Can Air Quality Management Drive Sustainable Fuels Management at the Temperate Wildland–Urban Interface?
Abstract
:1. Introduction
2. Vancouver Island—Reliance on Mechanical Thinning and Pile Burning
3. Tasmania—Reliance on Prescribed Fire
4. Lessons from Vancouver Island and Tasmania
5. Leveraging Existing Air Quality Regulations to Drive Innovation in Fuels Management
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Bowman, D.M.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.P.; Spies, T.A.; Steelman, T.A.; Moseley, C.; Johnson, B.R.; Bailey, J.D.; Ager, A.A.; Bourgeron, P.; Charnley, S.; Collins, B.M. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 2016, 14, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef]
- Stephens, S.L.; Collins, B.M.; Biber, E.; Fulé, P.Z. US federal fire and forest policy: Emphasizing resilience in dry forests. Ecosphere 2016, 7, 1–19. [Google Scholar] [CrossRef]
- Price, O.F.; Bradstock, R.A. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 2012, 113, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, K.; Lucas, C.; Nicholls, N.; Bathols, J.; Suppiah, R.; Ricketts, J. Climate Change Impacts on Fire-Weather in South-East Australia; Australian Government Bureau of Meteorology: Melbourne, Australia, 2005; p. 92.
- Sneeuwjagt, R.J.; Kline, T.S.; Stephens, S.L. Opportunities for improved fire use and management in California: Lessons from Western Australia. Fire Ecol. 2013, 9, 14–25. [Google Scholar]
- Schweizer, D.; Cisneros, R. Forest fire policy: Change conventional thinking of smoke management to prioritize long-term air quality and public health. Air Qual. Atmos. Health 2017, 10, 33–36. [Google Scholar] [CrossRef]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 2016, 124, 1334. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.; Warren, S.H.; Krantz, Q.T.; King, C.; Jaskot, R.; Preston, W.T.; George, B.J.; Hays, M.D.; Landis, M.S.; Higuchi, M. Mutagenicity and lung toxicity of smoldering vs. flaming emissions from various biomass fuels: Implications for health effects from wildland fires. Environ. Health Perspect. 2018, 126. [Google Scholar] [CrossRef] [PubMed]
- Broome, R.A.; Johnston, F.H.; Horsley, J.; Morgan, G.G. A rapid assessment of the impact of hazard reduction burning around Sydney, May 2016. Med. J. Aust. 2016, 205, 407–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominici, F.; Greenstone, M.; Sunstein, C.R. Particulate matter matters. Science 2014, 344, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Haikerwal, A.; Reisen, F.; Sim, M.R.; Abramson, M.J.; Meyer, C.P.; Johnston, F.H.; Dennekamp, M. Impact of smoke from prescribed burning: Is it a public health concern? J. Air Waste Manag. Assoc. 2015, 65, 592–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, G.; Bowman, D.M.S.; Price, O.F.; Henderson, S.; Johnston, F. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes. Environ. Res. Lett. 2016, 11, 125009. [Google Scholar] [CrossRef] [Green Version]
- Clode, D.; Elgar, M.A. Fighting fire with fire: Does a policy of broad-scale prescribed burning improve community safety? Soc. Nat. Resour. 2014, 27, 1192–1199. [Google Scholar] [CrossRef]
- Hyde, J.C.; Yedinak, K.M.; Talhelm, A.F.; Smith, A.M.; Bowman, D.M.; Johnston, F.H.; Lahm, P.; Fitch, M.; Tinkham, W.T. Air quality policy and fire management responses addressing smoke from wildland fires in the United States and Australia. Int. J. Wildland Fire 2017, 26, 347–363. [Google Scholar] [CrossRef]
- Interim Air Quality Policy on Wildland and Prescribed Fires; U.S. Environmental Protection Agency: Washington, DC, USA, 1998; p. 38.
- Engel, K.H. Perverse incentives: The case of wildfire smoke regulation. Ecol. LQ 2013, 40, 623. [Google Scholar] [CrossRef]
- North, M.; Stephens, S.; Collins, B.; Agee, J.; Aplet, G.; Franklin, J.; Fulé, P. Reform forest fire management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef] [PubMed]
- Meidinger, D.; Pojar, J. Ecosystems of British Columbia. Special Report Series Number 6; Research Branch, Ministry of Forests: Victoria, BC, Canada, 1991; p. 330.
