The Effect of Low-Grade Hydrothermal Aging on the Shade Stability of Monolithic CAD/CAM Dental Ceramic Restorations
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Test Specimens
2.2. Accelerated Aging Protocol
2.3. Colorimetric Analysis
2.4. Statistical Evaluation
3. Results
3.1. Comparison of Shade Coordinates
3.2. Color Difference (ΔE)
3.3. Translucency Parameter (TP)
4. Discussion
4.1. Shade Coordinates Comparison (CIE L*a*b* Value)
4.2. Delta E (ΔE)
- 0–1: Color difference is generally imperceptible, even to trained observers.
- 1–2: A very slight difference, noticeable only to trained eyes.
- 2–3.5: A moderate difference, perceptible to both trained and untrained observers.
- 3.5–5: An obvious color difference.
- >6: A pronounced and easily noticeable difference.
4.3. Translucency Parameter (TP), Contrast Ratio CR and OP
4.4. Clinical Implications
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abu-Naba’a, L.A. A Narrative Review of Recent Finite Element Studies Reporting References for Elastic Properties of Zirconia Dental Ceramics. Ceramics 2023, 6, 898–911. [Google Scholar] [CrossRef]
- Dongre, P.; Kavar, D.R. Translucent zirconia—A step towards esthetics: A narrative review. Int. J. Curr. Sci. Res. Rev. 2023, 6, 2084–2091. [Google Scholar]
- Bhochhibhoya, A. Translucent monolithic, multi-layered zirconia: Matching esthetics with strength. J. Nepal. Prosthodont. Soc. 2022, 5, 32–38. [Google Scholar] [CrossRef]
- Hjerppe, J.; Özcan, M. Zirconia: More and more translucent. Curr. Oral Health Rep. 2023, 10, 203–211. [Google Scholar]
- Shirani, M.; Savabi, O.; Mosharraf, R.; Akhavankhaleghi, M.; Hebibkhodaei, M.; Isler, S. Comparison of translucency and opalescence among different dental monolithic ceramics. J. Prosthet. Dent. 2021, 126, 446.e1–446.e6. [Google Scholar] [CrossRef]
- Shahmiri, R.; Standard, O.C.; Hart, J.N.; Sorrell, C.C. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J. Prosthet. Dent. 2018, 119, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Almohammed, S.N.; Alshorman, B.; Abu-Naba’a, L.A. Optical Properties of Five Esthetic Ceramic Materials Used for Monolithic Restorations: A Comparative In Vitro Study. Ceramics 2022, 5, 69. [Google Scholar] [CrossRef]
- Alghazzawi, T.F. The effect of extended aging on the optical properties of different zirconia materials. J. Prosthodont. Res. 2017, 61, 305–314. [Google Scholar] [CrossRef]
- Potdukhe, S.; Iyer, J.; More, A. Effect of artificial aging on translucency of zirconia-reinforced lithium silicate and lithium disilicate ceramics: A systematic review. Eur. J. Prosthodont. Restor. Dent. 2024, 32, 153–161. [Google Scholar]
- Pires-de-Souza, F.d.C.P.; Casemiro, L.A.; Garcia, L.d.F.R.; Cruvinel, D.R. Color stability of dental ceramics submitted to artificial accelerated aging after repeated firings. J. Prosthet. Dent. 2009, 101, 13–18. [Google Scholar] [CrossRef]
- Bagis, B.; Turgut, S. Optical properties of current ceramics systems for laminate veneers. J. Dent. 2013, 41 (Suppl. 3), e24–e30. [Google Scholar] [CrossRef]
- Hamza, T.A.; Al-Baili, M.A.; Abdel-Aziz, M.H. Effect of artificially accelerated aging on margin fit and color stability of laminate veneers. Stomatol. Dis. Sci. 2018, 2, 1. [Google Scholar] [CrossRef]
- Oh, S.-H.; Kim, S.-G. Effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations: In vitro study of color masking ability. J. Adv. Prosthodont. 2015, 7, 368–374. [Google Scholar] [CrossRef]
