Impact of Internal Faraday Shields on RF Driven Hydrogen Discharges
Abstract
:1. Introduction
2. Experimental Setup and Diagnostic Methods
2.1. Laboratory RF Plasma Experiment
2.2. Applied Faraday Shields and RF Antennas
2.3. Diagnostic Methods
3. Results and Discussion
3.1. Effects of a Faraday Shield on the RF Coupling and Plasma Parameters of ICPs
3.1.1. Experimental Results
3.1.2. Discussion
- The increase of the loss resistance is caused by eddy currents driven within the Faraday shield. Even though its geometry is specifically tailored to avoid those at best, localized currents can still occur (e.g., at the closed end rings of the FS required for structural integrity). This aspect is also present at external Faraday shields [5,6].
- The reduced power deposition in the plasma is affected by a changed discharge geometry: the internal Faraday shield effectively reduces the inner radius of the discharge vessel (due to its thickness of 0.3 cm) and thus the plasma volume. Simultaneously, the distance of the RF coil to the plasma is increased. Hence, less of the region where the induced electric field is highest (close to the coil) can contribute to plasma heating [4].
- The significant change of the ratio of atoms and molecules also affects the power deposition in the plasma, as it influences the plasma chemistry and steady state conditions in general. This includes crucial processes interlinked with plasma heating such as ionization, excitation or particle diffusion.
3.2. Effects of a Faraday Shield on the Operation of a Low-Field Helicon Discharge
3.2.1. Experimental Results
3.2.2. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RF | Radio frequency |
ICP | Inductively coupled plasma |
FS | Faraday shield |
TG | Trivelpiece-Gould |
References
- Chabert, P.; Braithwaite, N. Physics of Radio-Frequency Plasmas; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Godyak, V.A.; Piejak, R.B.; Alexandrovich, B.M. Experimental setup and electrical characteristics of an inductively coupled plasma. J. Appl. Phys. 1999, 85, 703–712. [Google Scholar] [CrossRef]
- Hopwood, J. Planar RF induction plasma coupling efficiency. Plasma Sources Sci. Technol. 1994, 3, 460–464. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakamura, K.; Ohkubo, H.; Sugai, H. Power transfer efficiency and mode jump in an inductive RF discharge. Plasma Sources Sci. Technol. 1998, 7, 13. [Google Scholar] [CrossRef]
- Sugai, H.; Nakamura, K.; Suzuki, K. Electrostatic coupling of antenna and the shielding effect in inductive RF plasmas. Jpn. J. Appl. Phys. 1994, 33, 2189–2193. [Google Scholar] [CrossRef] [Green Version]
- Khater, M.H.; Overzet, L.J. Stabilizing inductively coupled plasma source impedance and plasma uniformity using a Faraday shield. J. Vac. Sci. Technol. A 2001, 19, 785–792. [Google Scholar] [CrossRef]
- Hikosaka, Y.; Nakamura, M.; Sugai, H. Free Radicals in an Inductively Coupled Etching Plasma. Jpn. J. Appl. Phys. 1994, 33, 2157–2163. [Google Scholar] [CrossRef]
- Edamura, M.; Yoshioka, K.; Nishio, R.; Kanai, S.; Kanekiyo, T.; Kanno, S.; Mise, N.; Doi, A.; Kazumi, H. A Novel Plasma Etching Tool with RF-Biased Faraday-Shield Technology: Chamber Surface Reaction Control in the Etching of Nonvolatile Materials. Jpn. J. Appl. Phys. 2003, 42, 7547–7551. [Google Scholar] [CrossRef]
- Speth, E.; Ciric, M.; Feist, J.; Frank, P.; Heinemann, B.; Kraus, W.; Probst, F.; Riedl, R.; Trainham, R.; Vollmer, O.; et al. RF ion sources for fusion applications: Design, development and performance. Fusion Eng. Des. 1999, 46, 383–388. [Google Scholar] [CrossRef]
