Assessing the Influence of Roads on Fire Ignition: Does Land Cover Matter?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preprocessing
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Krebs, P.; Pezzatti, G.B.; Mazzoleni, S.; Talbot, L.M.; Conedera, M. Fire regime: History and definition of a key concept in disturbance ecology. Theory Biosci. 2010, 129, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Pyne, S.J. World Fire: The Culture of Fire on Earth; Henry Holt and Company: New York, NY, USA, 1995. [Google Scholar]
- Bowman, D.M.J.S.; O’Brien, J.A.; Goldammer, J.G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Environ. Resour. 2013, 38, 57–80. [Google Scholar] [CrossRef]
- FAO. Fire Management—Global Assessment 2006; FAO Forestry Paper 151; FAO: Rome, Italy, 2007. [Google Scholar]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fourne, l.M.; Lampin, C. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.V.; Chuvieco, E. Characterising fire regimes in Spain from fire statistics. Int. J. Wildland Fire 2013, 22, 296–305. [Google Scholar] [CrossRef]
- Cardille, J.A.; Ventura, S.J.; Turner, M.G. Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecol. Appl. 2001, 11, 111–127. [Google Scholar] [CrossRef]
- Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human influence on California fire regimes. Ecol. Appl. 2007, 17, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Syphard, A.D.; Radeloff, V.C.; Keuler, N.S.; Taylor, R.S.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. Predicting spatial patterns of fire on a southern California landscape. Int. J. Wildland Fire 2008, 17, 602–613. [Google Scholar] [CrossRef]
- Vázquez, A.; Moreno, J.M. Sensitivity of fire occurrence to meteorological variables in Mediterranean and Atlantic areas of Spain. Landsc. Urban Plan. 1993, 24, 129–142. [Google Scholar] [CrossRef]
- Viegas, D.X.; Viegas, M.T. A relationship between rainfall and burned area for Portugal. Int. J. Wildland Fire 1994, 4, 11–16. [Google Scholar] [CrossRef]
- Vázquez, A.; Pérez, B.; Fernández-González, F.; Moreno, J.M. Recent fire regime characteristics and potential natural vegetation relationships in Spain. J. Veg. Sci. 2002, 13, 663–676. [Google Scholar] [CrossRef]
- Lloret, F.; Pausas, J.G.; Vilà, M. Response of Mediterranean plant species to different fire regimes in Garraf Natural Park (Catalonia, Spain): Field observations and modelling predictions. Plant Ecol. 2003, 167, 223–235. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Wotton, B.M.; Nock, C.A.; Flannigan, M.D. Forest fire occurrence and climate change in Canada. Int. J. Wildland Fire 2010, 19, 253–271. [Google Scholar] [CrossRef]
- Moreira, F.; Ferreira, P.G.; Rego FC Bunting, S. Landscape changes and breeding bird assemblages in northwestern Portugal: The role of fire. Landsc. Ecol. 2001, 16, 175–187. [Google Scholar] [CrossRef]
- Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J. Land cover type and fire in Portugal: Do fires burn land cover selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- Bajocco, S.; Ricotta, C. Evidence of selective burning in Sardinia (Italy): Which land-cover classes do wildfires prefer? Landsc. Ecol. 2008, 23, 241–248. [Google Scholar] [CrossRef]
- Conedera, M.; Torriani, D.; Neff, C.; Ricotta C Bajocco, S.; Pezzatti, G.B. Using Monte Carlo simulations to estimate relative fire ignition danger in a low-to-medium fire-prone region. For. Ecol. Manag. 2011, 261, 2179–2187. [Google Scholar] [CrossRef]
- Guglietta, D.; Migliozzi, A.; Ricotta, C. A multivariate approach for mapping fire ignition risk: The example of the National Park of Cilento (Southern Italy). Environ. Manag. 2015, 56, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Martell, D.L.; Otukol, S.; Stocks, B.J. A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Can. J. For. Res. 1987, 17, 394–401. [Google Scholar] [CrossRef]
- Yang, J.; He, H.S.; Shifley, S.R.; Gustafson, E.J. Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. For. Sci. 2007, 53, 1–15. [Google Scholar]