- Barizon, K.T.L.; Bergeron, C.; Vargas, M.A.; Qian, F.; Cobb, D.S.; Gratton, D.G.; Geraldeli, S. Ceramic materials for porcelain veneers: Part II. Effect of material, shade, and thickness on translucency. J. Prosthet. Dent. 2014, 112, 864–870. [Google Scholar] [CrossRef]
- Niu, E.; Agustin, M.; Douglas, R.D. Color match of machinable lithium disilicate ceramics: Effects of cement color and thickness. J. Prosthet. Dent. 2014, 111, 42–50. [Google Scholar] [CrossRef]
- Shono, N.N.; Al Nahedh, H.N.A. Contrast ratio and masking ability of three ceramic veneering materials. Oper. Dent. 2012, 37, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Dikicier, S.; Ayyildiz, S.; Ozen, J.; Sipahi, C. Effect of varying core thicknesses and artificial aging on the color difference of different all-ceramic materials. Acta Odontol. Scand. 2014, 72, 623–629. [Google Scholar] [CrossRef]
- Inokoshi, M.; Zhang, F.; De Munck, J.; Minakuchi, S.; Naert, I.; Vleugels, J.; Van Meerbeek, B.; Vanmeensel, K. Influence of sintering conditions on low-temperature degradation of dental zirconia. Dent. Mater. 2014, 30, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Liao, Y.; Wan, Q.; Li, W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J. Mater. Sci. Mater. Med. 2011, 22, 2429–2435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Making yttria-stabilized tetragonal zirconia translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef]
- Kim, H.-K.; Kim, S.-H. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent. Mater. 2014, 30, e229–e237. [Google Scholar] [CrossRef]
- Anselmi-Tamburini, U.; Woolman, J.N.; Munir, Z.A. Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv. Funct. Mater. 2007, 17, 3267–3273. [Google Scholar] [CrossRef]
- Ebeid, K.; Wille, S.; Hamdy, A.; Salah, T.; El-Etreby, A.; Kern, M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent. Mater. 2014, 30, e419–e424. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Donovan, T.E.; Vallittu, P.K.; Närhi, T.O.; Lassila, L.V. The effect of staining and vacuum sintering on optical and mechanical properties of partially and fully stabilized monolithic zirconia. Dent. Mater. J. 2015, 34, 605–610. [Google Scholar] [CrossRef]
- Johnston, W.M.; Ma, T.; Kienle, B.H. Translucency parameter of colorants for maxillofacial prostheses. Int. J. Prosthodont. 1995, 8, 79–86. [Google Scholar]
- Gonuldas, F.; Yılmaz, K.; Ozturk, C. The effect of repeated firings on the color change and surface roughness of dental ceramics. J. Adv. Prosthodont. 2014, 6, 309–316. [Google Scholar] [CrossRef]
- Bachhav, V.C.; Aras, M.A. The effect of ceramic thickness and number of firings on the color of a zirconium oxide based all ceramic system fabricated using CAD/CAM technology. J. Adv. Prosthodont. 2011, 3, 57–62. [Google Scholar] [CrossRef]
- Ardu, S.; Feilzer, A.J.; Devigus, A.; Krejci, I. Quantitative clinical evaluation of esthetic properties of incisors. Dent. Mater. 2008, 24, 333–340. [Google Scholar] [CrossRef]
- O’Brien, W. Dental Materials and Their Selection, 4th ed.; Quintessence Publishing Co., Inc.: Chicago, IL, USA, 2002; pp. 25–38. [Google Scholar]
- Paravina, R.D.; Ontiveros, J.C.; Powers, J.M. Accelerated aging effects on color and translucency of bleaching-shade composites. J. Esthet. Restor. Dent. 2004, 16, 117–126. [Google Scholar] [CrossRef]
- Johnston, W.M.; Kao, E.C. Assessment of appearance match by visual observation and clinical colorimetry. J. Dent. Res. 1989, 68, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Cattani-Lorente, M.; Scherrer, S.S.; Ammann, P.; Jobin, M.; Anselm Wiskott, H.W. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater. 2011, 7, 858–865. [Google Scholar] [CrossRef]
