Non-Additive Effects of Forest Litter on Flammability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Sampling Description
2.3. Collection, Sorting and Preparation of Litter
2.4. Flammability Testing
2.5. Response Surface Modelling of Flammability Measures
2.6. Model Optimisation
3. Results
3.1. Study Site Characteristics
3.2. Measures of Flammability
3.3. Flammability Modelling for Halls Creek
3.4. Flammability Modelling for Rofe Park
3.5. Optimisation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Components | Definition | Potential Test Response | Metric |
---|---|---|---|
Ignitability | Time until ignition once exposed to a heat source | Ignition time (s) Fuel ignited (Y/N) | TTI |
Combustability | Rapidity of combustion after ignition | Visual flame height (m) Rate of spread (m s−1) | VFH RS |
Consumability | Proportion of mass or volume consumed by combustion | Burn to completion (s) Fuel mass (%) after burning, Mass loss rate Fuel burn to edge (Y/N) Area or volume consumed (m2, m3) | BTC RMF VC |
Sustainability | Ability to sustain combustion once ignited | Duration of visual flaming (s) | DVF |
References
- McAneney, J.; Sandercock, B.; Crompton, R.; Mortlock, T.; Musulin, R.; Pielke, R., Jr.; Gissing, A. Normalised insurance losses from Australian natural disasters: 1966–2017. Environ. Hazards 2019, 18, 414–433. [Google Scholar] [CrossRef] [Green Version]
- Handmer, J.; Ladds, M.; Magee, L. Updating the costs of disasters in Australia. Aust. J. Emerg. Manag. 2018, 33, 40–46. [Google Scholar]
- Australasian Fire and Emergency Service Authorities Council; Australasian Fire and Emergency Service Authorities Council Limited. Analysis of tools and methodologies to balance competing objectives of burning programs. In Prescribed Burning Objectives: Cost-Benefit Analysis; Australasian Fire and Emergency Service Authorities Council Limited: Melbourne, Australia, 2018; p. 79. [Google Scholar]
- Reserve Bank of Australia (RBA) Historical Data for Exchange Rates—Daily—2018 to Current. Available online: https://www.rba.gov.au/statistics/historical-data.html#exchange-rates (accessed on 10 April 2020).
- Victorian Bushfires Royal Commission; Teague, B. 2009 Victorian Bushfires Royal Commission; Government Printer for the State of Victoria: Melbourne, Australia, 2010.
- Commonwealth. Parliamentary Debates. House of Representatives Official Hansard, 4 February 2020; 1. [Google Scholar]
- Chung, W. Optimizing fuel treatments to reduce wildland fire risk. Curr. For. Rep. 2015, 1, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Schwilk, D.W. Dimensions of plant flammability. New Phytol. 2015, 206, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.M.; Cruz, M.G. Plant flammability experiments offer limited insight into vegetation-fire dynamics interactions. New Phytol. 2012, 194, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Della Rocca, G.; Danti, R.; Hernando, C.; Guijarro, M.; Madrigal, J. Flammability of two Mediterranean mixed forests: Study of the non-additive effect of fuel mixtures in laboratory. Front. Plant Sci. 2018, 9, 825. [Google Scholar] [CrossRef]
- de Magalhães, R.M.; Schwilk, D.W. Leaf traits and litter flammability: Evidence for non-additive mixture effects in a temperate forest. J. Ecol. 2012, 100, 1153–1163. [Google Scholar] [CrossRef]
- van Altena, C.; van Logtestijn, R.; Cornwell, W.; Cornelissen, H. Species composition and fire: Non-additive mixture effects on ground fuel flammability. Front. Plant Sci. 2012, 3, 1–10. [Google Scholar]
- Candioti, L.V.; De Zan, M.M.; Cámara, M.S.; Goicoechea, H.C. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 2014, 124, 123–138. [Google Scholar] [CrossRef]
- Gill, A.M.; Zylstra, P. Flammability of Australian forests. Aust. For. 2005, 68, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Varner, J.M.; Kane, J.M.; Kreye, J.K.; Engber, E. The flammability of forest and woodland litter: A synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Leardi, R. Experimental design in chemistry: A tutorial. Anal. Chim. Acta 2009, 652, 161–162. [Google Scholar] [CrossRef] [PubMed]
- Gould, J.S.; McCaw, W.L.; Cheney, N.P. Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. For. Ecol. Manag. 2011, 262, 531–546. [Google Scholar] [CrossRef]
- Anderson, H.E. Forest fuel ignitability. Fire Technol. 1970, 6, 312–319. [Google Scholar] [CrossRef]
- Martin, R.E.; Gordon, D.A.; Gutierrez, M.A. Assessing the flammability of domestic and wildland vegetation. In Proceedings of the 12th Conference on Fire and Forest Meteorology, Jekyll Island, GA, USA, 26–28 October 1993; p. 796. [Google Scholar]
- Brown, L.; Donev, A.N.; Bissett, A.C. General blending models for data from mixture experiments. Technometrics 2015, 57, 449–456. [Google Scholar] [CrossRef]
- Keith, D.A. Ocean Shores to Desert Dunes: The Native Vegetation of NSW and the ACT; Department of Environment and Conservation (NSW): Hurstville, Australia, 2004; pp. 1–353.