- Lampin-Maillet, C.; Jappiot, M.; Long, M.; Morge, D.; Ferrier, J.P. Characterization and mapping of dwelling types for forest fire prevention. Comput. Environ. Urban Syst. 2009, 33, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Lampin-Maillet, C.; Jappiot, M.; Long, M.; Bouillon, C.; Morge, D.; Ferrier, J.P. Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. J. Environ. Manag. 2010, 91, 732–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanaraj, G.; Wimberly, M.C. Influences of forest roads on the spatial patterns of human- and lightning-caused wildfire ignitions. Appl. Geogr. 2012, 32, 878–888. [Google Scholar] [CrossRef]
- Narayanaraj, G.; Wimberly, M.C. Influences of forest roads and their edge effects on the spatial pattern of burn severity. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 62–70. [Google Scholar] [CrossRef]
- Penman, T.D.; Bradstock, R.A.; Price, O. Modelling the determinants of ignition in the Sydney Basin, Australia: Implications for future management. Int. J. Wildland Fire 2013, 22, 469–478. [Google Scholar] [CrossRef]
- Pezzatti, G.B.; Zumbrunnen, T.; Bürgi, M.; Ambrosetti, P.; Conedera, M. Fire regime shifts as a consequence of fire policy and socio-economic development: An analysis based on the change point approach. For. Policy Econ. 2013, 29, 7–18. [Google Scholar] [CrossRef]
- Conedera, M.; Tonini, M.; Oleggini, L.; Vega Orozco, C.; Leuenberger, M.; Pezzatti, G.B. Geospatial approach for defining the Wildland-Urban Interface in the Alpine environment. Comput. Environ. Urban Syst. 2015, 52, 10–20. [Google Scholar] [CrossRef]
- Romero-Calcerrada, R.; Novillo, C.J.; Millington, J.D.A.; Gomez-Jimenez, I. GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landsc. Ecol. 2008, 23, 341–354. [Google Scholar] [CrossRef]
- Ager, A.A.; Preisler, H.K.; Arca, B.; Spano, D.; Salis, M. Wildfire risk estimation in the Mediterranean area. Environmetrics 2014, 25, 384–396. [Google Scholar] [CrossRef]
- Vilar, L.; Gómez, I.; Martínez-Vega, J.; Echavarría, P.; Riaño, D.; Martín, M.P. Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms. PLoS ONE 2016, 11, e0161344. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.X.; Wu, M.S.; Deng, Z.J.; Xu, S.J.; Zhou, R.L.; Clarke, K.C. Modeling the spatial patterns of human wildfire ignition in Yunnan province, China. Appl. Geogr. 2017, 89, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Salis, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Finney, M.A.; Pellizzaro, G.; Spano, D. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy. Environ. Monit. Assess 2015, 187, 4175. [Google Scholar] [CrossRef] [PubMed]
- Bajocco, S.; Dragozi, E.; Gitas, I.; Smiraglia, D.; Salvati, L.; Ricotta, C. Mapping forest fuels through vegetation phenology: The role of coarse-resolution satellite time-series. PLoS ONE 2015, 10, e0119811. [Google Scholar] [CrossRef] [PubMed]
- ISPRA. La Realizzazione in Italia del Progetto Corine Land Cover 2006; Rapporto 131; Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 2010. [Google Scholar]
- Nunes, A.N.; Lourenco, L.; Meira, A.C.C. Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Sci. Total Environ. 2016, 573, 1190–1202. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Pereira, J.M.C.; San-Miguel-Ayanz, J.; Lourenco, L. Exploring the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression. Appl. Geogr. 2014, 51, 143–157. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E. Location, timing and extent of wildfire vary by cause of ignition. Int. J. Wildland Fire 2015, 24, 37–47. [Google Scholar] [CrossRef]
- Costafreda-Aumedes, S.; Comas, C.; Vega-Garcia, C. Human-caused fire occurrence modelling in perspective: A review. Int. J. Wildland Fire 2017, 26, 983–998. [Google Scholar] [CrossRef]
- Yang, J.; He, H.S.; Sturtevant, B.R.; Miranda, B.R.; Gustafson, E.J. Comparing effects of fire modeling methods on simulated fire patterns and succession: A case study in the Missouri Ozarks. Can. J. For. Res. 2008, 38, 1290–1302. [Google Scholar] [CrossRef]