- Pellatt, M.G.; Hebda, R.J.; Mathewes, R.W. High-resolution Holocene vegetation history and climate from Hole 1034B, ODP leg 169S, Saanich Inlet, Canada. Mar. Geol. 2001, 174, 211–222. [Google Scholar] [CrossRef]
- Brown, K.J.; Hebda, R.J. Ancient fires on southern Vancouver Island, British Columbia, Canada: A change in causal mechanisms at about 2000 ybp. Environ. Archaeol. 2002, 7, 1–12. [Google Scholar] [CrossRef]
- Provincial Strategic Threat Analysis: 2015 Wildfire Threat Analysis Component; BC Ministry of Forests, Lands and Natural Resource Operations; British Columbia Wildfire Service: Victoria, BC, Canada, 2015; p. 33.
- Fuel Management in the Wildland-Urban Interface: Special Report #43; BC Forest Practices Board: Victoria, BC, Canada, 2015; p. 38.
- Bélanger, D.; Gosselin, P.; Valois, P.; Abdous, B. Use of residential wood heating in a context of climate change: A population survey in Québec (Canada). BMC Public Health 2008, 8, 184. [Google Scholar] [CrossRef] [PubMed]
- Dailyde, L.; Boulton, J.; Trask, T. Particulate Matter Emissions Inventory for the Comox Valley 2015 Base Year. RWDI1700243; British Columbia Ministry of Environment: Vancouver, BC, Canada, 2015; 50p.
- Simoneit, B.R.; Schauer, J.J.; Nolte, C.; Oros, D.R.; Elias, V.O.; Fraser, M.; Rogge, W.; Cass, G.R. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 1999, 33, 173–182. [Google Scholar] [CrossRef]
- Weichenthal, S.; Kulka, R.; Lavigne, E.; van Rijswijk, D.; Brauer, M.; Villeneuve, P.J.; Stieb, D.; Joseph, L.; Burnett, R.T. Biomass burning as a source of ambient fine particulate air pollution and acute myocardial infarction. Epidemiology 2017, 28, 329. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.Y.; Weichenthal, S.; Saraswat, A.; King, G.H.; Henderson, S.B.; Brauer, M. Systematic identification and prioritization of communities impacted by residential woodsmoke in British Columbia, Canada. Environ. Pollut. 2017, 220, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Government of British Columbia. Solid Fuel Burning Domestic Appliance Regulation; Government of British Columbia: Victoria, BC, Canada, 2016.
- Government of British Columbia. Open Burning Smoke Control Regulation; Government of British Columbia: Victoria, BC, Canada, 2016.
- Lamers, P.; Junginger, M.; Dymond, C.C.; Faaij, A. Damaged forests provide an opportunity to mitigate climate change. GCB Bioenergy 2014, 6, 44–60. [Google Scholar] [CrossRef]
- Bølling, A.K.; Pagels, J.; Yttri, K.E.; Barregard, L.; Sallsten, G.; Schwarze, P.E.; Boman, C. Health effects of residential wood smoke particles: The importance of combustion conditions and physicochemical particle properties. Part. Fibre Toxicol. 2009, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.H.; Hanigan, I.C.; Henderson, S.B.; Morgan, G.G. Evaluation of interventions to reduce air pollution from biomass smoke on mortality in Launceston, Australia: Retrospective analysis of daily mortality, 1994–2007. BMJ 2013, 346, e8446. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.L. Australian wood heaters currently increase global warming and health costs. Atmos. Pollut. Res. 2011, 2, 267–274. [Google Scholar] [CrossRef]
- Ozgen, S.; Caserini, S. Methane emissions from small residential wood combustion appliances: Experimental emission factors and warming potential. Atmos. Environ. 2018, 189, 164–173. [Google Scholar] [CrossRef]
- Thomas, I.; Cullen, P.; Fletcher, M.-S. Ecological drift or stable fire cycles in Tasmania: A resolution. Terra Aust. 2010, 32, 341–352. [Google Scholar]
- Fox-Hughes, P. Springtime fire weather in Tasmania, Australia: Two case studies. Weather Forecast. 2012, 27, 379–395. [Google Scholar] [CrossRef]
- White, C.; Remenyi, T.; McEvoy, D.; Trundle, A.; Corney, S. Tasmanian State Natural Disaster Risk Assessment; University of Tasmania: Hobart, TAS, Australia, 2016; p. 158. [Google Scholar]
- 2013 Tasmanian Bushfires Inquiry; Department of Premier and Cabinet: Hobart, TAS, Australia, 2013; p. 263.