- Hornsby Shire Council. A Snapshot of the Hornsby Shire; Hornsby Shire Council: Hornsby, Australia, 2016; p. 69.
- Australian Government, Bureau of Meteorology. Climate Data Online. Available online: http://www.bom.gov.au/climate/data/index.shtml (accessed on 12 September 2018).
- Brown, M.; Hornsby Shire Council, Sydney, Australia; Jones, A.; Hornsby Shire Council, Sydney, Australia. Personal communication. 2016. [Google Scholar]
- Cottam, G.; Curtis, J.T. The use of distance measures in phytosociological sampling. Ecology 1956, 37, 451–460. [Google Scholar] [CrossRef]
- ASTM. American Society for Testing and Materials International Standard; ASTM E1755-01; ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Lawson, J.; Willden, C.; Piepel, G. mixexp: Design and Analysis of Mixture Experiments. R Package Version 1.2.5. 2016. Available online: ftp://ftp.uvigo.es/CRAN/web/packages/mixexp/mixexp.pdf (accessed on 25 September 2018).
- R Core Team. R: A Language and Environment for Statistical Computing; R Version 3.4.1; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 25 September 2018).
- Cornell, J.A. Experiments with Mixtures-Designs, Models, and the Analysis of Mixture Data; John Wiley & Sons: New York, NY, USA, 2002; pp. 1–649. [Google Scholar]
- Lawson, J.; Willden, C. Mixture experiments in R using mixexp. J. Stat. Softw. 2016, 72, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Plucinski, M.P.; Anderson, W.R. Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. Int. J. Wildland Fire 2008, 17, 628–637. [Google Scholar] [CrossRef]
- Mazerolle, M.J. AICcmodavg: Model Selection and Multimodal Inference Based on (Q)AIC(c). R Package Version 2.1-1. 2017. Available online: https://cran.r-project.org/web/packages/AICcmodavg/AICcmodavg.pdf (accessed on 25 September 2018).
- Johnson, S.G. The NLopt Nonlinear-Optimization Package. R Package Version 1.0.4. 2017. Available online: https://cran.r-project.org/web/packages/nloptr/index.html (accessed on 11 May 2020).
- Powell, M.J.D. A direct search optimization method that models the objective and constraint functions by linear interpolation. In Advances in Optimization and Numerical Analysis; Springer: Dordrecht, The Netherlands, 1994; pp. 51–67. [Google Scholar]
- Conn, A.R.; Gould, N.I.; Toint, P.L. A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 1991, 28, 545–572. [Google Scholar] [CrossRef] [Green Version]
- Birgin, E.G.; Martinez, J.M. Improving ultimate convergence of an augmented Lagrangian method. Optim. Methods Softw. 2008, 23, 177–195. [Google Scholar] [CrossRef] [Green Version]
- Blauw, L.G.; Wensink, N.; Bakker, L.; van Logtestijn, R.S.P.; Aerts, R.; Nadejda, A.; Soudzilovskaia, N.A.; Cornelissen, J.H.C. Fuel moisture content enhances nonadditive effects of plant mixtures on flammability and fire behavior. Ecol. Evolut. 2015, 5, 3830–3841. [Google Scholar] [CrossRef]
