasions in Europe and the Mediterranean Basin; Castri, F.D., Hansen, A.J., Debussche, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 417–437. [Google Scholar]
- Tsitsoni, T.; Karagiannakidou, V. Site quality and stand structure in Pinus halepensis forests of north Greece. Forestry 2000, 73, 51–64. [Google Scholar] [CrossRef]
- Nakos, G. Forest soils of Greece: Physical, chemical and biological properties. For. Ecol. Manag. 1979, 2, 35–51. [Google Scholar] [CrossRef]
- Sanderlin, J.C.; Van Gelder, R.J. A simulation of fire behavior and suppression effectiveness for operation support in wildland fire management. In Proceedings of the 1st International Conference on Mathematical Modeling, St. Louis, MO, USA, 29 August–1 September 1977; pp. 619–630. [Google Scholar]
- Santoso, M.A.; Christensen, E.G.; Yang, J.; Rein, G. Review of the Transition from Smouldering to Flaming Combustion in Wildfires. Front. Mech. Eng. 2019, 5. [Google Scholar] [CrossRef]
- Koo, E.; Pagni, P.J.; Weise, D.R.; Woycheese, J.P. Firebrands and spotting ignition in large-fires. Int. J. Wildland Fire 2010, 19, 818–843. [Google Scholar] [CrossRef] [Green Version]
- Hellenic Republic, M.o.I. Greek Fire Service Incidence Records. Available online: https://www.fireservice.gr/el_GR/synola-dedomenon (accessed on 21 July 2020).
- European Union. rescEU—Decision No 1313/2013/EU on a Union Civil. Protection Mechanism; Directorate-General for European Civil Protection and Humanitarian Aid Operations (ECHO); European Union Civil Protection Mechanism: Brussels, Belgium, 2019; p. 20. [Google Scholar]
- Scott, J.H.; Reinhardt, E.D. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior; RMRS-RP-29; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2001; p. 59. [Google Scholar]
- Dimitrakopoulos, A.P. Mediterranean fuel models and potential fire behaviour in Greece. Int. J. Wildland Fire 2002, 11, 127–130. [Google Scholar] [CrossRef]
- Fernandez-Pello, A.C. Wildland fire spot ignition by sparks and firebrands. Fire Saf. J. 2017, 91, 2–10. [Google Scholar] [CrossRef]
- Manzello, S.L.; Cleary, T.G.; Shields, J.R.; Maranghides, A.; Mell, W.; Yang, J.C. Experimental investigation of firebrands: Generation and ignition of fuel beds. Fire Saf. J. 2008, 43, 226–233. [Google Scholar] [CrossRef]
- Tsagari, K.; Karetsos, G.; Proutsos, N. Forest Fires in Greece, 1983–2008; WWF Hellas: Athens, Greece, 2011; p. 112. [Google Scholar]
- Nivolianitou, Z.; Synodinou, B. Towards emergency management of natural disasters and critical accidents: The Greek experience. J. Environ. Manag. 2011, 92, 2657–2665. [Google Scholar] [CrossRef]
- Haynes, K.; Handmer, J.; McAneney, J.; Tibbits, A.; Coates, L. Australian bushfire fatalities 1900–2008: Exploring trends in relation to the ‘Prepare, stay and defend or leave early’policy. Environ. Sci. Policy 2010, 13, 185–194. [Google Scholar] [CrossRef]
- Mangan, R. Wildland Firefighter Fatalities in the United States: 1990–2006; National Wildfire Coordinating Group. Safety and Health Working Team, National Interagency Fire Center, NWCG PMS: Missoula, MT, USA, 2007; p. 841. [Google Scholar]
- Diakakis, M.; Xanthopoulos, G.; Gregos, L. Analysis of forest fire fatalities in Greece: 1977–2013. Int. J. Wildland Fire 2016, 25, 797–809. [Google Scholar] [CrossRef]
- Molina-Terrén, D.M.; Xanthopoulos, G.; Diakakis, M.; Ribeiro, L.; Caballero, D.; Delogu, G.M.; Viegas, D.X.; Silva, C.A.; Cardil, A. Analysis of forest fire fatalities in southern Europe: Spain, Portugal, Greece and Sardinia (Italy). Int. J. Wildland Fire 2019, 28, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Cardil, A.; Delogu, G.M.; Molina-Terrén, D.M. Fatalities in wildland fires from 1945 to 2015 in Sardinia (Italy). Cerne 2017, 23, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.E.; Buxton-Carr, P. Wildland fire suppression related fatalities in Canada, 1941–2010: A preliminary report. In Proceedings of the 11th International Wildland Fire Safety Summit, Missoula, MT, USA, 4–8 April 2011; p. 15. [Google Scholar]
