Laser–Plasma Wake Velocity Control by Multi-Mode Beatwave Excitation in a Channel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Modal Wakefield Excitation
2.2. Wakefield Phase Velocity
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tajima, T.; Dawson, J.M. Laser Electron Accelerator. Phys. Rev. Lett. 1979, 43, 267. [Google Scholar] [CrossRef] [Green Version]
- Esarey, E.; Schroeder, C.B.; Leemans, W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009, 81, 1229. [Google Scholar] [CrossRef]
- Joshi, C.; Caldwell, A. Plasma Accelerators. In Handbook for Elementary Particle Physics; Myers, S., Schopper, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume III, p. 12-1. [Google Scholar]
- Blumenfeld, I.; Clayton, C.E.; Decker, F.-J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.; Joshi, C.; Katsouleas, T.; Kirby, N.; et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 2007, 445, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Leemans, W.P.; Nagler, B.; Gonsalves, A.J.; Toth, C.; Nakamura, K.; Geddes, C.G.R.; Esarey, E.; Schroeder, C.B.; Hooker, S.M. GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2006, 2, 696. [Google Scholar] [CrossRef]
- Leemans, W.P.; Gonsalves, A.J.; Mao, H.-S.; Nakamura, K.; Benedetti, C.; Schroeder, C.B.; Tth, C.; Daniels, J.; Mittelberger, D.E.; Bulanov, S.S.; et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 2014, 113, 245002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zgadzaj, R.; Fazel, N.; Li, Z.; Yi, S.A.; Zhang, X.; Henderson, W.; Chang, Y.Y.; Korzekwa, R.; Tsai, H.E.; et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. 2013, 4, 2988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonsalves, A.J.; Nakamura, K.; Daniels, J.; Benedetti, C.; Pieronek, C.; de Raadt, T.C.H.; Steinke, S.; Bin, J.H.; Bulanov, S.S.; van Tilborg, J.; et al. Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide. Phys. Rev. Lett. 2019, 122, 084801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, B.; Shrock, J.E.; Feder, L.; Hollinger, R.C.; Morrison, J.; Nedbailo, R.; Picksley, A.; Song, H.; Wang, S.; Rocca, J.J.; et al. Multi-GeV Electron Bunches from an All-Optical Laser Wakefield Accelerator. Phys. Rev. X 2022, 12, 031038. [Google Scholar] [CrossRef]
- Pukhov, A.; Meyer-ter-Vehn, J. Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 2002, 74, 355. [Google Scholar] [CrossRef]
- Durfee, C.G.; Lynch, J.; Milchberg, H.M. Development of a Plasma Waveguide for High-Intensity Laser Pulses. Phys. Rev. E 1995, 51, 2368. [Google Scholar] [CrossRef] [PubMed]
- Andreev, N.E.; Gorbunov, L.M.; Kirsanov, V.I.; Nakajima, K.; Ogata, A. Structure of the wake field in plasma channels. Phys. Plasmas 1997, 4, 1145. [Google Scholar] [CrossRef]
- Paradkar, B.S.; Andreev, N.E.; Cros, B.; Baranov, V.E.; Mora, P.; Maynard, G. A comparative study of plasma channels for a 100 GeV electron accelerator using a multi-petawatt laser. Plasma Phys. Control. Fusion 2014, 56, 084008. [Google Scholar] [CrossRef]
- Picksley, A.; Alejo, A.; Cowley, J.; Bourgeois, N.; Corner, L.; Feder, L.; Holloway, J.; Jones, H.; Jonnerby, J.; Milchberg, H.M.; et al. Guiding of High-Intensity Laser Pulses in 100-mm-Long Hydrodynamic Optical-Field-Ionized Plasma Channels. Phys. Rev. Accel. Beams 2020, 23, 081303. [Google Scholar] [CrossRef]
- Miao, B.; Feder, L.; Shrock, J.E.; Goffin, A.; Milchberg, H.M. Optical Guiding in Meter-Scale Plasma Waveguides. Phys. Rev. Lett. 2020, 125, 074801. [Google Scholar] [CrossRef] [PubMed]
- Nerush, E.; Kostyukov, I. Radiation emission by extreme relativistic electrons and pair production by hard photons in a strong plasma wakefield. Phys. Rev. E 2007, 75, 057401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golovanov, A.A.; Nerush, E.N.; Kostyukov, I.Y. Radiation reaction-dominated regime of wakefield acceleration. New J. Phys. 2022, 24, 033011. [Google Scholar] [CrossRef]
- Long, K.R.; Lucchesi, D.; Palmer, M.A.; Pastrone, N.; Schulte, D.; Shiltsev, V. Muon colliders to expand frontiers of particle physics. Nat. Phys. 2021, 17, 289–292. [Google Scholar] [CrossRef]
- Veysman, M.E.; Andreev, N.E. Comparative study of laser pulses guiding in capillary waveguides and plasma channels at conditions of non-perfect focusing. J. Phys. Conf. Ser. 2016, 774, 012109. [Google Scholar] [CrossRef]
- Pukhov, A. Particle-In-Cell Codes for Plasma-based Particle Acceleration. Cern Yellow Rep. 2016, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pukhov, A.; Andreev, N.E.; Golovanov, A.A.; Artemenko, I.I.; Kostyukov, I.Y. Laser–Plasma Wake Velocity Control by Multi-Mode Beatwave Excitation in a Channel. Plasma 2023, 6, 29-35. https://doi.org/10.3390/plasma6010003
Pukhov A, Andreev NE, Golovanov AA, Artemenko II, Kostyukov IY. Laser–Plasma Wake Velocity Control by Multi-Mode Beatwave Excitation in a Channel. Plasma. 2023; 6(1):29-35. https://doi.org/10.3390/plasma6010003
Chicago/Turabian StylePukhov, Alexander, Nikolay E. Andreev, Anton A. Golovanov, Ivan I. Artemenko, and Igor Yu Kostyukov. 2023. "Laser–Plasma Wake Velocity Control by Multi-Mode Beatwave Excitation in a Channel" Plasma 6, no. 1: 29-35. https://doi.org/10.3390/plasma6010003