- Furlaud, J.M.; Williamson, G.J.; Bowman, D.M. Simulating the effectiveness of prescribed burning at altering wildfire behaviour in Tasmania, Australia. Int. J. Wildland Fire 2018, 27, 15–28. [Google Scholar] [CrossRef]
- Harris, R.M.B.; Remenyi, T.; Fox-Hughes, P.; Love, P.; Phillips, H.E.; Bindoff, N.L. An Assessment of the Viability of Prescribed Burning as a Management Tool under a Changing Climate: A Tasmanian Case Study; Research Forum at the Bushfire and Natural Hazards CRC & AFAC Conference; Rumsewicz, M., Ed.; Bushfire and Natural Hazards CRC: Melbourne, VIC, Australia, 2017. [Google Scholar]
- Lyth, A.; Spinaze, A.; Watson, P.; Johnston, F. Place, human agency and community resilience: Considerations for public health management of smoke from prescribed burning. Local Environ. 2018, in press. [Google Scholar]
- Leahy, B. Perceptions of risk and connection to landscape. Aust. J. Emerg. Manag. 2016, 31, 5. [Google Scholar]
- Gill, N.; Dun, O.; Brennan-Horley, C.; Eriksen, C. Landscape preferences, amenity, and bushfire risk in New South Wales, Australia. Environ. Manag. 2015, 56, 738–753. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, S.; Balcombe, L.; Cottrell, A. Community and Fire Service Perceptions of Bushfire Issues in Tamborine Mountain: What’s the Difference? Aust. J. Emerg. Manag. 2007, 22, 3. [Google Scholar]
- Neyland, M.G.; Grove, S.J. A commentary on “Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons”. Front. Plant Sci. 2015, 6, 346. [Google Scholar] [CrossRef] [PubMed]
- Barry, K.M.; Janos, D.P.; Bowman, D.M. Response: A commentary on “Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons”. Front. Plant Sci. 2016, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Barry, K.M.; Janos, D.P.; Nichols, S.; Bowman, D.M. Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons. Front. Plant Sci. 2015, 6, 97. [Google Scholar] [CrossRef] [PubMed]
- Johnston, O.; Johnston, F.; Todd, J.; Williamson, G. Community-wide distribution of a catalytic device to reduce winter ambient fine particulate matter from residential wood combustion: A field study. PLoS ONE 2016, 11, e0166677. [Google Scholar] [CrossRef] [PubMed]
- Chuter, R. Review of the Implementation and Effectiveness of the 2011 Season’s Trial of the Forest Industry and Parks & Wildlife Service (PWS) Coordinated Smoke Management Strategy (CSMS); FPA: Hobart, TAS, Australia, 2011; p. 27. [Google Scholar]
- Johnston, F.; Wheeler, A.; Williamson, G.; Campbell, S.; Jones, P.; Koolhof, I.; Lucani, C.; Cooling, N.; Bowman, D. Using smartphone technology to reduce health impacts from atmospheric environmental hazards. Environ. Res. Lett. 2018, 13, 044019. [Google Scholar] [CrossRef] [Green Version]
- Report on the Tasmanian Population Health Survey 2016; Department of Health and Human Services Tasmania: Hobart, TAS, Australia, 2017; p. 118.
- Innis, J. Overview of the BLANkET Smoke Monitoring Network: Development and Operation, 2009–2015; Tasmanian Environmental Protection Agency: Hobart, TAS, Australia, 2015; p. 137.
- Ozgen, S.; Caserini, S.; Galante, S.; Giugliano, M.; Angelino, E.; Marongiu, A.; Hugony, F.; Migliavacca, G.; Morreale, C. Emission factors from small scale appliances burning wood and pellets. Atmos. Environ. 2014, 94, 144–153. [Google Scholar] [CrossRef]
- Tasmania Fire Service. Bushfire in Tasmania: A New Approach to Reducing Our Statewide Relative Risk; State Fire Management Council: Hobart, TAS, Australia, 2014; p. 234.
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed fire in North American forests and woodlands: History, current practice, and challenges. Front. Ecol. Environ. 2013, 11, e15–e24. [Google Scholar] [CrossRef]
- 2018–2019 Tasmanian Budget: State Fire Comission (Section 25); Tasmanian Government: Hobart, TAS, Australia, 2018; pp. 96–102.
