The Effect of Excited Species on the Collisional Energy of Argon Inductively Coupled Plasmas: A Global Model Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particle Balance Equation
2.2. Plasma Chemistry
2.3. Power Balance Equation
2.4. Investigated Cases
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, H.C. Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics. Appl. Phys. Rev. 2018, 5, 011108. [Google Scholar] [CrossRef]
- Agati, M.; Amiard, G.; Le Borgne, V.; Castrucci, P.; Dolbec, R.; de Crescenzi, M.; El Khakani, M.A.; Boninelli, S. Growth Mechanisms of Inductively- Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties. Sci. Rep. 2016, 6, 37598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudette, C.A.; Andaraarachchi, H.P.; Wu, C.; Kortshagen, U.R. Inductively coupled nonthermal plasma synthesis of aluminum nanoparticles. Nanotechnology 2021, 32, 395601. [Google Scholar] [CrossRef] [PubMed]
- Mazouffre, S. Electric propulsion for satellites and spacecraft: Established technologies and novel approaches. Plasma Sources Sci. Technol. 2006, 25, 033002. [Google Scholar] [CrossRef]
- Fujino, T.; Yamauchi, M. Numerical study of plasma-fluid characteristics and thrust performance of a low-power argon inductively coupled plasma electrothermal thruster. J. Appl. Phys. 2020, 128, 173302. [Google Scholar] [CrossRef]
- Tsifakis, D.; Charles, C.; Boswell, R. An Inductively-Coupled Plasma Electrothermal Radiofrequency Thruster. Front. Phys. 2020, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Kamgang-Youbi, G.; Poizot, K.; Lemont, F. Inductively coupled plasma torch efficiency at atmospheric pressure for organo-chlorine liquid waste removal: Chloroform destruction in oxidative conditions. J. Hazard. Mater. 2013, 171, 244–245. [Google Scholar] [CrossRef] [PubMed]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma–liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on electrical Discharge Plasma Technology for Wastewater Remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Alves, L.L.; Bogaerts, A.; Guerra, V.; Turner, M.M. Foundations of modelling of nonequilibrium low- temperature. Plasma Sources Sci. Technol. 2018, 27, 023002. [Google Scholar] [CrossRef]
- Hurlbatt, A.; Gibson, A.R.; Schröter, S.; Bredin, J.; Foote, A.P.S.; Grondein, P.; O’Connell, D.; Gans, T. Concepts, Capabilities, and Limitations of Global Models: A Review. Plasma Process. Polym. 2017, 14, 1600138. [Google Scholar] [CrossRef] [Green Version]
- Ashida, S.; Lee, C.; Lieberman, M.A. Spatially averaged (global) model of time modulated high density argon plasmas. J. Vac. Sci. Technol. A 1995, 13, 2498. [Google Scholar] [CrossRef]
- Lee, M.H.; Chung, C.W. Effect of multistep ionizations on the electron temperature in an argon inductively coupled plasma. Appl. Phys. Lett. 2005, 87, 131502. [Google Scholar] [CrossRef]
- Lee, M.H.; Jang, S.H.; Chung, C.W. On the multistep ionizations in an argon inductively coupled plasma. Phys. Plasmas 2006, 13, 053502. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.H.; Chung, C.W. Self-consistent global model with multi-step ionizations in inductively coupled plasmas. Phys. Plasmas 2005, 12, 073501. [Google Scholar] [CrossRef]
- Gudmundsson, J.T. On the effect of the electron energy distribution on the plasma parameters of an argon discharge: A global (volume-averaged) model study. Plasma Sources Sci. Technol. 2001, 10, 76. [Google Scholar] [CrossRef]
- Toneli, D.A. A volume averaged global model study of the influence of the electron energy distribution and the wall material on an oxygen discharge. J. Phys. D Appl. Phys. 2015, 48, 495203. [Google Scholar] [CrossRef]
- Magaldi, B.V.; Pessoa, R.S.; da Sobrinho, A.S. A global model study of argon plasma chemistry used as propellant of a gridded ion thruster. Rev. Bras. Apll. Vac. 2021, 40. [Google Scholar] [CrossRef]
