Methylene Blue Degradation Using Non-Thermal Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Configuration of the DBD Plasma Module
2.2. Analysis Equipment and Methods
3. Results and Discussion
3.1. Stable DBD Generation at Atmospheric Pressure
3.2. Voltage and Current Waveform Analysis
3.3. Optimized Conditions from Measurements of Ozone Concentration
3.4. Time-Dependent Changes in Ozone Concentration during Degradation of Methylene Blue in Water
3.5. Observation of Degradation of Methylene Blue by Means of UV-Visible Spectrometer
3.6. Methylene Blue Decomposition Efficiency
3.7. Mineralization of Methylene Blue
3.8. Observation of the Flow Phenomenon of Bubbler Bubbles Depending on the Flow Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, P.Y.; Zhang, Y.J.; Chen, H.; Liu, L.C. Development of an eco-efficient CaMoO4/electroconductive geopolymer composite for recycling silicomanganese slag and degradation of dye wastewater. J. Clean. Prod. 2019, 208, 1476–1487. [Google Scholar] [CrossRef]
- Hanafi, M.F.; Sapawe, N. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today Proc. 2020, 31, A141–A150. [Google Scholar] [CrossRef]
- Ben Slama, H.; Bouket, A.C.; Pourhassan, Z.; Alenezi, F.N.; Silini, A.; Cherif-Silini, H.; Oszako, T.; Luptakova, L.; Golińska, P.; Belbahri, L. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl. Sci. 2021, 11, 6255. [Google Scholar] [CrossRef]
- Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon 2019, 5, e02711. [Google Scholar] [CrossRef] [PubMed]
- Roopadevi, H.; Somashekar, R.K. Assessment of the toxicity of wastewater from the textile industry to Cyprinus carpio. J. Environ. Biol. 2012, 33, 167–171. [Google Scholar]
- Li, W.; Mu, B.; Yang, Y. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour. Technol. 2019, 277, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Sun, J.; Liu, J.; Shen, X.; Zhan, J.; Zhang, A.; Ognier, S.; Cavadias, S.; Li, P. Degradation of aniline in aqueous solution using non-thermal plasma generated in microbubbles. Chem. Eng. J. 2018, 345, 679–687. [Google Scholar] [CrossRef]
- Barjasteh, A.; Dehghani, Z.; Lamichhane, P.; Kaushik, N.; Choi, E.H.; Kaushik, N.K. Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl. Sci. 2021, 11, 3372. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Z.; Shen, J.; Li, X.; Ding, L.; Ma, J.; Lan, Y.; Xia, W.; Cheng, C.; Sun, Q.; et al. Effects and mechanism of atmospheric-pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme. Sci. Rep. 2015, 5, 10031. [Google Scholar] [CrossRef]
- Wang, B.; Dong, B.; Xu, M.; Chi, C.; Wang, C. Degradation of methylene blue using double-chamber dielectric barrier discharge reactor under different carrier gases. Chem. Eng. Sci. 2017, 168, 90–100. [Google Scholar] [CrossRef]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Khlyustova, A.; Labay, C.; Machala, Z.; Ginebra, M.P.; Canal, C. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review. Front. Chem. Sci. Eng. 2019, 13, 238–252. [Google Scholar] [CrossRef]
- Jodzis, S.; Barczyński, T. Ozone synthesis and decomposition in oxygen-fed pulsed DBD system: Effect of ozone concentration, power density, and residence time. Ozone Sci. Eng. 2019, 41, 69–79. [Google Scholar] [CrossRef]
- Ainscough, T.J.; Oatley-Radcliffe, D.L.; Barron, A.R. Groundwater remediation of volatile organic compounds using nanofiltration and reverse osmosis membranes-A field study. Membranes 2021, 11, 61. [Google Scholar] [CrossRef]
- Ksibi, M. Chemical oxidation with hydrogen peroxide for domestic wastewater treatment. Chem. Eng. J. 2006, 119, 161–165. [Google Scholar] [CrossRef]
- Lee, H.J.; Yang, G.W.; Shin, Y.W.; Kim, K.I.; Hong, Y.C. Degradation of rhodamine b and methylene blue by underwater dielectric barrier discharge. IEEE Trans. Plasma Sci. 2021, 49, 3268–3271. [Google Scholar] [CrossRef]
- Hong, Y.C.; Ma, S.H.; Kim, K.L.; Shin, Y.W. Multihole dielectric barrier discharge with asymmetric electrode arrangement in water and application to sterilization of aqua pathogens. Chem. Eng. J. 2019, 374, 133–143. [Google Scholar] [CrossRef]
- Magureanu, M.; Piroi, D.; Gherendi, F.; Mandache, N.B.; Parvulescu, V.L. Decomposition of methylene blue in water by corona discharges. Plasma Chem. Plasma Process. 2008, 28, 677–688. [Google Scholar] [CrossRef]
- Dam, T.N. Developing a decentralized wastewater treatment system using modular plasma at atmospheric pressure. In Proceedings of the 2022 6th International Conference on Green Technology and Sustainable Development (GTSD), Nha Trang City, Vietnam, 29–30 July 2022; pp. 370–374. [Google Scholar] [CrossRef]
- Yang, G.W.; Chun, S.M.; Kim, K.I.; Lee, H.J.; Hong, Y. Simulated experiments for removal of odorous gases by wire-mesh electrode dielectric barrier discharge. Phys. Plasmas 2022, 29, 093502–093509. [Google Scholar] [CrossRef]
