The Fabrication of Lithium Niobate Nanostructures by Solvothermal Method for Photocatalysis Applications: A Comparative Study of the Effects of Solvents on Nanoparticle Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation Methods
2.2. Characterization Techniques
2.3. Photocatalytic Performance Tests
3. Results and Discussion
3.1. TEM
3.2. XRD
3.3. Raman Spectroscopy
3.4. UV-Vis Absorbance
3.5. Photoluminescence
3.6. Photocatalytic Study
References | Samples | Average Size | Dye | Pseudo First-Order Rate Kinetic /min−1 |
---|---|---|---|---|
This work | LN nanostructures | 2.95 nm | Reactive black 5 | 0.027 |
C. Yu et al. [38] | BaTiO3 nanowires | 200 nm | Methyl orange | 0.0011 |
D. Mazkad et al. [39] | LiNbO3 | 100 μm | Rhodamine | 0.0020 |
H. Zhai et al. [30] | LiNb3O8 | 100 nm | Methylene blue | 0.016 |
F. Azeez et al. [40] | Pure TiO2 | 10 nm | Methylene blue | 0.018 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, L.; Xu, C.; Sun, H.; Zeng, T.; Zhang, J.; Zhao, H. Self-Induced Second-Harmonic and Sum-Frequency Generation from Interfacial Engineered Er3+/Fe3+ Doped LiNbO3 Single Crystal via Femtosecond Laser Ablation. ACS Photonics 2018, 5, 4463–4468. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, Y.; Liu, Z.; Xue, D. State of the Art in Crystallization of LiNbO3 and Their Applications. Molecules 2021, 26, 7044. [Google Scholar] [CrossRef]
- Sánchez-Dena, O.; Behel, Z.; Salmon, E.; Benichou, E.; Reyes-Esqueda, J.A.; Brevet, P.F.; Jonin, C. Polarization-resolved second harmonic generation from LiNbO3 powders. Opt. Mater. 2020, 107, 110169. [Google Scholar] [CrossRef]
- Chang, Z.; Jin, W.; Chiang, K.S. Graphene electrodes for lithium-niobate electro-optic devices. Opt. Lett. 2018, 43, 1718–1721. [Google Scholar] [CrossRef] [PubMed]
- Sumets, M. Thin films of lithium niobate: Potential applications, synthesis methods, structure and properties. In Lithium Niobate-Based Heterostructures; IOP Publishing: Bristol, UK, 2018; pp. 1–42. [Google Scholar] [CrossRef]
- Venghaus, H.; Grote, N. Fibre Optic Communication Devices, 2nd ed.; Springer: Berlin, Germany, 2001. [Google Scholar]
- Rakic, A.D.; Djurisic, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Koga, K.; Kudo, A. Lithium niobate nanowires for photocatalytic water splitting. Dalton Trans. 2011, 40, 3909–3913. [Google Scholar] [CrossRef]
- Dues, C.; Schmidt, W.G.; Sanna, S. Water Splitting Reaction at Polar Lithium Niobate Surfaces. ACS Omega 2019, 4, 3850–3859. [Google Scholar] [CrossRef]
- Ling, H.; Sun, M.; Han, H.; Lu, L.; Cai, L.; Lan, Y.; Li, R.; Chen, P.; Tian, X.; Bai, X.; et al. High-Entropy Lithium Niobate Nanocubes for Photocatalytic Water Splitting under Visible Light. J. Phys. Chem. Lett. 2024, 15, 5103–5111. [Google Scholar] [CrossRef]
- Arizmendi, L. Review Article: Photonic applications of lithium niobate crystals. Phys. Status Solidi 2004, 201, 175. [Google Scholar] [CrossRef]
- Stock, M.; Dunn, S. LiNbO3—a new material for artificial photosynthesis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011, 58, 1988–1993. [Google Scholar] [CrossRef]
- Touach, N.; Ortiz-Martínez, V.M.; Salar-García, M.J.; Benzaouak, A.; Hernández-Fernández, F.; de Ríos, A.P.; El Mahi, M.; Lotfi, E.M. On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells. Particuology 2017, 34, 147–155. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, M.; Vaish, R. Transparent ferroelectric glass–ceramics for wastewater treatment by piezocatalysis. Commun. Mater. 2020, 1, 100. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.; Jiang, S.; Yang, B.; Rao, W. Multifunctional ferroelectric catalysis for water splitting: Classification, synergism, strategies and challenges. Mater. Today Chem. 2023, 30, 101486. [Google Scholar] [CrossRef]
