Plasma Polymerized Organosilicon Thin Films for Volatile Organic Compound (VOC) Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Films Synthesis
2.2. Characterizations
3. Results
4. Discussion
4.1. Density and Refractive Index
4.2. Gas Sorption Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Son, H.K.; Sivakumar, S.; Rood, M.J.; Kim, B.J. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth. J. Hazard. Mater. 2016, 301, 27–34. [Google Scholar] [CrossRef]
- Megias-Sayago, C.; Lara-Ibeas, I.; Wang, Q.; Le Calve, S.; Louis, B. Volatile organic compounds (VOCs) removal capacity of ZSM-5 zeolite adsorbents for near real-time BTEX detection. J. Environ. Chem. Eng. 2020, 8, 103724. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Choma, J.; Marszewski, M.; Osuchowski, L.; Jagiello, J.; Dziura, A.; Jaroniec, M. Adsorption properties of activated carbons prepared from waste CDs and DVDs. ACS Sustain. Chem. Eng. 2015, 3, 733–742. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Y.; Zhang, J.; Chen, L.; Meng, X.; Xiao, F.-S. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials. Chin. J. Catal. 2016, 37, 800–809. [Google Scholar] [CrossRef]
- Dragoi, B.; Rakic, V.; Dumitriu, E.; Auroux, A. Adsorption of organic pollutants over microporous solids investigated by microcalorimetry techniques. J. Therm. Anal. Calorim. 2010, 99, 733–740. [Google Scholar] [CrossRef]
- Kim, K.-J.; Ahn, H.-G. The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous Mesoporous Mater. 2012, 152, 78–83. [Google Scholar] [CrossRef]
- Cosseron, A.-F.; Daou, T.J.; Tzanis, L.; Nouali, H.; Deroche, L.; Coasne, B.; Tchamber, V. Adsorption of volatile organic compounds in pure silica CHA,∗ BEA, MFI and STT-type zeolites. Microporous Mesoporous Mater. 2013, 173, 147–154. [Google Scholar] [CrossRef]
- Kawai, T.; Tsutsumi, K. Evaluation of hydrophilic-hydrophobic character of zeolites by measurements of their immersional heats in water. Colloid Polym. Sci. 1992, 270, 711–715. [Google Scholar] [CrossRef]
- Lara-Lbeas, I.; Rodríguez-Cuevas, A.; Andrikopoulou, C.; Person, V.; Baldas, L.; Colin, S.; Le Calvé, S. Sub-ppb level detection of BTEX gaseous mixtures with a compact prototype GC equipped with a preconcentration unit. Micromachines 2019, 10, 187. [Google Scholar] [CrossRef]
- Jaaniso, R.; Tan, O.K. Semiconductor Gas Sensors; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780857098665. [Google Scholar]
- Balouria, V.; Kumar, A.; Samanta, S.; Singh, A.; Debnath, A.K.; Mahajan, A.; Bedi, R.K.; Aswal, D.K.; Gupta, S.K. Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sens. Actuators B Chem. 2013, 181, 471–478. [Google Scholar] [CrossRef]
- Raut, B.T.; Godse, P.R.; Pawar, S.G.; Chougule, M.A.; Bandgar, D.K.; Patil, V.B. Novel method for fabrication of polyaniline–CdS sensor for H2S gas detection. Measurement 2012, 45, 94–100. [Google Scholar] [CrossRef]
- Zhu, Z.; Kao, C.-T.; Wu, R.-J. A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Appl. Surf. Sci. 2014, 320, 348–355. [Google Scholar] [CrossRef]
- Gong, J.; Chen, Q.; Lian, M.-R.; Liu, N.-C.; Stevenson, R.G.; Adami, F. Micromachined nanocrystalline silver doped SnO2 H2S sensor. Sens. Actuators B Chem. 2006, 114, 32–39. [Google Scholar] [CrossRef]
- Grate, J.W.; Kaganove, S.N.; Bhethanabotla, V.R. Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors. Anal. Chem. 1998, 70, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Patrash, S.J.; Zellers, E.T. Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors. Anal. Chem. 1993, 65, 2055–2066. [Google Scholar] [CrossRef]