- Gibbons, P.; Van Bommel, L.; Gill, A.M.; Cary, G.J.; Driscoll, D.A.; Bradstock, R.A.; Knight, E.; Moritz, M.A.; Stephens, S.L.; Lindenmayer, D.B. Land management practices associated with house loss in wildfires. PLoS ONE 2012, 7, e29212. [Google Scholar] [CrossRef] [PubMed]
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. The role of defensible space for residential structure protection during wildfires. Int. J. Wildland Fire 2014, 23, 1165–1175. [Google Scholar] [CrossRef]
- Hartsough, B.R.; Abrams, S.; Barbour, R.J.; Drews, E.S.; McIver, J.D.; Moghaddas, J.J.; Schwilk, D.W.; Stephens, S.L. The economics of alternative fuel reduction treatments in western United States dry forests: Financial and policy implications from the National Fire and Fire Surrogate Study. For. Policy Econ. 2008, 10, 344–354. [Google Scholar] [CrossRef]
- Ohlson, D.W.; Berry, T.M.; Gray, R.W.; Blackwell, B.A.; Hawkes, B.C. Multi-attribute evaluation of landscape-level fuel management to reduce wildfire risk. For. Policy Econ. 2006, 8, 824–837. [Google Scholar] [CrossRef]
- Evans, A.; Finkral, A. From renewable energy to fire risk reduction: A synthesis of biomass harvesting and utilization case studies in US forests. GCB Bioenergy 2009, 1, 211–219. [Google Scholar] [CrossRef]
- Springsteen, B.; Christofk, T.; Eubanks, S.; Mason, T.; Clavin, C.; Storey, B. Emission reductions from woody biomass waste for energy as an alternative to open burning. J. Air Waste Manag. Assoc. 2011, 61, 63–68. [Google Scholar] [CrossRef] [PubMed]
- The Benefits and Costs of the Clean Air Act from 1990 to 2020: Final Report (Rev. A); U.S. Environmental Protection Agency Office of Air and Radiation: Washington, DC, USA, 2011; p. 238.
- Hubbell, B.J.; Crume, R.V.; Evarts, D.M.; Cohen, J.M. Policy monitor: Regulation and progress under the 1990 clean air act amendments. Rev. Environ. Econ. Policy 2009, 4, 122–138. [Google Scholar] [CrossRef]
- Fann, N.; Kim, S.-Y.; Olives, C.; Sheppard, L. Estimated changes in life expectancy and adult mortality resulting from declining PM2.5 exposures in the contiguous United States: 1980–2010. Environ. Health Perspect. 2017, 125, 097003. [Google Scholar] [CrossRef] [PubMed]
- Zigler, C.M.; Choirat, C.; Dominici, F. Impact of National Ambient Air Quality Standards nonattainment designations on particulate pollution and health. Epidemiology 2017, 29, 165–174. [Google Scholar] [CrossRef] [PubMed]
- 2015 Report to Congress on the Benefits and Costs of Federal Regulations and Agency Compliance with the Unfunded Mandates Reform Act; Executive Office of the President of the United States: Washington, DC, USA, 2015.
- Barn, P.K.; Elliott, C.T.; Allen, R.W.; Kosatsky, T.; Rideout, K.; Henderson, S.B. Portable air cleaners should be at the forefront of the public health response to landscape fire smoke. Environ. Health 2016, 15, 116. [Google Scholar] [CrossRef] [PubMed]
- Fann, N.; Alman, B.; Broome, R.A.; Morgan, G.G.; Johnston, F.H.; Pouliot, G.; Rappold, A.G. The health impacts and economic value of wildland fire episodes in the US: 2008–2012. Sci. Total Environ. 2018, 610, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Alberta Agriculture and Forestry. A Review of the 2016 Horse River Wildfire: Alberta Agriculture and Forestry Preparedness and Response; Alberta Agriculture and Forestry: Edmonton, AB, Canada, 2017; p. 54.
- Province of British Columbia. BC Earthquake Immediate Response Plan; Province of British Columbia: Victoria, BC, Canada, 2015; p. 127.