- Misra, N.N.; Keener, K.M.; Bourke, P.; Cullen, P.J. Generation of in-package cold plasma and efficacy assessment using methylene blue. Plasma Chem. Plasma Process. 2015, 35, 1043–1056. [Google Scholar] [CrossRef]
- Xiang, H.J.; Lei, B.; Yuan, X.C.; Lv, Q.A.; Zhang, Q. Design and simulation of new type reactor in the wastewater treatment system based on discharge plasma. IEEE Trans. Plasma Sci. 2019, 47, 952–957. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Q.; Liu, J.; Wang, K.; Jiang, Z.; Sun, Z.; Zhang, J.; Fang, J. Dielectric barrier structure with hollow electrodes and its recoil effect. Appl. Phys. Lett. 2015, 106, 244101. [Google Scholar] [CrossRef]
- Hong, Y.C.; Kim, J.H.; Ma, S.H.; Cho, C.H. Volatile organic compound elimination improved on inlet position of vortex gas in microwave torch plasma. IEEE Trans. Plasma Sci. 2014, 42, 1982–1984. [Google Scholar] [CrossRef]
- Chauhan, R.; Kumar, A.; Chaudhary, R.P. Visible-light photocatalytic degradation of methylene blue with Fe doped CdS nanoparticles. Appl. Surf. Sci. 2013, 270, 655–660. [Google Scholar] [CrossRef]
- Ma, S.; Lee, S.; Kim, K.; Im, J.; Jeon, H. Purification of organic pollutants in cationic thiazine and azo dye solutions using plasma-based advanced oxidation process via submerged multi-hole dielectric barrier discharge. Sep. Purif. Technol. 2021, 255, 117715. [Google Scholar] [CrossRef]
- Bansode, A.S.; More, S.E.; Siddiqui, E.A.; Satpute, S.; Ahmad, A.; Bhoraskar, S.V.; Mathe, V.L. Effective degradation of organic water pollutants by atmospheric non-thermal plasma torch and analysis of degradation process. Chemosphere 2017, 167, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, G.; Wang, X.; He, X. The effect of air plasma on barrier dielectric surface in dielectric barrier discharge. Appl. Surf. Sci. 2010, 257, 1698–1702. [Google Scholar] [CrossRef]
- Dave, H.; Ledwani, L.; Candwani, N.; Kikani, P.; Desai, B.; Chowdhuri, M.B.; Nema, S.K. Use of dielectric barrier discharge in air for surface modification of polyester substrate to confer durable wettability and enhance dye uptake with natural dye eco-alizarin. Compos. Interfaces 2012, 19, 219–229. [Google Scholar] [CrossRef]
- Kinandana, A.W.; Yulianto, E.; Prakoso, A.D.; Faruq, A.; Qusnudin, A.; Hendra, M.; Sasmita, E.; Restiwijaya, M.; Pratiwi, S.H.; Arianto, F.; et al. The comparison of ozone production with dielectric barrier discharge plasma reactors series and parallel at atmospheric pressure. J. Phys. Conf. Ser. 2019, 1217, 012010. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, S.; Ning, P. Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene. Ind. Eng. Chem. Res. 2014, 53, 643–649. [Google Scholar] [CrossRef]
- Yang, G.W.; Lee, H.; Kim, K.; Chun, S.M.; Jeong, S.Y.; Jung, J.; Hong, Y.C. Degradation of dissolved sulfide in water using multi-hole dielectric barrier discharge. Chemosphere 2024, 354, 141687–141696. [Google Scholar] [CrossRef] [PubMed]
- Qasim, M.; Rafique, M.S.; Naz, R. Water purification by ozone generator employing non-thermal plasma. Mater. Chem. Phys. 2022, 291, 126442–126455. [Google Scholar] [CrossRef]
- Vo, Q.V.; Thao, L.T.T.; Manh, T.D.; Bay, M.V.; Truong-Le, B.-T.; Hoa, N.T.; Mechler, A. Reaction of methylene blue with OH radicals in the aqueous environment: Mechanism, kinetics, products and risk assessment. RSC Adv. 2024, 14, 27265–27273. [Google Scholar] [CrossRef]
- Reddy, P.M.K.; Raju, B.R.; Karuppiah, J.; Reddy, E.L.; Subrahmanyam, C. Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor. Chem. Eng. J. 2013, 217, 41–47. [Google Scholar] [CrossRef]
- Werner, J.M.; Zeng, W.; Free, M.L.; Zhang, Z.; Cho, J. Modeling and validation of local electrowinning electrode current density using two phase flow and Nernst-Planck equations. J. Electrochem. Soc. 2018, 165, E190. [Google Scholar] [CrossRef]
- Wang, S.K.; Lee, S.J.; Jones, O.C.; Lahey, R.T. 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Int. J. Multiph. Flow 1987, 13, 327–343. [Google Scholar] [CrossRef]
- Hibiki, T.; Ishii, M.; Xiao, Z. Axial interfacial area transport of vertical bubbly flows. Int. J. Heat Mass Transfer 2001, 44, 1869–1888. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.K.; Yang, G.W.; Hong, Y.C. Methylene Blue Degradation Using Non-Thermal Plasma. Plasma 2024, 7, 767-779. https://doi.org/10.3390/plasma7030040
Kim HK, Yang GW, Hong YC. Methylene Blue Degradation Using Non-Thermal Plasma. Plasma. 2024; 7(3):767-779. https://doi.org/10.3390/plasma7030040
Chicago/Turabian StyleKim, Hae Kwang, Geon Woo Yang, and Yong Cheol Hong. 2024. "Methylene Blue Degradation Using Non-Thermal Plasma" Plasma 7, no. 3: 767-779. https://doi.org/10.3390/plasma7030040
APA StyleKim, H. K., Yang, G. W., & Hong, Y. C. (2024). Methylene Blue Degradation Using Non-Thermal Plasma. Plasma, 7(3), 767-779. https://doi.org/10.3390/plasma7030040