- Mitsakis, E.; Stamos, I.; Papanikolaou, A.; Aifadopoulou, G.; Kontoes, H. Assessment of extreme weather events on transport networks: Case study of the 2007 wildfires in Peloponnesus. Nat. Hazards 2014, 72, 87–107. [Google Scholar] [CrossRef]
- Gibbons, P.; Van Bommel, L.; Gill, A.M.; Cary, G.J.; Driscoll, D.A.; Bradstock, R.A.; Knight, E.; Moritz, M.A.; Stephens, S.L.; Lindenmayer, D.B. Land management practices associated with house loss in wildfires. PLoS ONE 2012, 7, e29212. [Google Scholar] [CrossRef]
- Boustras, G.; Boukas, N.; Katsaros, E.; Ziliaskopoulos, A. Wildland fire preparedness is Greece and Cyprus: Lessons learned from the catastrophic fires of 2007 and beyond. In Wildfire and Community: Facilitating Preparedness and Resilience; Paton, D., Tedim, F., Eds.; Charles C Thomas Publisher, LTD.: Springfield, IL, USA, 2012; pp. 151–168. [Google Scholar]
- Goldammer, J.; Xanthopoulos, G.; Eytixidis, G.; Mallinis, G.; Mitsopoulos, I.; Dimitrakopoulos, A. Prospects for the Management of Forest and Landscape Fires in Greece; The Global Fire Monitoring Center (GFMC); Secretariat of the Global Wildland Fire Network; UNISDR Wildland Fire Advisory Group; International Wildfire Preparedness Mechanism; International Fire Aviation Working Group: Athens, Greece, 2019; p. 80. [Google Scholar]
- Johnson, C. Archaeological sites and fire-induced changes. In Proceedings of the 6th Biennial Rocky Mountain Anthropological Conference, Estes Park, CO, USA, 20–26 September 2003; pp. 1–16. [Google Scholar]
- Johnson, J.M. Quantifying the Economic Risk Wildfires and Power Lines in San Diego County; Duke University: Durham, NC, USA, 2014; p. 31. [Google Scholar]
- Mallinis, G.; Mitsopoulos, I.; Beltran, E.; Goldammer, J. Assessing wildfire risk in cultural heritage properties using high spatial and temporal resolution satellite imagery and spatially explicit fire simulations: The case of Holy Mount Athos, Greece. Forests 2016, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Kousky, C.; Greig, K.; Lingle, B.; Kunreuther, K. Wildfire cost in California: The role of electric utilities. Changes 2018, 114, 4582–4590. [Google Scholar]
- Diaz, J.M. Economic impacts of wildfire. South. Fire Exch. 2012, 498, 2012–2017. [Google Scholar]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.; Nyman, P.; Haydon, S. Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Rodrigues, E.L.; Jacobi, C.M.; Figueira, J.E.C. Wildfires and their impact on the water supply of a large neotropical metropolis: A simulation approach. Sci. Total Environ. 2019, 651, 1261–1271. [Google Scholar] [CrossRef]
- Habermann, N.; Hedel, R. Damage functions for transport infrastructure. Int. J. Disaster Resil. Built Environ. 2018, 9, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Fraser, A.M.; Chester, M.V.; Underwood, B.S. Wildfire risk, post-fire debris flows, and transportation infrastructure vulnerability. Sustain. Resilient Infrastruct. 2020, 5, 1–13. [Google Scholar] [CrossRef]
- Stougiannidou, D.; Zafeiriou, E.; Raftoyannis, Y. Forest fires in Greece and their economic impacts on agriculture. KnE Soc. Sci. 2020, 54–70. [Google Scholar] [CrossRef] [Green Version]
- Donovan, G.H.; Rideout, D.B. A reformulation of the cost plus net value change (C+ NVC) model of wildfire economics. For. Sci. 2003, 49, 318–323. [Google Scholar]