- Dong, W.; Xiao, H.; Jia, Y.; Chen, L.; Geng, H.; Bakhtiar, S.U.H.; Fu, Q.; Guo, Y. Engineering the Defects and Microstructures in Ferroelectrics for Enhanced/Novel Properties: An Emerging Way to Cope with Energy Crisis and Environmental Pollution. Adv. Sci. 2022, 9, 2105368. [Google Scholar] [CrossRef]
- Alanazi, A.T.; Alotaibi, A.F.; Kenny, J.; Dillon, C.; Thuwayb, F.; Rodriguez, B.J.; Rice, J.H. Visible light activation of impurity doped lithium niobate for photocatalysis. Appl. Phys. Lett. 2024, 124, 081105. [Google Scholar] [CrossRef]
- Ali, R.F.; Bilton, M.; Gates, B.D. One-pot synthesis of sub-10 nm LiNbO3 nanocrystals exhibiting a tunable optical second harmonic response. Nanoscale Adv. 2019, 1, 2268–2275. [Google Scholar] [CrossRef]
- Dey, D.; Kakihana, M. Peroxide Route Towards Low Temperature Synthesis of LiNbO3: An Environmentally Benign Approach. J. Ceram. Soc. Jpn. 2004, 112, 368–372. [Google Scholar] [CrossRef]
- Bryan, D.W.; Byron, D.G. Non-Hydrolytic Solution-Phase Synthesis of Anisotropic LiNbO3 and Nb2O5 Nanostructures. MRS Online Proc. Libr. 2011, 1087, 10. [Google Scholar] [CrossRef]
- Kamali, A.R.; Fray, D.J. Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 2014, 40, 1835–1841. [Google Scholar] [CrossRef]
- Zhao, J.-P.; Quan, M.-H.; Zhang, L. Preparation of potassium lithium niobate powders with low Li content via the Pechini method. Ceram. Int. 2006, 32, 843–846. [Google Scholar] [CrossRef]
- Malovichko, G.I.; Grachev, V.G.; Kokanyan, E.P.; Schirmer, O.F.; Betzler, K.; Gather, B.; Jermann, F.; Klauer, S.; Schlarb, U.; Wöhlecke, M. Characterization of stoichiometric LiNbO3 grown from melts containing K2O. Appl. Phys. A 1993, 56, 103–108. [Google Scholar] [CrossRef]
- Presti, F.L.; Pellegrino, A.L.; Micard, Q.; Condorelli, G.G.; Margueron, S.; Bartasyte, A.; Malandrino, G. LiNbO3 Thin Films through a Sol–Gel/Spin-Coating Approach Using a Novel Heterobimetallic Lithium–Niobium Precursor. Nanomaterials 2024, 14, 345. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, S.; Mukherjee, C.; Shaktawat, T.; Gupta, P.K.; Sathe, V.G. Blue shift of optical band-gap in LiNbO3 thin films deposited by sol–gel technique. Thin Solid Films 2012, 520, 6510–6514. [Google Scholar] [CrossRef]
- Sánchez-Dena, O.; Fierro-Ruiz, C.D.; Villalobos-Mendoza, S.D.; Flores, D.M.C.; Elizalde-Galindo, J.T.; Farías, R. Lithium niobate single crystals and powders reviewed—Part I. Crystals 2020, 10, 973. [Google Scholar] [CrossRef]
- Bartasyte, A.; Plausinaitiene, V.; Abrutis, A.; Stanionyte, S.; Margueron, S.; Boulet, P.; Kobata, T.; Uesu, Y.; Gleize, J. Identification of LiNbO3, LiNb3O8 and Li3NbO4 phases in thin films synthesized with different deposition techniques by means of XRD and Raman spectroscopy. J. Phys. Condens. Matter 2013, 25, 205901. [Google Scholar] [CrossRef]
- Tellekamp, M.B.; Shank, J.C.; Doolittle, W.A. Molecular Beam Epitaxy of lithium niobium oxide multifunctional materials. J. Cryst. Growth 2017, 463, 156–161. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, H.; Pang, L.-X.; Yao, X.; Wu, X.-G. Microwave Dielectric Characterization of a Li3NbO4 Ceramic and Its Chemical Compatibility with Silver. J. Am. Ceram. Soc. 2008, 91, 4115–4117. [Google Scholar] [CrossRef]
- Zhai, H.-F.; Qi, J.; Zhang, X.; Li, H.; Yang, L.; Hu, C.; Liu, H.; Yang, J. Preparation and Photocatalytic Performance of Hollow Structure LiNb3O8 Photocatalysts. Nanoscale Res. Lett. 2017, 12, 1–7. [Google Scholar] [CrossRef]
- Gorelik, V.; Pyatyshev, A.; Sidorov, N. Photoluminescence of Copper-Doped Lithium Niobate Crystals. Phys. Solid. State 2018, 60, 906–911. [Google Scholar] [CrossRef]
- Sidorov, N.V.; Smirnov, M.V.; Teplyakova, N.A.; Palatnikov, M.N. Photoluminescence and Particular Features of the Defect Structure of Congruent and Near-Stoichiometric Lithium Niobate Crystals Obtained Using Different Technologies. Opt. Spectrosc. 2020, 128, 635–641. [Google Scholar] [CrossRef]