- Zhao, W.; Cornwell, W.K.; van Pomeren, M.; van Logtestijn, R.S.P.; Cornelissen, J.H.C. Species mixture effects on flammability across plant phylogeny: The importance of litter particle size and the special role for non-Pinus Pinaceae. Ecol. Evolut. 2016, 6, 8223–8234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, R.H.; Zipperer, W.C. Testing and classification of individual plants for fire behaviour: Plant selection for the wildland-urban interface. Int. J. Wildland Fire 2010, 19, 213–227. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Diaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Ter Steege, H.; Morgan, H.D.; Van Der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef] [Green Version]
- Scarff, F.R.; Westoby, M. Leaf litter flammability in some semi-arid Australian woodlands. Funct. Ecol. 2006, 20, 745–752. [Google Scholar] [CrossRef]
- Kane, J.M.; Varner, J.M.; Hiers, J.K. The burning characteristics of southeastern oaks: Discriminating fire facilitators from fire impeders. For. Ecol. Manag. 2008, 256, 2039–2045. [Google Scholar] [CrossRef]
- Johnson, L.A.S.; Wilson, K.L. Casuarinaceae. In Flowering Plants Dicotyledons: The Families and Genera of Vascular Plants; Kubitzki, K., Rohwer, J.G., Bittrich, V., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 2, pp. 237–242. [Google Scholar]
- Bradstock, R.A.; Hammil, K.A.; Collins, L.; Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 2010, 25, 607–619. [Google Scholar] [CrossRef]
Mixture Number | Sample Name | Other | Twigs | Leaves | Decomposed Material |
---|---|---|---|---|---|
(x1) | (x2) | (x3) | (x4) | ||
1 | HO | 1 | - | - | - |
2 | HT | - | 1 | - | - |
3 | HL | - | - | 1 | - |
4 | HD | - | - | - | 1 |
5 | HOT | 0.5 | 0.5 | - | - |
6 | HOL | 0.5 | - | 0.5 | - |
7 | HOD | 0.5 | - | - | 0.5 |
8 | HTL | - | 0.5 | 0.5 | - |
9 | HTD | - | 0.5 | - | 0.5 |
10 | HLD | - | - | 0.5 | 0.5 |
11 | HOTL | 1/3 | 1/3 | 1/3 | - |
12 | HOTD | 1/3 | 1/3 | - | 1/3 |
13 | HOLD | 1/3 | - | 1/3 | 1/3 |
14 | HTLD | - | 1/3 | 1/3 | 1/3 |
15 | HOTLD | 0.25 | 0.25 | 0.25 | 0.25 |
Mixture Number | Sample Name | Casuarina | Other | Twigs | Leaves | Decomposed Material |
---|---|---|---|---|---|---|
(x1) | (x2) | (x3) | (x4) | (x5) | ||
1 | RC | 1 | - | - | - | - |
2 | RO | - | 1 | - | - | - |
3 | RT | - | - | 1 | - | - |
4 | RL | - | - | - | 1 | - |
5 | RD | - | - | - | - | 1 |
6 | RCO | 0.5 | 0.5 | - | - | - |
7 | RCT | 0.5 | - | 0.5 | - | - |
8 | RCL | 0.5 | - | - | 0.5 | - |
9 | RCD | 0.5 | - | - | - | 0.5 |
10 | ROT | - | 0.5 | 0.5 | - | - |
11 | ROL | - | 0.5 | - | 0.5 | - |
12 | ROD | - | 0.5 | - | - | 0.5 |