- Hierlemann, A.; Ricco, A.J.; Bodenhöfer, K.; Dominik, A.; Göpel, W. Conferring selectivity to chemical sensors via polymer side-chain selection: Thermodynamics of vapor sorption by a set of polysiloxanes on thickness-shear mode resonators. Anal. Chem. 2000, 72, 3696–3708. [Google Scholar] [CrossRef]
- Park, C.; Han, Y.; Joo, K.-I.; Lee, Y.W.; Kang, S.-W.; Kim, H.-R. Optical detection of volatile organic compounds using selective tensile effects of a polymer-coated fiber Bragg grating. Opt. Express 2010, 18, 24753–24761. [Google Scholar] [CrossRef]
- Ogieglo, W.; van der Werf, H.; Tempelman, K.; Wormeester, H.; Wessling, M.; Nijmeijer, A.; Benes, N.E. n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry. J. Membr. Sci. 2013, 437, 313–323. [Google Scholar] [CrossRef]
- Perrin, J.; Leroy, O.; Bordage, M.C. Cross-Sections, Rate Constants and Transport Coefficients in Silane Plasma Chemistry. Contrib. Plasma Phys. 1996, 36, 3–49. [Google Scholar] [CrossRef]
- Zajíčková, L.; Buršíková, V.; Kučerová, Z.; Franclova, J.; Sťahel, P.; Peřina, V.; Mackova, A. Organosilicon thin films deposited by plasma enhanced CVD: Thermal changes of chemical structure and mechanical properties. J. Phys. Chem. Solids 2007, 68, 1255–1259. [Google Scholar] [CrossRef]
- Andreeva, N.; Ishizaki, T.; Baroch, P.; Saito, N. High sensitive detection of volatile organic compounds using superhydrophobic quartz crystal microbalance. Sens. Actuators B Chem. 2012, 164, 15–21. [Google Scholar] [CrossRef]
- Jousseaume, V.; Yeromonahos, C.; El Sabahy, J.; Altemus, B.; Ladner, C.; Benedetto, K.; Ollier, E.; Faguet, J. Filament Assisted Chemical Vapor Deposited organosilicate as chemical layer for nanometric hydrocarbon gas sensors. Sens. Actuators B Chem. 2018, 271, 271–279. [Google Scholar] [CrossRef]
- El Sabahy, J.; Berthier, J.; Ricoul, F.; Jousseaume, V. Toward optimized SiOCH films for BTEX detection: Impact of chemical composition on toluene adsorption. Sens. Actuators B Chem. 2018, 258, 628–636. [Google Scholar] [CrossRef]
- Boutamine, M.; Bellel, A.; Sahli, S.; Segui, Y.; Raynaud, P. Hexamethyldisiloxane thin films as sensitive coating for quartz crystal microbalance based volatile organic compounds sensors. Thin Solid Films 2014, 552, 196–203. [Google Scholar] [CrossRef]
- Dakroub, G.; Duguet, T.; Esvan, J.; Lacaze-Dufaure, C.; Roualdes, S.; Rouessac, V. Comparative study of bulk and surface compositions of plasma polymerized organosilicon thin films. Surf. Interfaces 2021, 25, 101256. [Google Scholar] [CrossRef]
- Avramov, I.; Radeva, E.; Lazarov, Y.; Grakov, T.; Vergov, L. Sensitivity Enhancement in Plasma Polymer Films for Surface Acoustic Wave Based Sensor Applications. Coatings 2021, 11, 1193. [Google Scholar] [CrossRef]
- de Freitas, A.; Maciel, C.; Rodrigues, J.; Ribeiro, R.; Delgado-Silva, A.; Rangel, E. Organosilicon films deposited in low-pressure plasma from hexamethyldisiloxane—A review. Vacuum 2021, 194, 110556. [Google Scholar] [CrossRef]
- Haacké, M.; Coustel, R.; Rouessac, V.; Roualdès, S.; Julbe, A. Microwave PECVD silicon carbonitride thin films: A FTIR and ellipsoporosimetry study. Plasma Process. Polym. 2016, 13, 258–265. [Google Scholar] [CrossRef]