- Kortshagen, U.; Heil, B.G. Kinetic Two-Dimensional Modeling of Inductively Coupled Plasmas Based on a Hybrid Kinetic Approach. IEEE Trans. Plasma Sci. 1999, 27, 5. [Google Scholar] [CrossRef]
- Loureiro, J.; Amorim, J. Kinetics and Spectroscopy of Low Temperature Plasmas; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Gyergyek, T.; Kovacic, J.; Gomez, I.; Gunn, J.P.; Costea, S.; Mozetic, M. Kinetic model of an inverted sheath in a bounded plasma system. Phys. Plasmas 2020, 27, 023520. [Google Scholar] [CrossRef]
- Wen, D.-Q.; Liu, W.; Gao, F.; Lieberman, M.A.; Wang, Y.-N. A hybrid model of radio frequency biased inductively coupled plasma discharges: Description of model and experimental validation in argon. Plasma Sources Sci. Technol. 2016, 25, 045009. [Google Scholar] [CrossRef]
- Lieberman, M.A.; Lichtenberg, A.J. Principle of Plasma Discharges and Materials Processing, 2nd ed.; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Pessoa, R.S.; Sismanoglu, B.N.; Gomes, M.P.; Medeiros, H.S.; Sagás, J.C.; Roberto, M.; Maciel, H.S.; Petraconi, G. Chemistry Studies of Low Pressure Argon Discharges: Experiments and Simulation. In Argon: Production, Characteristics and Applications; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2013. [Google Scholar]
- Roberto, M.; Smith, H.B.; Verboncoeur, J.P. Influence of Metastable Atoms in Radio-Frequency Argon Discharges. IEEE Trans. Plasma Sci. 2003, 31, 6. [Google Scholar] [CrossRef]
- Lymberopoulos, D.L.; Economou, D.J. Fluid simulations of glow discharges: Effect of metastable atoms in argon. J. Appl. Phys. 1993, 73, 8. [Google Scholar] [CrossRef] [Green Version]
- Toshikazu, S.; Toshiaki, M. Effect of metastables on a sustaining mechanism in inductively coupled plasma in Ar. J. Appl. Phys. 2005, 98, 113304. [Google Scholar] [CrossRef]
- Lee, Y.K.; Chung, C.W. Ionization in inductively coupled argon plasmas studied by optical emission spectroscopy. J. Appl. Phys. 2011, 109, 013306. [Google Scholar] [CrossRef]
- Hong, Y.H.H.; Kim, J.H.; Kim, T.W.; Lee, H.W.; Lee, M.Y.; Chung, C.H. Experimental investigation on optimal plasma generation in inductively coupled plasma. Phys. Plasmas 2021, 28, 053507. [Google Scholar] [CrossRef]
- Lee, C.; Lieberman, M.A. Global model of Ar, O2, Cl2, and Ar/O2 high-density plasma discharges. J. Vac. Sci. Technol. A 1995, 13, 368. [Google Scholar] [CrossRef]
- Freitas, F.M.; Pessoa, R.S.; Maciel, H.S.; Petraconi Filho, G. Comparisons between Langmuir probe measurements and global model of a capacitively coupled rf argon discharge. Rev. Bras. Apl. Vac. 2008, 27, 211. [Google Scholar]
- Hjartarson, A.T.; Thorsteinsson, E.G.; Gudmundsson, J.T. Low pressure hydrogen discharges diluted with argon explored using a global model. Plasma Sources Sci. Technol. 2010, 19, 065008. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, M.H.; Chung, C.W. Experimental measurement of the total energy losses in a low pressure inductively coupled argon plasma. Appl. Phys. Lett. 2009, 95, 111501. [Google Scholar] [CrossRef]
- Lee, Y.K.; Ku, J.H.; Chung, C.H. Measurements of the total energy lost per electron–ion pair lost in low-pressure inductive argon, helium, oxygen and nitrogen discharge. Plasma Sources Sci. Technol. 2011, 20, 015005. [Google Scholar] [CrossRef]
- Ku, J.H.; Lee, Y.K.; Chung, C.W. Measurement of the total energy losses per electron-ion lost in various mixed gas inductively coupled plasmas. Phys. Plasmas 2010, 17, 043508. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, Y.C.; Kim, Y.S.; Chung, C.W. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas. Phys. Plasmas 2015, 22, 013501. [Google Scholar] [CrossRef]
- COMSOL Multiphysics® v. 5.4; COMSOL AB: Stockholm, Sweden. Available online: www.comsol.com (accessed on 15 August 2021).