- Lughi, V.; Sergo, V. Low temperature degradation—Aging—Of zirconia: A critical review of the relevant aspects in dentistry. Dent. Mater. 2010, 26, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Hamza, T.A.; Alameldin, A.A.; Elkouedi, A.Y.; Wee, A.G. Effect of artificial accelerated aging on surface roughness and color stability of different ceramic restorations. Stomatol. Dis. Sci. 2017, 1, 8–13. [Google Scholar] [CrossRef]
- Haralur, S.B.; Raqe, S.; Alqahtani, N.; Mujayri, F.A. Effect of hydrothermal aging and beverages on color stability of lithium disilicate and zirconia based ceramics. Medicina 2019, 55, 749. [Google Scholar] [CrossRef]
- Vichi, A.; Louca, C.; Corciolani, G.; Ferrari, M. Color related to ceramic and zirconia restorations: A review. Dent. Mater. 2011, 27, 97–108. [Google Scholar] [CrossRef]
- Vichi, A.; Carrabba, M.; Paravina, R.; Ferrari, M. Translucency of ceramic materials for CEREC CAD/CAM system. J. Esthet. Restor. Dent. 2014, 26, 224–231. [Google Scholar] [CrossRef]
- Ilie, N.; Hickel, R. Correlation between ceramics translucency and polymerization efficiency through ceramics. Dent. Mater. 2008, 24, 908–914. [Google Scholar] [CrossRef]
- Heffernan, M.J.; Aquilino, S.A.; Diaz-Arnold, A.M.; Haselton, D.R.; Stanford, C.M.; Vargas, M.A. Relative translucency of six all-ceramic systems. Part I: Core materials. J. Prosthet. Dent. 2002, 88, 4–9. [Google Scholar] [CrossRef]
- Lee, Y.-K. Influence of scattering/absorption characteristics on the color of resin composites. Dent. Mater. 2007, 23, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Awad, D.; Stawarczyk, B.; Liebermann, A.; Ilie, N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J. Prosthet. Dent. 2015, 113, 534–540. [Google Scholar] [CrossRef]
- Sen, N.; Us, Y.O. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J. Prosthet. Dent. 2018, 119, 593–599. [Google Scholar] [CrossRef]
- Kim, H.-K.; Kim, S.-H. Effect of hydrothermal aging on the optical properties of precolored dental monolithic zirconia ceramics. J. Prosthet. Dent. 2019, 121, 676–682. [Google Scholar] [CrossRef]
- Fathy, S.M.; El-Fallal, A.A.; El-Negoly, S.A.; El Bedawy, A.B. Translucency of monolithic and core zirconia after hydrothermal aging. Acta Biomater. Odontol. Scand. 2015, 1, 86–92. [Google Scholar] [CrossRef]
- Kurt, M.; Turhan Bal, B. Effects of accelerated artificial aging on the translucency and color stability of monolithic ceramics with different surface treatments. J. Prosthet. Dent. 2019, 121, 712.e1–712.e8. [Google Scholar] [CrossRef]
- Abdelbary, O.; Wahsh, M.; Sherif, A.; Salah, T. Effect of accelerated aging on translucency of monolithic zirconia. Future Dent. J. 2016, 2, 65–69. [Google Scholar] [CrossRef]
- Della Bona, A.; Nogueira, A.D.; Pecho, O.E. Optical properties of CAD-CAM ceramic systems. J. Dent. 2014, 42, 1202–1209. [Google Scholar] [CrossRef]
- Ziyad, T.A.; AbuNaba’a, L.A.; Almohammed, S.N. Optical properties of CADCAM monolithic systems compared: Three multilayered zirconia and one lithium disilicate system. Heliyon 2021, 7, e08151. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kang, K.-H.; Att, W. Effect of aging process on some properties of conventional and multilayered translucent zirconia for monolithic restorations. Ceram. Int. 2020, 46, 1854–1868. [Google Scholar] [CrossRef]