13 | RTL | - | - | 0.5 | 0.5 | - |
14 | RTD | - | - | 0.5 | - | 0.5 |
15 | RLD | - | - | - | 0.5 | 0.5 |
16 | RCOT | 1/3 | 1/3 | 1/3 | - | - |
17 | RCOL | 1/3 | 1/3 | - | 1/3 | - |
18 | RCOD | 1/3 | 1/3 | - | - | 1/3 |
19 | RCTL | 1/3 | - | 1/3 | 1/3 | - |
20 | RCTD | 1/3 | - | 1/3 | - | 1/3 |
21 | RCLD | 1/3 | - | - | 1/3 | 1/3 |
22 | ROTL | - | 1/3 | 1/3 | 1/3 | - |
23 | ROTD | - | 1/3 | 1/3 | - | 1/3 |
24 | ROLD | - | 1/3 | - | 1/3 | 1/3 |
25 | RTLD | - | - | 1/3 | 1/3 | 1/3 |
26 | RCOTL | 0.25 | 0.25 | 0.25 | 0.25 | - |
27 | RCOTD | 0.25 | 0.25 | 0.25 | - | 0.25 |
28 | RCOLD | 0.25 | 0.25 | - | 0.25 | 0.25 |
29 | RCTLD | 0.25 | - | 0.25 | 0.25 | 0.25 |
30 | ROTLD | - | 0.25 | 0.25 | 0.25 | 0.25 |
31 | RCOTLD | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Variable | Halls Creek | Rofe Park |
---|---|---|
Litter depth (mm) | 46 ± 17 | 75 ± 31 |
Near surface fuel height (m) | 0.1 ± 0.1 | 1.0 ± 0.2 |
Elevated fuel height (m) | 2.9 ± 0.3 | 2.5 ± 0.7 |
Litter bulk density (kg m−3) | 20.0 ± 5.3 | 25.7 ± 10.3 |
Surface FHS | 3.3 ± 0.5 | 3.7 ± 0.5 |
Near surface FHS | 2.7 ± 0.3 | 2.2 ± 0.4 |
Elevated FHS | 1.7 ± 0.2 | 1.6 ± 0.5 |
Bark FHS | 2.7 ± 0.6 | 2.0 ± 0.0 |
Surface PCS | 3.2 ± 0.4 | 3.4 ± 0.2 |
Near surface PCS | 2.1 ± 0.7 | 2.6 ± 0.7 |
Elevated PCS | 1.9 ± 0.2 | 1.5 ± 0.6 |
Canopy PCS | 1.6 ± 0.2 | 2.4 ± 0.2 |
Sample | BD | TTI | VFH | RS | VC | RMF | BTC | DVF |
---|---|---|---|---|---|---|---|---|
(kg m−3) | (s) | (m) | (m s−1) | (m3) | (%) | (s) | (s) | |
HO | 28 | 2 | 0.22 | 2.50 × 10−3 | 2.62 × 10−4 | 21.38 | 202 | 200 |
HT | 77 | 28 | 0.02 | 0 | 0 | 100 | 120 | 92 |
HL | 15 | 7 | 0.30 | 1.80 × 10−3 | 1.13 × 10−3 | 62.88 | 179 | 172 |
HD | 53 | 0 | 0 | 0 | 0 | 100 | 0 | 0 |
HOT | 31 | 6 | 0.16 | 4.10 × 10−3 | 7.14 × 10−4 | 0.14 | 97 | 91 |
HOL | 21 | 1 | 0.24 | 1.90 × 10−3 | 9.73 × 10−4 | 38.71 | 223 | 222 |
HOD | 36 | 3 | 0.01 | 0 | 0 | 100 | 5 | 2 |
HTL | 26 | 7 | 0.20 | 1.50 × 10−3 | 8.00 × 10−4 | 45.41 | 335 | 328 |
HTD | 74 | 24 | 0.01 | 0 | 0 | 100 | 171 | 147 |
HLD | 37 | 5 | 0.12 | 0 | 0 | 100 | 110 | 105 |
HOTL | 27 | 7 | 0.08 | 0 | 0 | 100 | 91 | 112 |
HOTD | 40 | 9 | 0.03 | 0 | 0 | 100 | 12 | 3 |
HOLD | 28 | 1 | 0.01 | 0 | 0 | 100 | 0 | 0 |
HTLD | 45 | 15 | 0 | 0 | 0 | 100 | 0 | 0 |
HOTLD | 24 | 1 | 0.11 | 2.50 × 10−3 | 0 | 100 | 119 | 90 |
Sample | BD | TTI | VFH | RS | VC | RMF | BTC | DVF |
---|---|---|---|---|---|---|---|---|
(kg m−3) | (s) | (m) | (m s−1) | (m3) | (%) | (s) | (s) | |
RC | 15 | 3 | 0.37 | 6.10 × 10−3 | 1.33 × 10−3 | 60.89 | 64 | 61 |
RO | 28 | 3 | 0.03 | 0 | 7.14 × 10−4 | 33.77 | 115 | 112 |
RT | 29 | 35 | 0.10 | 9.00 × 10−4 | 6.77 × 10−4 | 3.52 | 193 | 158 |
RL | 21 | 3 | 0.15 | 1.90 × 10−3 | 9.73 × 10−4 | 50.2 | 170 | 167 |
RD | 95 | 25 | 0.05 | 0 | 0 | 100 | 0 | 0 |