- Calkin, D.E.; Hyde, K.D.; Robichaud, P.R.; Jones, J.G.; Ashmun, L.E.; Dan, L. Assessing Post-Fire Values-at-Risk with a New Calculation Tool; Gen. Tech. Rep. RMRS-GTR-205; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2007; p. 32. [Google Scholar]
- Napper, C. Burned Area Emergency Response Treatments Catalog (BAERCAT); USDA Forest Service, National Technology and Development Program, Watershed, Soil, Air Management, San Dimas Technology & Development Center: San Dimas, CA, USA, 2006. [Google Scholar]
- Koulelis, P. Greek timber industries and wood product markets over the last century. Development constraints and future directions. Ann. For. Res. 2010, 54, 229–240. [Google Scholar]
- y Silva, F.R.; Molina, J.R.; González-Cabán, A.; Machuca, M.Á.H. Economic vulnerability of timber resources to forest fires. J. Environ. Manag. 2012, 100, 16–21. [Google Scholar] [CrossRef]
- Croitoru, L. Valuing the non-timber forest products in the Mediterranean region. Ecol. Econ. 2007, 63, 768–775. [Google Scholar] [CrossRef]
- Masiero, M.; Pettenella, D.M.; Secco, L. From failure to value: Economic valuation for a selected set of products and services from Mediterranean forests. For. Syst. 2016, 25, 6. [Google Scholar] [CrossRef] [Green Version]
- Hay, C.; Chhabra, M. The impact of wildfires and beneficial electrification on electricity rates in PG&E’s service territory. Electr. J. 2020, 33, 106710. [Google Scholar]
- Thomas, D.; Butry, D.; Gilbert, S.; Webb, D.; Fung, J. The costs and losses of wildfires. NIST Spec. Publ. 2017, 1215, 72. [Google Scholar]
- Stephenson, C.; Handmer, J.; Betts, R. Estimating the economic, social and environmental impacts of wildfires in Australia. Environ. Hazards 2013, 12, 93–111. [Google Scholar] [CrossRef]
- Mercer, D.E.; Pye, J.M.; Prestemon, J.P.; Butry, D.T.; Holmes, T.P. Economic Effects of Catastrophic Wildfires; Unpublished final report, USDA; Forest Service, Southern Research Station Forestry Sciences Laboratory: Research Triangle Park, NC, USA, 2000; p. 27709. [Google Scholar]
- González-Cabán, A. The economic dimension of wildland fires. In Vegetation Fires and Global Change–Challenges for Concerted International Action; A white paper directed to the United Nations and international organizations; Kassel Publishing House: Remagen, Germany, 2013; pp. 229–237. [Google Scholar]
- Boustras, G.; Boukas, N. Forest fires’ impact on tourism development: A comparative study of Greece and Cyprus. Manag. Environ. Qual. 2013, 24, 498–511. [Google Scholar] [CrossRef]
- Molina, J.R.; González-Cabán, A.; y Silva, F.R. Wildfires impact on the economic susceptibility of recreation activities: Application in a Mediterranean protected area. J. Environ. Manag. 2019, 245, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Leverkus, A.B.; Puerta-Pinero, C.; Guzmán-Alvarez, J.R.; Navarro, J.; Castro, J. Post-fire salvage logging increases restoration costs in a Mediterranean mountain ecosystem. New For. 2012, 43, 601–613. [Google Scholar] [CrossRef]
- Baty, P. The times higher education world university rankings, 2004–2012. Ethics Sci. Environ. Politics 2014, 13, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Sala-i-Martin, X.; Blanke, J.; Hanouz, M.D.; Geiger, T.; Mia, I.; Paua, F. The global competitiveness index: Prioritizing the economic policy agenda. Glob. Compet. Rep. 2008, 2009, 3–41. [Google Scholar]
- Schwab, K. The Global Competitiveness Report 2018. Available online: http://reports.weforum.org/global-competitiveness-report-2018/chapter-3-benchmarking-competitiveness-in-the-fourth-industrial-revolution-introducing-the-global-competitiveness-index-4-0/ (accessed on 1 September 2020).