- Vega Orozco, C.; Tonini, M.; Conedera, M.; Kanevski, M. Cluster recognition in spatial-temporal sequences: The case of forest fires. Geoinformatica 2012, 16, 653–673. [Google Scholar] [CrossRef]
- Ricotta, C.; Di Vito, S. Modeling the Landscape Drivers of Fire Recurrence in Sardinia (Italy). Environ. Manag. 2014, 53, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Theobald, D.M.; Romme, W.H. Expansion of the US wildland-urban interface. Landsc. Urban Plan. 2007, 83, 340–354. [Google Scholar] [CrossRef]
- Finney, M.A. The challenge of quantitative risk analysis for wildland fire. For. Ecol. Manag. 2005, 211, 97–108. [Google Scholar] [CrossRef]
- Curt, T.; Borgniet, L.; Bouillon, C. Wildfire frequency varies with the size and shape of fuel types in southeastern France: Implications for environmental management. J. Environ. Manag. 2013, 117, 150–161. [Google Scholar] [CrossRef] [PubMed]
Land Cover Class | Number of Fires within Each Buffer | Total Number of Fires within Each Class | ||||
---|---|---|---|---|---|---|
0–50 m | 0–100 m | 0–150 m | 0–200 m | |||
Artificial and agricultural | Discontinuous urban areas | 365 | 624 | 793 | 931 | 1366 |
Arable land | 1829 | 3332 | 4507 | 5429 | 10,599 | |
Mixed agriculture | 1023 | 1888 | 2496 | 3025 | 5889 | |
Olive groves | 279 | 512 | 711 | 893 | 2012 | |
Natural and semi-natural | Deciduous forests | 320 | 581 | 789 | 943 | 2113 |
Maquis | 332 | 596 | 788 | 955 | 2443 | |
Garrigue | 230 | 442 | 609 | 755 | 1916 | |
Pastures | 278 | 526 | 684 | 827 | 1951 | |
Total number of fires within each buffer | 7326 | 13,499 | 18,272 | 22,234 | ||
Land Cover Class | Class Area within Each Buffer (ha) | Total Class Area (ha) | ||||
0–50 m | 0–100 m | 0–150 m | 0–200 m | |||
Artificial and agricultural | Discontinuous urban areas | 4536 | 8143 | 10,983 | 13,238 | 29,899 |
Arable land | 29,714 | 57,249 | 82,805 | 106,326 | 415,700 | |
Mixed agriculture | 14,791 | 28,168 | 40,264 | 51,162 | 199,000 | |
Olive groves | 4353 | 8458 | 12,290 | 15,803 | 48,780 | |
Natural and semi-natural | Deciduous forests | 9493 | 18,703 | 27,653 | 36,509 | 351,400 |
Maquis | 9052 | 17,666 | 25,998 | 34,235 | 345,716 | |
Garrigue | 5760 | 11,356 | 16,872 | 22,457 | 220,000 | |
Pastures | 5544 | 10,794 | 15,725 | 20,477 | 144,800 | |
Total area of each buffer (ha) | 123,721 | 238,490 | 345,267 | 444,967 |
Land Cover Class | Selectivity Related to Land Cover | Selectivity Related to Buffer Size | |||||||
---|---|---|---|---|---|---|---|---|---|
0–50 m | 0–100 m | 0–150 m | 0–200 m | 0–50 m | 0–100 m | 0–150 m | 0–200 m | ||
Artificial and agricultural | Discontinuous urban areas | 0.276 | 0.253 | 0.225 | 0.212 | 0.152 | 0.150 | 0.154 | 0.169 |
Arable land | 0.414 | 0.391 | 0.362 | 0.334 | 0.019 | 0.014 | 0.014 | 0.011 | |
Mixed agriculture | 0.401 | 0.387 | 0.354 | 0.333 | 0.078 | 0.084 | 0.079 | 0.084 | |
Olive groves | 0.217 | 0.190 | 0.168 | 0.156 | 0.040 | 0.034 | 0.045 | 0.061 | |
Natural and semi-natural | Deciduous forests | 0.697 | 0.676 | 0.652 | 0.622 | −0.274 | −0.291 | −0.299 | −0.318 |
Maquis | 0.677 | 0.654 | 0.622 | 0.596 | −0.235 | −0.253 | −0.272 | −0.283 | |
Garrigue | 0.642 | 0.634 | 0.611 | 0.589 | −0.194 | −0.185 | −0.189 | −0.196 | |
Pastures | 0.576 | 0.567 | 0.527 | 0.500 | −0.083 | −0.075 | −0.098 | −0.106 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricotta, C.; Bajocco, S.; Guglietta, D.; Conedera, M. Assessing the Influence of Roads on Fire Ignition: Does Land Cover Matter? Fire 2018, 1, 24. https://doi.org/10.3390/fire1020024
Ricotta C, Bajocco S, Guglietta D, Conedera M. Assessing the Influence of Roads on Fire Ignition: Does Land Cover Matter? Fire. 2018; 1(2):24. https://doi.org/10.3390/fire1020024
Chicago/Turabian StyleRicotta, Carlo, Sofia Bajocco, Daniela Guglietta, and Marco Conedera. 2018. "Assessing the Influence of Roads on Fire Ignition: Does Land Cover Matter?" Fire 1, no. 2: 24. https://doi.org/10.3390/fire1020024
APA StyleRicotta, C., Bajocco, S., Guglietta, D., & Conedera, M. (2018). Assessing the Influence of Roads on Fire Ignition: Does Land Cover Matter? Fire, 1(2), 24. https://doi.org/10.3390/fire1020024