RCO | 11 | 1 | 0.27 | 5.20 × 10−3 | 1.86 × 10−3 | 46.35 | 85 | 84 |
RCT | 11 | 2 | 0.33 | 6.70 × 10−3 | 1.85 × 10−3 | 61 | 147 | 145 |
RCL | 17 | 2 | 0.30 | 4.50 × 10−3 | 1.18 × 10−3 | 56.89 | 113 | 111 |
RCD | 13 | 1 | 0.31 | 4.20 × 10−3 | 1.54 × 10−3 | 26.3 | 90 | 89 |
ROT | 22 | 3 | 0.14 | 0 | 0 | 100 | 149 | 146 |
ROL | 24 | 2 | 0.16 | 0 | 0 | 100 | 146 | 144 |
ROD | 46 | 0 | 0 | 0 | 0 | 100 | 0 | 0 |
RTL | 24 | 3 | 0.18 | 2.20 × 10−3 | 8.37 × 10−4 | 6.51 | 184 | 181 |
RTD | 54 | 12 | 0.15 | 0 | 0 | 100 | 0 | 0 |
RLD | 32 | 11 | 0.15 | 0 | 0 | 100 | 120 | 109 |
RCOT | 12 | 1 | 0.24 | 3.40 × 10−3 | 1.56 × 10−3 | 58.71 | 234 | 233 |
RCOL | 11 | 1 | 0.38 | 4.50 × 10−3 | 1.56 × 10−3 | 85.34 | 206 | 205 |
RCOD | 14 | 1.5 | 0.29 | 5.90 × 10−3 | 1.30 × 10−3 | 23.09 | 114 | 112.5 |
RCTL | 8 | 2 | 0.43 | 4.70 × 10−3 | 2.02 × 10−3 | 47.35 | 207 | 205 |
RCTD | 19 | 2 | 0.18 | 2.30 × 10−3 | 9.36 × 10−4 | 21.8 | 159 | 157 |
RCLD | 10 | 1 | 0.41 | 5.00 × 10−3 | 1.71 × 10−3 | 42.67 | 140 | 139 |
ROTL | 19 | 3 | 0.20 | 2.00 × 10−3 | 9.61 × 10−4 | 9.09 | 137 | 134 |
ROTD | 27 | 40 | 0.12 | 0 | 0 | 100 | 0 | 0 |
ROLD | 28 | 8 | 0.11 | 0 | 0 | 100 | 87 | 79 |
RTLD | 34 | 12 | 0.06 | 0 | 0 | 100 | 92 | 80 |
RCOTL | 17 | 5 | 0.23 | 4.70 × 10−3 | 1.22 × 10−3 | 28.83 | 135 | 130 |
RCOTD | 28 | 3 | 0.12 | 1.80 × 10−3 | 0 | 100 | 134 | 131 |
RCOLD | 22 | 4 | 0.28 | 4.70 × 10−3 | 9.24 × 10−4 | 21.91 | 85 | 81 |
RCTLD | 15 | 6 | 0.26 | 7.40 × 10−3 | 1.40 × 10−3 | 27.13 | 104 | 98 |
ROTLD | 49 | 8 | 0.04 | 0 | 0 | 100 | 30 | 22 |
RCOTLD | 19 | 3 | 0.23 | 3.70 × 10−3 | 1.13 × 10−3 | 10.58 | 95 | 92 |
Metric | Coefficient | Coefficient Estimate | Coeff. Std. Error | Pr | Adj. R2 | p | AICc Value |
---|---|---|---|---|---|---|---|
BD | x1 | 2.55 × 101 | 3.53 × 100 | 4.97 × 10−5 *** | 0.989 | 2.78 × 10−9 | 111 |
x2 | 7.97 × 101 | 3.83 × 100 | 6.34 × 10−9 *** | ||||
x3 | 1.49 × 101 | 3.41 × 100 | 1.79 × 10−3 ** | ||||
x4 | 5.38 × 101 | 3.20 × 100 | 4.25 × 10−8 *** | ||||
I(x11 × x20.5/(x1 + x2 + 0.001)1) | −5.48 × 101 | 9.52 × 100 | 2.73 × 10−4 *** | ||||
I(x23 × x33/(x2 + x3 + 0.001)0) | −1.36 × 103 | 3.26 × 102 | 2.44 × 10−3 ** | ||||
BTC | x1 | 1.35 × 102 | 5.47 × 101 | 4.27 × 10−2 * | 0.808 | 3.20 × 10−3 | 159 |
x3 | 1.93 × 102 | 5.87 × 101 | 1.35 × 10−2 * | ||||
RMF | x2 | 8.67 × 101 | 1.59 × 101 | 4.03 × 10−4 *** | 0.948 | 2.97 × 10−6 | 154 |
x3 | 6.26 × 101 | 1.44 × 101 | 1.82 × 10−3 ** | ||||
x4 | 1.22 × 102 | 1.44 × 101 | 1.39 × 10−5 *** | ||||
I(x13 × x23/(x1 + x2 + 0.001)0) | −8.70 × 103 | 2.30 × 103 | 4.30 × 10−3 ** | ||||
I(x13 × x21.5/(x1 + x2 + 0.001)3) | 1.70 × 103 | 6.96 × 102 | 3.75 × 10−2 * | ||||
RS | x1 | 2.50 × 10−1 | 3.45 × 10−4 | 8.77 × 10−4 *** | 1.0000 | 9.51 × 10−4 | −161 |
x2 | 5.70 × 10−1 | 7.63 × 10−4 | 8.51 × 10−4 *** | ||||