- Times Higher Education. THE World University Rankings 2020: Methodology. Available online: https://www.timeshighereducation.com/world-university-rankings/world-university-rankings-2020-methodology (accessed on 1 September 2020).
- Saaty, T.L. Multicriteria Decision Making: The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Zahedi, F. The Analytic Hierarchy Process—A Survey of the Method and its Applications. INFORMS J. Appl. Anal. 1986, 16, 96–108. [Google Scholar] [CrossRef]
- LaValle, I.H.; Bard, J.F. Reviewed Work: The Analytic Hierarchy. Interfaces 1991, 21, 94–98. [Google Scholar]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Liberatore, M.J.; Nydick, R.L. The analytic hierarchy process in medical and health care decision making: A literature review. Eur. J. Oper. Res. 2008, 189, 194–207. [Google Scholar] [CrossRef]
- Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Trade-offs; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Palaiologou, P.; Kalabokidis, K.; Ager, A.A.; Nielsen-Pincus, M.; Bailey, J.; Xanthopoulos, G. Obstacles to improving wildfire risk governance in Greece. In Proceedings of the Fire Continuum Conference, Missoula, MT, USA, 21–24 May 2018; pp. 318–324. [Google Scholar]
- Lazarina, M.; Devalez, J.; Neokosmidis, L.; Sgardelis, S.P.; Kallimanis, A.S.; Tscheulin, T.; Tsalkatis, P.; Kourtidou, M.; Mizerakis, V.; Nakas, G.; et al. Moderate fire severity is best for the diversity of most of the pollinator guilds in Mediterranean pine forests. Ecology 2019, 100, e02615. [Google Scholar] [CrossRef]
- Vasilakos, C.; Tsekouras, G.E.; Palaiologou, P.; Kalabokidis, K. Neural-Network Time-Series Analysis of MODIS EVI for Post-Fire Vegetation Regrowth. ISPRS Int. J. Geo Inf. 2018, 7, 420. [Google Scholar] [CrossRef] [Green Version]
- San-Miguel-Ayanz, J.; Barbosa, P.; Schmuck, G.; Liberta, G.; Schulte, E.; Viegas, D. Towards a coherent forest fire information system in Europe: The European Forest Fire Information System (EFFIS). In Proceedings of the IV International Conference on Forest Fire Research 2002 Wildland Fire Safety Summit, Coimbra, Portugal, 18–23 November 2002; pp. 5–16. [Google Scholar]
- Corine Land Cover (CLC) 2018; Copernicus Land Monitoring Service: European Environment Agency (EEA) and the Joint Research Centre (JRC); European Union: Brussels, Belgium, 2018; version 2020_20u1.
- National Interagency Fire Center. Burned Area Emergency Response (BAER). Available online: https://www.nifc.gov/BAER/ (accessed on 13 November 2019).
- Zevenbergen, C.; Fu, D.; Pathirana, A. Sponge Cities: Emerging Approaches, Challenges and Opportunities; MDPI: Basel, Switzerland, 2018. [Google Scholar]
- Poirazidis, K.; Catsadorakis, G.; Hristov, H.; Eastham, C.; Ruiz, C.; Schindler, S.; Kakalis, E.; Bakaloudis, D.; Scandolara, C. Diurnal birds of prey in the Dadia-Lefkimi-Soufli Forest National Park. In The Dadia-Lefkimi-Soufli Forest National Park, Greece: Biodiversity, Management and Conservation; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2009; pp. 151–167. [Google Scholar]
- Catsadorakis, G.; Kati, V.; Liarikos, C.; Poirazidis, K.; Skartsi, T.; Vasilakis, D.; Karavellas, D. Conservation and Management Issues for the Dadia–Lefkimi–Soufli Forest National Park; WWF Greece: Athens, Greece, 2010. [Google Scholar]
Criterion | Contribution to the FIRE Index Score (%) | Relative Importance | Assessment Scale | References |
---|---|---|---|---|
Civilian fatalities | 6.42 | The higher the number the higher the weight | Broad incident categories | Table S2; [195,196,197] |