- Straub, H.C.; Renault, P.; Lindsay, B.G.; Smith, K.A.; Stebbings, R.F. Absolute partial and total cross sections for electron-impact ionization of argon from threshold to 1000 eV. Phys. Rev. A 1995, 52, 1115. [Google Scholar] [CrossRef]
- Ali, M.A.; Stone, P. Electron impact ionization of metastable rare gases: He, Ne and Ar. Int. J. Mass Spectrom. 2008, 271, 51. [Google Scholar] [CrossRef]
- Deutsch, H.; Becker, K.; Grum-Grzhimailo, A.N.; Bartschat, K.; Summers, H.; Probst, M.; Matt-Leubner, S.; Märk, T.D. Calculated cross sections for the electron-impact ionization of excited argon atoms using the DM formalism. Int. J. Mass Spectrom. 2004, 233, 39. [Google Scholar] [CrossRef]
- Mityureva, A.A.; Smirnov, V.V. Integral Electronic Excitation Cross Sections of Hydrogen Atom Levels, A. Opt. Spectrosc. 2006, 101, 338–343. [Google Scholar] [CrossRef]
- Hayashi, M. A Set of Electron-Ar Cross Sections with 25 Excited States. 2003. Available online: https://iopscience.iop.org/0022-3727/38/10/014/media/argon-cs.pdf (accessed on 15 March 2021).
- Ferreira, C.M.; Loureiro, J.; Richard, A. Populations in the metastable and the resonance levels of argon and stepwise ionization effects in a lowpressure argon positive column. J. Appl. Phys. 1985, 57, 82. [Google Scholar] [CrossRef]
- Gudmundsson, J.T.; Thorsteinsson, E.G. Oxygen discharges diluted with argon: Dissociation processes. Plasma Sources Sci. Technol. 2007, 16, 399. [Google Scholar] [CrossRef]
- Bassett, N.L.; Economou, D.J. Effect of Cl2 additions to an argon glow discharge. J. Appl. Phys. 1994, 75, 1931. [Google Scholar] [CrossRef] [Green Version]
- Kannari, F.; Obara, M.; Fujioka, T. An advanced kinetic model of electron beam excited KrF lasers including the vibrational relaxation in KrF(B) and collisional mixing of KrF(B.C). J. Appl. Phys. 1985, 57, 4309. [Google Scholar] [CrossRef]
- Hurst, G.S.; Wagner, E.B.; Payne, M.G. Energy transfer from the resonance states Ar(1P1) and Ar(3P1) to ethylene. J. Chem. Phys. 1974, 61, 3680. [Google Scholar]
- Godyak, V.A.; Piejak, R.B.; Alexandrovich, B.M. Electron energy distribution function measurements and plasma parameters in inductively coupled argon plasma. Plasma Sources Sci. Technol. 2002, 11, 525. [Google Scholar] [CrossRef]
- Godyak, V.A. Electrical and plasma parameters of ICP with high coupling efficienc. Plasma Sources Sci. Technol. 2011, 20, 025004. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.; Uhm, H.S.; Jang, D.; Hur, M.S.; Suk, H. Electron density characterization of inductively- coupled argon plasmas by the terahertz time- domain spectroscopy. Plasma Sources Sci. Technol. 2016, 25, 065008. [Google Scholar] [CrossRef]