x3 | 1.80 × 10−1 | 3.46 × 10−4 | 1.22 × 10−3 ** | ||||
I(x23 × x32.5/(x2 + x3 + 0.001)3) | −1.02 × 101 | 2.49 × 10−2 | 1.55 × 10−3 ** | ||||
I(x13 × x33/(x1 + x3 + 0.001)0) | −1.60 × 100 | 2.72 × 10−2 | 1.08 × 10−2 * | ||||
TTI | x2 | 2.42 × 101 | 3.09 × 100 | 2.65 × 10−5 *** | 0.871 | 1.28 × 10−4 | 98 |
x4 | 1.60 × 101 | 5.07 × 100 | 1.16 × 10−2 * | ||||
VC | No significant values | 0.929 | 1.78 × 10−1 | −128 | |||
VFH | x1 | 2.11 × 10−1 | 3.84 × 10−2 | 5.78 × 10−4 *** | 0.903 | 1.07 × 10−4 | −23 |
x3 | 3.18 × 10−1 | 3.88 × 10−2 | 3.63 × 10−5 *** | ||||
DVF | x1 | 1.38 × 102 | 5.27 × 101 | 3.41 × 10−2 * | 0.806 | 3.30 × 10−3 | 158 |
x3 | 1.88 × 102 | 5.66 × 101 | 1.26 × 10−2 * |
Metric | Coefficient | Coefficient Estimate | Coeff. Std. Error | Pr | Adj. R2 | p | AICc Value |
---|---|---|---|---|---|---|---|
BD | x2 | 2.34 × 101 | 4.51 × 100 | 2.89 × 10−5 *** | 0.956 | 2.79 × 10−15 | 220 |
x3 | 2.09 × 101 | 4.08 × 100 | 3.35 × 10−5 *** | ||||
x4 | 2.05 × 101 | 4.46 × 100 | 1.26 × 10−4 *** | ||||
x5 | 9.24 × 101 | 5.59 × 100 | 2.96 × 10−14 *** | ||||
I(x11 × x50.5/(x1 + x5 + 0.001)0) | −1.04 × 102 | 1.57 × 101 | 9.01 × 10−7 *** | ||||
I(x42.5 × x50.5/(x4 + x5 + 0.001)0) | −2.04 × 102 | 5.56 × 101 | 1.28 × 10−3 ** | ||||
I(x23 × x52.5/(x2 + x5 + 0.001)3) | −6.49 × 102 | 3.02 × 102 | 4.27 × 10−2 * | ||||
BTC | x1 | 6.24 × 101 | 1.80 × 101 | 2.74 × 10−3 ** | 0.973 | 6.91 × 10−14 | 268 |
x2 | 1.24 × 102 | 1.67 × 101 | 6.71 × 10−7 *** | ||||
x3 | 2.03 × 102 | 1.67 × 101 | 3.97 × 10−10 *** | ||||
x4 | 1.61 × 102 | 1.64 × 101 | 1.13 × 10−8 *** | ||||
x5 | 1.56 × 102 | 3.08 × 101 | 8.03 × 10−5 *** | ||||
I(x41.5 × x50.5/(x4 + x5 + 0.001)3) | −1.69 × 102 | 3.20 × 101 | 5.00 × 10−5 *** | ||||
I(x12.5 × x22.5 × x32.5) | 4.93 × 105 | 9.88 × 104 | 9.63 × 10−5 *** | ||||
I(x22 × x30.5/(x2 + x3 + 0.001)3) | −1.32 × 102 | 5.16 × 102 | 1.94 × 10−2 * | ||||
I(x12× x40.5/(x1 + x4 + 0.001)3) | 2.33 × 102 | 5.40 × 101 | 4.19 × 10−4 *** | ||||
RMF | x1 | 6.82 × 101 | 9.94 × 100. | 1.16 × 10−5 *** | 0.916 | 3.27 × 10−7 | 177 |
x2 | 3.54 × 101 | 9.57 × 100 | 2.65 × 10−3 ** | ||||
x4 | 5.79 × 101 | 1.03 × 101 | 8.25 × 10−5 *** | ||||
I(x30.5 × x40.5/(x3 + x4 + 0.001)0) | −5.21 × 101 | 2.09 × 101 | 2.72 × 10−2 * | ||||
I(x11.5 × x30.5/(x1 + x3 + 0.001)0) | 1.18 × 102 | 5.00 × 101 | 3.46 × 10−2 * | ||||
RS | x1 | 5.79 × 10−1 | 6.97 × 10−2 | 4.58 × 10−6 *** | 0.967 | 2.82 × 10−8 | −11 |
x2 | 4.75 × 10−1 | 1.43 × 10−1 | 6.65 × 10−3 ** | ||||
x4 | 1.60 × 10−1 | 6.90 × 10−2 | 4.11 × 10−2 * | ||||
I(x11.5 × x40.5/(x1 + x4 + 0.001)3) | 6.13 × 10−1 | 1.12 × 10−1 | 1.88 × 10−4 *** | ||||
I(x13 × x33/(x1 + x3 + 0.001)0) | 1.99 × 101 | 6.14 × 100 | 7.77 × 10−3 ** | ||||
I(x10.5 × x20.5/(x1 + x2 + 0.001)3) | −1.07 × 10−1 | 3.12 × 10−2 | 5.82 × 10−3 ** | ||||