- Walczak, K.; Meißner, H.; Range, U.; Sakkas, A.; Boening, K.; Wieckiewicz, M.; Konstantinidis, I. Translucency of zirconia ceramics before and after artificial aging. J. Prosthodont. 2019, 28, e319–e324. [Google Scholar] [CrossRef] [PubMed]
- Čokić, S.M.; Cóndor, M.; Vleugels, J.; Van Meerbeek, B.; Van Oosterwyck, H.; Inokoshi, M.; Zhang, F. Mechanical properties-translucency-microstructure relationships in commercial monolayer and multilayer monolithic zirconia ceramics. Dent Mater. 2022, 38, 797–810. [Google Scholar] [CrossRef]
Group | Coordinate | Mean (SD) Before Aging (J) | Mean (SD) After Aging (K) | Mean (SD) Difference (K-J) | Sig. |
---|---|---|---|---|---|
Z | L | 87.78 (±0.41) | 87.52 (±0.39) | −0.25 (±0.26) | 0.002 * |
a | 3.78 (±0.39) | 4.10 (±0.49) | 0.4 (±0.44) | 0.003 * | |
b | 31.68 (±0.99) | 31.56 (±1.00) | −0.12 (±0.48) | 0.33 | |
E | L | 90.3 (±0.78) | 89.36 (±0.73) | −0.93 (±0.50) | 0.00 * |
a | 0.7 (±0.26) | 1.00 (±0.33) | 0.3 (±0.24) | 0.00 * | |
b | 25.76 (±0.55) | 26.74 (±0.34) | 0.98 (±0.56) | 0.00 * | |
S | L | 85.58 (±1.16) | 85.44 (±1.18) | −0.14 (±0.62) | 0.4 |
a | 3.95 (±1.33) | 4.08 (±1.37) | 0.133 (±0.22) | 0.04 * | |
b | 43.51 (±4.94) | 43.82 (±4.84) | 0.31 (±0.62) | 0.07 |
Material | ΔE |
---|---|
E | 1.46 |
S | 0.83 |
Z | 0.75 |
Groups (J) | Compared Group (K) | Mean (SD) (J-K) | Sig. |
---|---|---|---|
Z | E | −0.070 (±0.18) | 0.002 * |
S | −0.07 (±0.18) | 1.000 | |
E | Z | 0.70 (±0.18) | 0.002 * |
S | 0.62 (±0.18) | 0.005 * | |
S | Z | 0.07 (±0.18) | 1.000 |
E | −0.62 (±0.18) | 0.005 * |
Group | Aging | Mean (SD) | Sig. |
---|---|---|---|
E | Before | 17.75 (±0.99) | 0.876 |
After | 17.73 (±0.69) | ||
S | Before | 17.74 (±1.22) | 0.535 |
After | 17.67 (±2.96) | ||
Z | Before | 12.62 (±0.03) | 0.416 |
After | 12.56 (±0.06) |
Group (I) | Compared Group (J) | Mean Difference (SD) (I-J) | Sig. | |
---|---|---|---|---|
Before Aging | Z | E | −5.13 (±0.33) | 0.000 * |
S | −5.12 (±0.33) | 0.000 * | ||
E | Z | 5.13 (±0.33) | 0.000 * | |
S | 0.01 (±0.33) | 1.000 | ||
S | Z | 5.12 (±0.33) | 0.000 * | |
E | −0.01 (±0.33) | 1.000 | ||
After Aging | Z | E | −5.17 (±0.28) | 0.000 * |
S | −5.10 (±0.28) | 0.000 * | ||
E | Z | 5.17 (±0.28) | 0.000 * | |
S | 0.06 (±0.28) | 1.000 | ||
S | Z | 5.10 (±0.28) | 0.000 * | |
E | −0.06 (±0.28) | 1.000 | ||
Mean after/before value | Z | E | −5.15 (±0.30) | 0.000 * |
S | −5.11 (±0.30) | 0.000 * | ||
E | Z | 5.15 (±0.30) | 0.000 * | |
S | 0.04 (±0.30) | 1.000 | ||
S | Z | 5.11 (±0.30) | 0.000 * | |
E | −0.04 (±0.30) | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daoud, M.Z.; Abu-Naba’a, L.A.; Al Fodeh, R. The Effect of Low-Grade Hydrothermal Aging on the Shade Stability of Monolithic CAD/CAM Dental Ceramic Restorations. Ceramics 2025, 8, 122. https://doi.org/10.3390/ceramics8040122
Daoud MZ, Abu-Naba’a LA, Al Fodeh R. The Effect of Low-Grade Hydrothermal Aging on the Shade Stability of Monolithic CAD/CAM Dental Ceramic Restorations. Ceramics. 2025; 8(4):122. https://doi.org/10.3390/ceramics8040122
Chicago/Turabian StyleDaoud, Mohammad Zaki, Layla A. Abu-Naba’a, and Rami Al Fodeh. 2025. "The Effect of Low-Grade Hydrothermal Aging on the Shade Stability of Monolithic CAD/CAM Dental Ceramic Restorations" Ceramics 8, no. 4: 122. https://doi.org/10.3390/ceramics8040122
APA StyleDaoud, M. Z., Abu-Naba’a, L. A., & Al Fodeh, R. (2025). The Effect of Low-Grade Hydrothermal Aging on the Shade Stability of Monolithic CAD/CAM Dental Ceramic Restorations. Ceramics, 8(4), 122. https://doi.org/10.3390/ceramics8040122