nº | Reactions | Ref. | ||
---|---|---|---|---|
R1 | Ar + e → Ar + e | - | [23] | |
R2 | Ar + e → Ar+ + 2e | 15.76 | [38] | |
R3 | Arm + e → Ar+ + 2e | 4.427 | [39] | |
R4 | Arr + e → Ar+ + 2e | 3.96 | [39] | |
R5 | Arp + e → Ar+ + 2e | 2.26 | [40] | |
R6 | Ar + e → Arm + e | 11.5 | [41] | |
R7 | Ar + e → Arr + e | 11.6 | [42] | |
R8 | Ar + e → Arp + e | 12.9 | [42] | |
R9 | Arm + e → Ar + e | −11.5 | [41] | |
R10 | Arr + e → Ar + e | −11.6 | [42] | |
R11 | Arp + e → Ar + e | −12.9 | [42] | |
R12 | Arm + e → Arr + e | 0.1 | [43] | |
R13 | Arm + e → Arp + e | 1.4 | [41] | |
R14 | Arr + e → Arp + e | 1.3 | [41] | |
R15 | Arr + e → Arm + e | −0.1 | [43] | |
R16 | Arp + e → Arm + e | −1.4 | [41] | |
R17 | Arp + e → Arr + e | −1.3 | [41] | |
R18 | 2Arm → 2Ar | [44] | ||
R19 | Arm +Arr → Ar +Ar+ + e | [45] | ||
R20 | 2Arp → Ar + Ar+ +e | [46] | ||
R21 | 2Arm → Ar +Ar+ +e | [43] | ||
R22 | Ar + Arm → 2Ar | [45] | ||
R23 | Arr → Ar + hv | [47] | ||
R24 | Arp → Ar + hν | [12] | ||
R25 | Arp → Arm + hν | [14] | ||
R26 | Arp → Arr + hν | [14] |
Case | Species Considering in Particle Balance | Reaction in Particle Balance | Species Considering in Energy Balance | Reaction in Energy Balance | Collisional Energy |
---|---|---|---|---|---|
1 | 1–3, 6 and 9 | 1, 2 and 6 | Single-step—Equation (7) | ||
2 | 1–3, 6 and 9 | 1–2, 6–8 | Single-step—Equation (7) | ||
3 | 1–3, 6 and 9 | 1–3, 6 and 9 | Multistep—Equation (10) | ||
4 | 1–17, 23–26 | 1–17 | Multistep—Equation (10) | ||
5 | 1–26 | 1–17 | Multistep—Equation (10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karnopp, J.; Magaldi, B.; Sagás, J.; Pessoa, R. The Effect of Excited Species on the Collisional Energy of Argon Inductively Coupled Plasmas: A Global Model Study. Plasma 2022, 5, 30-43. https://doi.org/10.3390/plasma5010003
Karnopp J, Magaldi B, Sagás J, Pessoa R. The Effect of Excited Species on the Collisional Energy of Argon Inductively Coupled Plasmas: A Global Model Study. Plasma. 2022; 5(1):30-43. https://doi.org/10.3390/plasma5010003
Chicago/Turabian StyleKarnopp, Júlia, Bernardo Magaldi, Julio Sagás, and Rodrigo Pessoa. 2022. "The Effect of Excited Species on the Collisional Energy of Argon Inductively Coupled Plasmas: A Global Model Study" Plasma 5, no. 1: 30-43. https://doi.org/10.3390/plasma5010003
APA StyleKarnopp, J., Magaldi, B., Sagás, J., & Pessoa, R. (2022). The Effect of Excited Species on the Collisional Energy of Argon Inductively Coupled Plasmas: A Global Model Study. Plasma, 5(1), 30-43. https://doi.org/10.3390/plasma5010003