I(x23 × x53/(x2 + x5 + 0.001)0) | 2.06 × 102 | 7.36 × 101 | 1.72 × 10−2 * | ||||
TTI | x3 | 3.66 × 101 | 4.57 × 100 | 1.66 × 10−7 *** | 0.833 | 5.05 × 10−7 | 208 |
x5 | 2.40 × 101 | 4.15 × 100 | 1.46 × 10−5 *** | ||||
I(x10.5 × x50.5/(x1 + x5 + 0.001)0) | −2.79 × 101 | 7.35 × 100 | 1.22 × 10−3 ** | ||||
I(x23 × x53/(x2 + x5 + 0.001)0) | 5.59 × 103 | 2.36 × 103 | 2.87 × 10−2 * | ||||
I(x13 × x32/(x1 + x3 + 0.001)3) | −5.72 × 102 | 1.57 × 102 | 1.73 × 10−3 ** | ||||
I(x32.5 × x40.5/(x3 + x4 + 0.001)0) | −1.35 × 102 | 4.34 × 101 | 5.93 × 10−3 ** | ||||
I(x33 × x53/(x3 + x5 + 0.001)0) | −1.10 × 103 | 3.67 × 102 | 7.21 × 10−3 ** | ||||
I(x23 × x33/(x2 + x3 + 0.001)0) | −9.45 × 102 | 3.62 × 102 | 1.72 × 10−2 * | ||||
VC | x1 | 1.42 × 10−3 | 2.17 × 10−4 | 2.74 × 10−5 *** | 0.967 | 4.80 × 10−9 | −250 |
x2 | 6.75 × 10−4 | 2.18 × 10−4 | 9.14 × 10−3 ** | ||||
x3 | 7.04 × 10−4 | 2.14 × 10−4 | 6.40 × 10−3 ** | ||||
x4 | 1.16 × 10−3 | 1.83 × 10−4 | 3.77 × 10−5 *** | ||||
x5 | 1.56 × 10−3 | 3.68 × 10−4 | 1.14 × 10−3 ** | ||||
I(x11.5 × x30.5/(x1 + x3 + 0.001)0) | 3.91 × 10−3 | 1.05 × 10−3 | 2.89 × 10−3 ** | ||||
I(x13 × x22.5/(x1 + x2 + 0.001)2) | 3.68 × 10−2 | 1.30 × 10−2 | 1.55 × 10−2 * | ||||
I(x33 × x53/(x3 + x5 + 0.001)0) | −5.24 × 10−1 | 2.10 × 10−1 | 2.81 × 10−2 * | ||||
VFH | x1 | 4.31 × 10−1 | 3.32 × 10−2 | 1.71 × 10−11 *** | 0.962 | 1.50 × 10−14 | −79 |
x2 | 8.99 × 10−2 | 3.07 × 10−2 | 8.05 × 10−3 ** | ||||
x3 | 1.54 × 10−1 | 3.10 × 10−2 | 6.76 × 10−5 *** | ||||
x4 | 1.69 × 10−1 | 3.32 × 10−2 | 4.78 × 10−5 *** | ||||
x5 | 1.05 × 10−1 | 3.27 × 10−2 | 4.10 × 10−3 ** | ||||
I(x13 × x43/(x1 + x4 + 0.001)0) | −3.87 × 102 | 1.60 × 102 | 2.44 × 10−2 * | ||||
I(x13 × x42.5/(x1 + x4 + 0.001)0) | 2.71 × 102 | 1.14 × 102 | 2.70 × 10−2 * | ||||
DVF | x1 | 7.14 × 101 | 1.83 × 101 | 1.12 × 10−3 ** | 0.972 | 6.44 × 10−13 | 272 |
x2 | 1.12 × 102 | 1.57 × 101 | 1.78 × 10−6 *** | ||||
x3 | 1.72 × 102 | 1.57 × 101 | 4.12 × 10−9 *** | ||||
x4 | 1.68 × 102 | 1.70 × 101 | 1.79 × 10−8 *** | ||||
x5 | 1.68 × 102 | 3.13 × 101 | 5.36 × 10−5 *** | ||||
I(x41.5 × x50.5/(x4 + x5 + 0.001)3) | −2.24 × 102 | 3.29 × 101 | 3.12 × 10−6 *** | ||||
I(x12.5 × x22.5 × x32.5) | 1.06 × 107 | 3.82 × 106 | 1.28 × 10−2 * | ||||
I(x12 × x40.5/(x1 + x4 + 0.001)3) | 3.12 × 102 | 5.95 × 101 | 6.59 × 10−5 *** | ||||
I(x12.5 × x22.5 × x32) | −5.89 × 106 | 2.20 × 106 | 1.59 × 10−2 * | ||||
I(x13 × x43/(x1 + x4 + 0.001)0) | −3.83 × 103 | 1.72 × 103 | 3.95 × 10−2 * |
(a) | ||||||
Metric | Other (x1) | Twigs (x2) | Leaves (x3) | Decomposed material (x4) | Corresponding sample ID for optimum mixture | Sample ID for maximum measured value |
BD | - | 1 | - | - | HT | HT |
BTC | - | 0.5 | 0.5 | - | HTL | HTL |
DVF | - | 0.5 | 0.5 | - | HTL | HTL |