- Sidorov, N.V.; Smirnov, M.V.; Palatnikov, M.N. Photoluminescence of Nominally Pure Lithium Niobate Single Crystals Produced by Various Technologies. J. Appl. Spectrosc. 2020, 87, 212–217. [Google Scholar] [CrossRef]
- Al-Ekabi, H.; Serpone, N.; Pelizzetti, E.; Minero, C.; Fox, M.A.; Draper, R.B. Kinetic studies in heterogeneous photocatalysis. 2. Titania-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous media. Langmuir 1989, 5, 250–255. [Google Scholar] [CrossRef]
- Monrós, G.; Llusar, M.; Badenes, J.A. High NIR Reflectance and Photocatalytic Ceramic Pigments Based on M-Doped Clinobisvanite BiVO4 (M = Ca, Cr) from Gels. Materials 2023, 16, 3722. [Google Scholar] [CrossRef] [PubMed]
- Loghambal, S.; Catherine, A.J.A.; Subash, S.V. Analysis of Langmuir-Hinshelwood Kinetics Model for Photocatalytic Degradation of Aqueous Direct Blue 71 Through Analytical Expression. Int. J. Math. Its Appliations 2018, 6, 903–913. [Google Scholar]
- Hsiao, Y.-J.; Fang, T.-H.; Lin, S.-J.; Shieh, J.-M.; Ji, L.-W. Preparation and luminescent characteristic of Li3NbO4 nanophosphor. J. Lumin. 2010, 130, 1863–1865. [Google Scholar] [CrossRef]
- Yu, C.; Tan, M.; Tao, C.; Hou, Y.; Liu, C.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y. Remarkably enhanced piezo-photocatalytic performance in BaTiO3/CuO heterostructures for organic pollutant degradation. J. Adv. Ceram. 2022, 11, 414–426. [Google Scholar] [CrossRef]
- Mazkad, D.; Lazar, N.; Benzaouak, A.; Moussadik, A.; El Habib Hitar, M.; Touach, N.; El Mahi, M.; Lotfi, E.M. Photocatalytic properties insight of Sm-doped LiNbO3 in ferroelectric Li1− xNbSm1/3xO3 system. J. Environ. Chem. Eng. 2023, 11, 109732. [Google Scholar] [CrossRef]
- Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Nazeer, A.A.; Amin, M.O.; Madkour, M. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 2018, 8, 7104. [Google Scholar] [CrossRef]
Samples | Band Gap (eV) |
---|---|
DI water | 3.6 |
Methanol | 3.9 |
Benzyl | 3.17 |
Sample | k1 (min−1) | k2 (min−1) | K1 | K2 | R2 |
---|---|---|---|---|---|
DI water | 3 × 10−3 | 2.7 × 10−2 | 0.0716 | 4.91 | 0.973 |
Benzyl | 5.81 × 10−4 | 0 | 0.0346 | 0 | 0.960 |
Methanol | 5.88 × 10−4 | 0 | 0.110 | 0 | 0.980 |
Samples | Average Size/nm | Main Crystalline Phase | Residual Phases | Optical Band Gap/eV | Pseudo First-Order Rate Kinetic /min−1 |
---|---|---|---|---|---|
DI water | 2.95 | LiNbO3 | LiNb3O8 | 3.6 | 2.7 × 10−2 |
Benzyl | 5.97 | LiNbO3 | LiNb3O8 | 3.17 | 5.81 × 10−4 |
Methanol | 4.36 | LiNbO3 | Li3NbO4 | 3.9 | 5.88 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alothoum, M.A.S.; Awada, C. The Fabrication of Lithium Niobate Nanostructures by Solvothermal Method for Photocatalysis Applications: A Comparative Study of the Effects of Solvents on Nanoparticle Properties. Ceramics 2024, 7, 1554-1565. https://doi.org/10.3390/ceramics7040100
Alothoum MAS, Awada C. The Fabrication of Lithium Niobate Nanostructures by Solvothermal Method for Photocatalysis Applications: A Comparative Study of the Effects of Solvents on Nanoparticle Properties. Ceramics. 2024; 7(4):1554-1565. https://doi.org/10.3390/ceramics7040100
Chicago/Turabian StyleAlothoum, Mohd Al Saleh, and Chawki Awada. 2024. "The Fabrication of Lithium Niobate Nanostructures by Solvothermal Method for Photocatalysis Applications: A Comparative Study of the Effects of Solvents on Nanoparticle Properties" Ceramics 7, no. 4: 1554-1565. https://doi.org/10.3390/ceramics7040100
APA StyleAlothoum, M. A. S., & Awada, C. (2024). The Fabrication of Lithium Niobate Nanostructures by Solvothermal Method for Photocatalysis Applications: A Comparative Study of the Effects of Solvents on Nanoparticle Properties. Ceramics, 7(4), 1554-1565. https://doi.org/10.3390/ceramics7040100