- Fantz, U.; Hopf, C.; Wünderlich, D.; Friedl, R.; Fröschle, M.; Heinemann, B.; Kraus, W.; Kurutz, U.; Riedl, R.; Nocentini, R.; et al. Towards powerful negative ion beams at the test facility ELISE for the ITER and DEMO NBI systems. Nucl. Fusion 2017, 57, 116007. [Google Scholar] [CrossRef] [Green Version]
- Marcuzzi, D.; Agostinetti, P.; Palma, M.D.; Falter, H.D.; Heinemann, B.; Riedl, R. Design of the RF ion source for the ITER NBI. Fusion Eng. Des. 2007, 82, 798–805. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Li, D.; Chen, D.; Song, F.; Zuo, C.; Zhao, P.; Lei, G. Electromagnetic and thermal analyses of Faraday shield of various materials and structures for an ICP source. AIP Conf. Proc. 2018, 2052, 040018. [Google Scholar] [CrossRef]
- Christmann, K. Interaction of hydrogen with solid surfaces. Surf. Sci. Rep. 1988, 9, 1–163. [Google Scholar] [CrossRef]
- Rauner, D.; Briefi, S.; Fantz, U. RF power transfer efficiency of inductively coupled low pressure H2 and D2 discharges. Plasma Sources Sci. Technol. 2017, 26, 095004. [Google Scholar] [CrossRef] [Green Version]
- Rauner, D.; Briefi, S.; Fantz, U. Influence of the excitation frequency on the RF power transfer efficiency of low pressure hydrogen ICPs. Plasma Sources Sci. Technol. 2019, 28, 095011. [Google Scholar] [CrossRef]
- Zielke, D.; Rauner, D.; Briefi, S.; Lishev, S.; Fantz, U. Self-consistent fluid model for simulating power coupling in hydrogen ICPs at 1 MHz including the nonlinear RF Lorentz force. Plasma Sources Sci. Technol. 2021, 30, 065011. [Google Scholar] [CrossRef]
- Franzen, P.; Fantz, U. On the NBI system for substantial current drive in a fusion power plant: Status and R&D needs for ion source and laser neutralizer. Fusion Eng. Des. 2014, 89, 2594–2605. [Google Scholar] [CrossRef]
- Ahmed, K.M.; Agnello, R.; Béchu, S.; Cartry, G.; de Esch, H.P.L.; Furno, I.; Guittienne, P.; Howling, A.; Jacquier, R.; Morgal, I.; et al. Magnetic field configurational study on a helicon-based plasma source for future neutral beam systems. Plasma Sources Sci. Technol. 2019, 28, 095005. [Google Scholar] [CrossRef] [Green Version]
- Santoso, J.; Manoharan, R.; O’Byrne, S.; Corr, C.S. Negative hydrogen ion production in a helicon plasma source. Phys. Plasmas 2015, 22, 093513. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, D.D.; Chen, F.F. Two-dimensional imaging of a helicon discharge. Plasma Sources Sci. Technol. 1997, 6, 569. [Google Scholar] [CrossRef]
- Shinohara, S.; Takechi, S.; Kawai, Y. Effects of Axial Magnetic Field and Faraday Shield on Characteristics of RF Produced Plasma Using Spiral Antenna. Jpn. J. Appl. Phys. 1996, 35, 4503–4508. [Google Scholar] [CrossRef]
- Watari, T.; Hatori, T.; Kumazawa, R.; Hidekuma, S.; Aoki, T.; Kawamoto, T.; Inutake, M.; Hiroe, S.; Nishizawa, A.; Adati, K.; et al. Radio-frequency plugging of a high density plasma. Phys. Fluids 1978, 21, 2076–2081. [Google Scholar] [CrossRef]
- Chen, F.F. Helicon discharges and sources: A review. Plasma Sources Sci. Technol. 2015, 24, 014001. [Google Scholar] [CrossRef] [Green Version]
- Briefi, S.; Rauner, D.; Fantz, U. Determination of the rotational population of H2 and D2 including high-N states in low temperature plasmas via the Fulcher α transition. J. Quant. Spectrosc. Radiat. Transfer. 2017, 187, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Briefi, S.; Fantz, U. A revised comprehensive approach for determining the H2 and D2 rovibrational population from the Fulcher-α emission in low temperature plasmas. Plasma Sources Sci. Technol. 2020, 29, 125019. [Google Scholar] [CrossRef]