RMF | - | - | 1 | - | HL | HL |
RS | 0.5 | 0.5 | - | - | HOT | HOT |
TTI | - | 1 | - | - | HT | HT |
VC | - | - | 1 | - | HL | HL |
VFH | - | - | 1 | - | HL | HL |
(b) | ||||||
Metric | x1 | x2 | x3 | x4 | Corresponding sample ID for optimum mixture | Sample ID for minimum measured value 1 |
BD | - | - | 1 | - | HL | HL |
BTC | 0.5 | - | - | 0.5 | HOD | HOLD, HTLD |
DVF | 0.5 | - | - | 0.5 | HOD | HOD, HOLD, HTLD |
RMF | 0.5 | 0.5 | - | - | HOT | HOT |
RS | - | 0.5 | 0.5 | - | HTL | HT, HOD, HTD, HLD, HOTL, HOTD, HOLD, HTLD |
TTI | 0.5 | - | 0.5 | - | HOL | HOL, HOTLD |
0.25 | 0.25 | 0.25 | 0.25 | HOTLD | ||
VC | 1 | - | - | - | HO | HT, HOD, HTD, HLD, HOTL, HOTD, HOLD, HTLD, HOTLD |
VFH | 0.5 | - | - | 0.5 | HOD | HOD, HTD, HOLD, HTLD |
- | 0.5 | - | 0.5 | HTD | ||
1/3 | - | 1/3 | 1/3 | HOLD |
(a) | |||||||
Metric | Cladodes (x1) | Other (x2) | Twigs (x3) | Leaves (x4) | Decomposed Material (x5) | Corresponding Sample ID for Optimum Mixture | Sample ID for Maximum Measured Value |
BD | - | - | - | - | 1 | RD | RD |
BTC | 1/3 | 1/3 | 1/3 | - | - | RCOT | RCOT |
DVF | 1/3 | 1/3 | 1/3 | - | - | RCOT | RCOT |
RMF | 1/3 | 1/3 | - | 1/3 | - | RCOL | RCOL |
RS | 0.25 | - | 0.25 | 0.25 | 0.25 | RCTLD | RCTLD |
TTI | - | 1/3 | 1/3 | - | 1/3 | ROTD | ROTD |
VC | 1/3 | - | 1/3 | 1/3 | - | RCTL | RCTL |
VFH | 1/3 | - | 1/3 | 1/3 | - | RCTL | RCTL |
(b) | |||||||
Metric | x1 | x2 | x3 | x4 | x5 | Corresponding Sample ID for Optimum Mixture | Sample ID for Minimum Measured Value 1 |
BD | 1/3 | - | 1/3 | 1/3 | - | RCTL | RCTL |
BTC | - | 0.25 | 0.25 | 0.25 | 0.25 | ROTD | RD, RTD, ROTD |
DVF | - | 0.25 | 0.25 | 0.25 | 0.25 | ROTD | RD, RTD, ROTD |
RMF | - | - | 1 | - | - | RT | RT |
RS | - | - | 1 | - | - | RT | RT |
TTI | 0.5 | 0.5 | - | - | - | RCO | RCO |
0.5 | - | - | - | 0.5 | RCD | RCD | |
1/3 | 1/3 | 1/3 | - | - | RCOT | RCOT | |
1/3 | 1/3 | - | 1/3 | - | RCOL | RCOL | |
1/3 | - | - | 1/3 | 1/3 | RCLD | RCLD | |
VC | - | - | 1 | - | - | RT | RD, ROT, ROL, RTD, RLD, ROTD, ROLD, RTLD, RCOTD, ROTLD |
VFH | - | 1 | - | - | - | RO | RO |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gormley, A.G.; Bell, T.L.; Possell, M. Non-Additive Effects of Forest Litter on Flammability. Fire 2020, 3, 12. https://doi.org/10.3390/fire3020012
Gormley AG, Bell TL, Possell M. Non-Additive Effects of Forest Litter on Flammability. Fire. 2020; 3(2):12. https://doi.org/10.3390/fire3020012
Chicago/Turabian StyleGormley, Angela G., Tina L. Bell, and Malcolm Possell. 2020. "Non-Additive Effects of Forest Litter on Flammability" Fire 3, no. 2: 12. https://doi.org/10.3390/fire3020012
APA StyleGormley, A. G., Bell, T. L., & Possell, M. (2020). Non-Additive Effects of Forest Litter on Flammability. Fire, 3(2), 12. https://doi.org/10.3390/fire3020012