- Zhou, Y.; Josey, B.; Anim-Danso, E.; Maranville, B.; Karapetrova, J.; Jiang, Z.; Zhou, Q.; Dhinojwala, A.; Foster, M.D. In Situ Nanoscale Characterization of Water Penetration through Plasma Polymerized Coatings. Langmuir 2018, 34, 9634–9644. [Google Scholar] [CrossRef]
- Blanchard, N.E.; Naik, V.V.; Geue, T.; Kahle, O.; Hegemann, D.; Heuberger, M. Response of Plasma-Polymerized Hexamethyldisiloxane Films to Aqueous Environments. Langmuir 2015, 31, 12944–12953. [Google Scholar] [CrossRef] [PubMed]
- Rouessac, V.; Van Der Lee, A.; Bosc, F.; Durand, J.; Ayral, A. Three characterization techniques coupled with adsorption for studying the nanoporosity of supported films and membranes. Microporous Mesoporous Mater. 2008, 111, 417–428. [Google Scholar] [CrossRef]
- Han, L.M.; Pan, J.-S.; Chen, S.-M.; Balasubramanian, N.; Shi, J.; Wong, L.S.; Foo, P.D. Characterization of carbon-doped SiO2 low k thin films: Preparation by plasma-enhanced chemical vapor deposition from tetramethylsilane. J. Electrochem. Soc. 2001, 148, F148. [Google Scholar] [CrossRef]
- Gallis, S.; Nikas, V.; Huang, M.; Eisenbraun, E.; Kaloyeros, A.E. Comparative study of the effects of thermal treatment on the optical properties of hydrogenated amorphous silicon-oxycarbide. J. Appl. Phys. 2007, 102, 24302. [Google Scholar] [CrossRef]
- Yang, C.S.; Oh, K.S.; Choi, C.K.; Lee, H.J.; Lee, K.M. A study on the dielectric components of SiOC (-H) composite films deposited by using BTMSM/O 2-ICPCVD. J. Korean Phys. Soc. 2004, 44, 1102–1107. [Google Scholar]
- Shamiryan, D.; Weidner, K.; Gray, W.D.; Baklanov, M.R.; Vanhaelemeersch, S.; Maex, K. Comparative study of PECVD SiOCH low-k films obtained at different deposition conditions. Microelectron. Eng. 2002, 64, 361–366. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Q.; Hua, R.; Gray, M.R.; Chou, K.C. Competitive adsorption of toluene and n-alkanes at binary solution/silica interfaces. J. Phys. Chem. C 2009, 113, 20355–20359. [Google Scholar] [CrossRef]
Sample | Plasma Power (W) | HMDSO Flux (sccm) | W/F | Deposition Pressure (×10−3 mBar) | Average Thickness (nm) | Average Growth Rate (nm/min) |
---|---|---|---|---|---|---|
WF5 | 20 | 4 | 5 | 10.5 | 332 | 108 |
WF10 | 20 | 2 | 10 | 7.5 | 344 | 63 |
WF20 | 20 | 1 | 20 | 5.9 | 296 | 30 |
Vapor | P0 at 25 °C (mbar) |
---|---|
Water | 31.7 |
Ethanol | 75.9 |
Heptane | 60.7 |
Toluene | 37.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dakroub, G.; Duguet, T.; Lacaze-Dufaure, C.; Roualdes, S.; van der Lee, A.; Rebiscoul, D.; Rouessac, V. Plasma Polymerized Organosilicon Thin Films for Volatile Organic Compound (VOC) Detection. Plasma 2023, 6, 563-576. https://doi.org/10.3390/plasma6030039
Dakroub G, Duguet T, Lacaze-Dufaure C, Roualdes S, van der Lee A, Rebiscoul D, Rouessac V. Plasma Polymerized Organosilicon Thin Films for Volatile Organic Compound (VOC) Detection. Plasma. 2023; 6(3):563-576. https://doi.org/10.3390/plasma6030039
Chicago/Turabian StyleDakroub, Ghadi, Thomas Duguet, Corinne Lacaze-Dufaure, Stéphanie Roualdes, Arie van der Lee, Diane Rebiscoul, and Vincent Rouessac. 2023. "Plasma Polymerized Organosilicon Thin Films for Volatile Organic Compound (VOC) Detection" Plasma 6, no. 3: 563-576. https://doi.org/10.3390/plasma6030039
APA StyleDakroub, G., Duguet, T., Lacaze-Dufaure, C., Roualdes, S., van der Lee, A., Rebiscoul, D., & Rouessac, V. (2023). Plasma Polymerized Organosilicon Thin Films for Volatile Organic Compound (VOC) Detection. Plasma, 6(3), 563-576. https://doi.org/10.3390/plasma6030039