- Schlesinger, W.H. Are wood pellets a green fuel? Science 2018, 359, 1328–1329. [Google Scholar] [CrossRef] [PubMed]
- Martinson, E.J.; Omi, P.N. Fuel Treatments and Fire Severity: A Meta-Analysis; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2013; p. 38. [Google Scholar]
- McIver, J.D.; Stephens, S.L.; Agee, J.K.; Barbour, J.; Boerner, R.E.; Edminster, C.B.; Erickson, K.L.; Farris, K.L.; Fettig, C.J.; Fiedler, C.E. Ecological effects of alternative fuel-reduction treatments: Highlights of the National Fire and Fire Surrogate study (FFS). Int. J. Wildland Fire 2013, 22, 63–82. [Google Scholar] [CrossRef]
- Curran, T.J.; Perry, G.L.; Wyse, S.V.; Alam, M.A. Managing fire and biodiversity in the wildland-urban interface: A role for green firebreaks. Fire 2017, 1, 3. [Google Scholar] [CrossRef]
- Bowman, D.M.; Garnett, S.T.; Barlow, S.; Bekessy, S.A.; Bellairs, S.M.; Bishop, M.J.; Bradstock, R.A.; Jones, D.N.; Maxwell, S.L.; Pittock, J. Renewal ecology: Conservation for the Anthropocene. Restor. Ecol. 2017, 25, 674–680. [Google Scholar] [CrossRef]
- Johnson, C.N.; Prior, L.D.; Archibald, S.; Poulos, H.M.; Barton, A.M.; Williamson, G.J.; Bowman, D.M.J.S. Can trophic rewilding reduce the impact of fire in a more flammable world? Phil. Trans. R. Soc. B 2018, in press. [Google Scholar]
Category | Term | Definition |
---|---|---|
Types of Fire and Sources of Smoke | Landscape fire | Any fire burning on the landscape, regardless of its cause |
Prescribed fire | Fire intentionally set and managed on the landscape to reduce wildfire risk, achieve various ecological goals, and sustain or restore biodiversity | |
Wildfire | Fire unintentionally burning on the landscape (and sometimes into human settlements), which can have natural or anthropogenic causes | |
Slash burning | Burning of debris to regenerate logged forests or cleared land | |
Pile burning | Collection of debris from logging and land clearing into piles on the landscape, and subsequent burning of those piles to reduce material and wildfire risk | |
Residential wood burning | Use of whole or pelletized harvested wood to provide residential space heating | |
Bioenergy | Generation of heat and electricity for domestic and industrial consumption using woody debris (raw or pelletized) from logging, land clearing, and other industries | |
Wood pellets | A common fuel type for generation of bioenergy (also known as densified biomass fuels) | |
Fire, Fuel, and Landscape Management | Fire management | The control of landscape fires through land management and fire suppression techniques |
Fuels management | The reduction of fuels to reduce landscape fire risk and intensity | |
Sustainable fire management | Management of fire and fuels such that ecological processes, biodiversity, and human values are maintained | |
Wildland-urban interface (WUI) | The landscape interface where native vegetation and urban areas intermingle | |
Wildfire risk | Probability that wildfire will occur in any given season, with particular focus on destructive intersection with the WUI | |
Fire hazard | The quantity and combustibility of wildland fuels | |
Fire weather | A group of meteorological conditions that affect the spread of landscape fire, including air temperature, relative humidity, wind speed, precipitation, and drought | |
Fire break | A natural or artificial gap in vegetation or other combustible material that acts to slow or stop the progress of a wildfire | |
Green fire break | A natural or planted belt of low-flammability vegetation designed to impede the spread of landscape fires | |
Mechanical thinning | Manual and machine-assisted removal of fuels from the landscape | |
Woody debris | Waste wood produced by logging, land clearing, and other activities on the landscape | |
Biodiversity | Diversity and abundance of lifeforms across all taxonomic ranks and phylogenies | |
Air Quality | Smoke | A complex type of air pollution comprising particles and gases formed by incomplete combustion of wildland fuels or harvested wood |
Fine particulate matter (PM2.5) | Particles less than 2.5 microns in aerodynamic diameter | |
Air pollution | The presence or introduction of a harmful substance or substances into the ambient air | |
Air quality | The degree to which the ambient air is free of pollution | |
Air quality regulation | Statutes and rules designed to improve and protect air quality considering factors such as achievability, environmental impacts, and human health | |
Air quality standards | Ambient concentrations of specific air pollutants that are permissible according to air quality regulations | |
Air quality management | Activities undertaken by an agency or group of agencies to improve air quality |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bowman, D.M.J.S.; Daniels, L.D.; Johnston, F.H.; Williamson, G.J.; Jolly, W.M.; Magzamen, S.; Rappold, A.G.; Brauer, M.; Henderson, S.B. Can Air Quality Management Drive Sustainable Fuels Management at the Temperate Wildland–Urban Interface? Fire 2018, 1, 27. https://doi.org/10.3390/fire1020027
Bowman DMJS, Daniels LD, Johnston FH, Williamson GJ, Jolly WM, Magzamen S, Rappold AG, Brauer M, Henderson SB. Can Air Quality Management Drive Sustainable Fuels Management at the Temperate Wildland–Urban Interface? Fire. 2018; 1(2):27. https://doi.org/10.3390/fire1020027
Chicago/Turabian StyleBowman, David M. J. S., Lori D. Daniels, Fay H. Johnston, Grant J. Williamson, W. Matt Jolly, Sheryl Magzamen, Ana G. Rappold, Michael Brauer, and Sarah B. Henderson. 2018. "Can Air Quality Management Drive Sustainable Fuels Management at the Temperate Wildland–Urban Interface?" Fire 1, no. 2: 27. https://doi.org/10.3390/fire1020027