- Wünderlich, D.; Fantz, U. Evaluation of State-Resolved Reaction Probabilities and Their Application in Population Models for He, H, and H2. Atoms 2016, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Wünderlich, D.; Scarlett, L.H.; Briefi, S.; Fantz, U.; Zammit, M.C.; Fursa, D.V.; Bray, I. Application of molecular convergent close-coupling cross sections in a collisional radiative model for the triplet system of molecular hydrogen. J. Phys. Appl. Phys. 2021, 54, 115201. [Google Scholar] [CrossRef]
- Janev, R.K.; Langer, W.D.; Douglass, J.E. Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients; Springer: Berlin/Heidelberg, Germany, 1987; Volume 4. [Google Scholar]
- Chantry, P.J. A simple formula for diffusion calculations involving wall reflection and low density. J. Appl. Phys. 1987, 62, 1141–1148. [Google Scholar] [CrossRef]
- Green, M.; Jennings, K.R.; Linnett, J.W.; Schofield, D. Recombination of atoms at surfaces. Part 7.-Hydrogen atoms at silica and other similar surfaces. Trans. Faraday Soc. 1959, 55, 2152–2161. [Google Scholar] [CrossRef]
- Wood, B.J.; Wise, H. The kinetics of hydrogen atom recombination on pyrex glass and fused quartz. J. Phys. Chem. 1962, 66, 1049–1053. [Google Scholar] [CrossRef]
- Melin, G.A.; Madix, R.J. Energy accommodation during hydrogen atom recombination on metal surfaces. Trans. Faraday Soc. 1971, 67, 2711–2719. [Google Scholar] [CrossRef]
- Kim, Y.C.; Boudart, M. Recombination of oxygen, nitrogen, and hydrogen atoms on silica: Kinetics and mechanism. Langmuir 1991, 7, 2999–3005. [Google Scholar] [CrossRef]
- Mozetič, M.; Drobnič, M.; Zalar, A. Recombination of neutral hydrogen atoms on AISI 304 stainless steel surface. Appl. Surf. Sci. 1999, 144–145, 399–403. [Google Scholar] [CrossRef]
- Hansen, B.F.; Billing, G.D. Hydrogen and deuterium recombination rates on a copper surface. Surf. Sci. 1997, 373, L333–L338. [Google Scholar] [CrossRef]
- Sode, M.; Schwarz-Selinger, T.; Jacob, W.; Kersten, H. Surface loss probability of atomic hydrogen for different electrode cover materials investigated in H2-Ar low-pressure plasmas. J. Appl. Phys. 2014, 116, 013302. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.F. Experiments on helicon plasma sources. J. Vac. Sci. Technol. A Vac. Surfaces Film. 1992, 10, 1389–1401. [Google Scholar] [CrossRef]
- Shinohara, S. Helicon high-density plasma sources: Physics and applications. Adv. Phys. X 2018, 3, 1420424. [Google Scholar] [CrossRef] [Green Version]
- Briefi, S.; Gutmann, P.; Rauner, D.; Fantz, U. Comparison of the B field dependency of plasma parameters of a weakly magnetized inductive and Helicon hydrogen discharge. Plasma Sources Sci. Technol. 2016, 25, 035015. [Google Scholar] [CrossRef]
- Chen, F.F. Plasma ionization by helicon waves. Plasma Phys. Control. Fusion 1991, 33, 339. [Google Scholar] [CrossRef] [Green Version]
- Shamrai, K.P.; Taranov, V.B. Volume and surface rf power absorption in a helicon plasma source. Plasma Sources Sci. Technol. 1996, 5, 474. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauner, D.; Zielke, D.; Briefi, S.; Fantz, U. Impact of Internal Faraday Shields on RF Driven Hydrogen Discharges. Plasma 2022, 5, 280-294. https://doi.org/10.3390/plasma5030022
Rauner D, Zielke D, Briefi S, Fantz U. Impact of Internal Faraday Shields on RF Driven Hydrogen Discharges. Plasma. 2022; 5(3):280-294. https://doi.org/10.3390/plasma5030022
Chicago/Turabian StyleRauner, David, Dominikus Zielke, Stefan Briefi, and Ursel Fantz. 2022. "Impact of Internal Faraday Shields on RF Driven Hydrogen Discharges" Plasma 5, no. 3: 280-294. https://doi.org/10.3390/plasma5030022
APA StyleRauner, D., Zielke, D., Briefi, S., & Fantz, U. (2022). Impact of Internal Faraday Shields on RF Driven Hydrogen Discharges. Plasma, 5(3), 280-294. https://doi.org/10.3390/plasma5030022