Firefighting personnel fatalities | 4.86 | The higher the number the higher the weight | Broad incident categories | Table S2; [194,198] |
Injured | 1.67 | The higher the number the higher the weight | Broad incident categories | [196,199] |
Firefighting vehicle losses | 0.71 | The higher the number the higher the weight | Broad incident categories | n/a |
Firefighting aircraft losses | 2.35 | The higher the number the higher the weight | Broad incident categories | Table S3 |
No Effect | Low | Moderate | High | ||||||
---|---|---|---|---|---|---|---|---|---|
Criterion Value | 0 | 10 | 20 | 40 | 60 | 80 | 100 | ||
General Multiplier Value | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | ||
Criterion (A.3.): | Protected forested area type | None | Lake or seashore forests | Recreational forests | National parks | Old-growth forest | |||
Additive Term | Ratio of protected forested area vs. non-protected area inside the burned perimeter | n/a | <10% | 11–20% | 21–30% | 31–40% | 41–50% | >50% | |
Criterion (A.5) | Probability of land degradation, erosion, and soil loss | None | Low | Moderate | High | ||||
Criterion Descriptor | Cover (0–100%)- Sum must be = 100% | 0–100% | 0–100% | 0–100% | 0–100% | ||||
General Multiplier | Burned area (ha) | n/a | <10 | 10–100 | >100–500 | >500–2000 | >2000–7000 | >7000 |
<1% -> 1 point | <5% -> 2 points | >5–10% -> 3 points |
>10–15% -> 4 points | >15–20% -> 5 points | >20–30% -> 6 points |
>30–40% -> 7 points | >40–50% -> 8 points | >50% -> 9 points |
Fire Effects Category | Grouping | Equal Weights | Author Weights | Environmental Weights | Socioeconomic Weights |
---|---|---|---|---|---|
Landscape and Vegetation | Environmental | 0.14 | 0.21 | 0.25 | 0.06 |
Environmental Impacts | 0.14 | 0.11 | 0.25 | 0.07 | |
Regeneration Potential | 0.14 | 0.10 | 0.25 | 0.07 | |
Firefighting & Suppression | Socioeconomic | 0.14 | 0.05 | 0.06 | 0.20 |
Casualties & Fatalities | 0.16 | 0.31 | 0.07 | 0.20 | |
Destruction & Damages to Infrastructure | 0.14 | 0.13 | 0.06 | 0.20 | |
Economic Losses | 0.14 | 0.09 | 0.06 | 0.20 |
High Fire Effect Category Scores | Potential Governance Actions and Post-Fire Mitigation Measures | ||||
---|---|---|---|---|---|
Large-Scale Landscape Rehabilitation; PROMOTE Vegetation Recovery and Regeneration | Disaster Relief in Communities | Enhance Suppression and Increase Firefighting Capacity | Protection of Ecological Values-at-Risk and Restoration of Ecosystem Services | Financial Aid to Stabilize Local Economies and Investments to Rebuild Infrastructure | |
LV values (>40) | |||||
EI values (>40) | |||||
RP values (>40) | |||||
FS values (>45) | |||||
CF values (>50) | |||||
DDI values (>40) | |||||
EL values (>30) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palaiologou, P.; Kalabokidis, K.; Day, M.A.; Kopsachilis, V. Evaluating Socioecological Wildfire Effects in Greece with a Novel Numerical Index. Fire 2020, 3, 63. https://doi.org/10.3390/fire3040063
Palaiologou P, Kalabokidis K, Day MA, Kopsachilis V. Evaluating Socioecological Wildfire Effects in Greece with a Novel Numerical Index. Fire. 2020; 3(4):63. https://doi.org/10.3390/fire3040063
Chicago/Turabian StylePalaiologou, Palaiologos, Kostas Kalabokidis, Michelle A. Day, and Vasilis Kopsachilis. 2020. "Evaluating Socioecological Wildfire Effects in Greece with a Novel Numerical Index" Fire 3, no. 4: 63. https://doi.org/10.3390/fire3040063
APA StylePalaiologou, P., Kalabokidis, K., Day, M. A., & Kopsachilis, V. (2020). Evaluating Socioecological Wildfire Effects in Greece with a Novel Numerical Index. Fire, 3(4), 63. https://doi.org/10.3390/fire3040063