Optimization of Yb:CaF2 Transparent Ceramics by Air Pre-Sintering and Hot Isostatic Pressing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, F.F.; Rong, W.L.; Chen, L.J.; Hu, F.A.; Wang, S.P.; Tao, X.T.; Gao, Z.L. Novel laser crystal Nd:LiY(MoO4)2: Crystal growth, characterization, and orthogonally polarized dual-wavelength laser. Cryst. Growth Des. 2024, 24, 1421–1428. [Google Scholar] [CrossRef]
- Ji, Y.Y.; Hu, M.; Xv, M.M.; Li, H.Z.; Gao, L.; Li, Q.; Bi, M.H.; Zhou, X.F.; Pan, S.Q.; Liu, C. Exploring the spatial hole burning effect on the mode-locking characteristics of self-mode-locked Nd:YVO4 lasers. Opt. Commun. 2023, 549, 129883. [Google Scholar] [CrossRef]
- Zhang, L.X.; Hu, D.J.; Snetkov, I.L.; Balabanov, S.; Palashov, O.; Li, J. A review on magneto-optical ceramics for Faraday isolators. J. Adv. Ceram. 2023, 12, 873–915. [Google Scholar] [CrossRef]
- Dong, J.S.; Wang, Q.G.; Xu, J.; Xue, Y.Y.; Wang, W.D.; Cao, X.; Tang, H.L.; Wu, F.; Luo, P. Growth and spectral properties of Ho,Y:CaF2 crystal grown with porous crucible TGT method. J. Synth. Cryst. 2022, 51, 200–207. [Google Scholar]
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [Google Scholar] [CrossRef]
- Papadopoulos, D.N.; Friebel, F.; Pellegrina, A.; Hanna, M.; Camy, P.; Doualan, J.L.; Moncorgé, R.; Georges, P.; Druon, F.P.H.J. High repetition rate Yb:CaF2 multipass amplifiers operating in the 100-mJ range. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 464–474. [Google Scholar] [CrossRef]
- Xuan, L.L.; Pisch, A.; Duffar, T. Thermodynamic calculations of Ti ion concentrations and segregation coefficients during Ti:Sapphire crystal growth. Cryst. Growth Des. 2022, 22, 2407–2416. [Google Scholar] [CrossRef]
- Ma, B.Y.; Zhang, W.; Luo, H.; Yuan, F.; Cheng, B.T.; Bai, L.Y.; Tang, Y.; Song, H.Z. Growth of Cr,Yb:YAG single crystals for self-Q-switched monolithic solid-state lasers. Opt. Mater. 2023, 143, 114218. [Google Scholar] [CrossRef]
- Chen, J.M.; Jiang, Y.E.; Wang, X.; Du, L.F.; Xiao, Q.; Pan, X.; Zhou, L.; Zhou, S.L.; Peng, J.H.; Li, X.C.; et al. High-stability, high-power diode-pumped mode-locked laser with a novel Nd:Glass. Opt. Commun. 2024, 558, 130380. [Google Scholar] [CrossRef]
- Liu, K.X.; Dong, Y.; Zhang, Z.H.; Duan, X.H.; Guo, R.H.; Zhai, Z.J.; Wang, J.L. MHz repetition rate femtosecond radially polarized vortex laser direct writing Yb:CaF2 waveguide laser operating in continuous-wave and pulsed regimes. Nanophotonics. 2024, 13, 9–18. [Google Scholar] [CrossRef]
- Püschel, S.; Mauerhoff, F.; Kränkel, C.; Tanaka, H. Solid-state laser cooling in Yb:CaF2 and Yb:SrF2 by anti-Stokes fluorescence. Opt. Lett. 2022, 47, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Y.; Li, R.X.; Li, K.; Xu, H.; Zhang, B.; Niu, J.; Sui, Y.; Yuan, M.H.; Liu, X.P.; Ma, Y.J.; et al. 10-mJ 300-fs 1-kHz cryogenically cooled Yb:CaF2 regenerative amplifier. Opt. Commun. 2024, 565, 130687. [Google Scholar] [CrossRef]
- Zhao, C.C.; Zhang, P.X.; Li, S.M.; Fang, Q.N.; Xu, M.; Cheng, Z.Q.; Hang, Y. Development of rare-earth ion doped fluoride laser crystal. J. Synth. Cryst. 2022, 51, 1573–1587. [Google Scholar]
- Petit, V.; Doualan, J.L.; Camy, P.; Ménard, V.; Moncorgé, R. CW and tunable laser operation of Yb3+ doped CaF2. Appl. Phys. B 2004, 78, 681–684. [Google Scholar] [CrossRef]
- Hornung, M.; Liebetrau, H.; Keppler, S.; Kessler, A.; Hellwing, M.; Schorcht, F.; Becker, G.A.; Reuter, M.; Polz, J.; Körner, J.; et al. 54 J pulses with 18 nm bandwidth from a diode-pumped chirped-pulse amplification laser system. Opt. Lett. 2016, 41, 5413–5416. [Google Scholar] [CrossRef]
- Wentsch, K.S.; Weichelt, B.; Guenster, S.; Druon, F.; Georges, P.; Ahmed, M.A.; Graf, T. Yb:CaF2 thin-disk laser. Opt. Express 2014, 22, 1524–1532. [Google Scholar] [CrossRef]
- Akchurin, M.S.; Basiev, T.T.; Demidenko, A.A.; Doroshenko, M.E.; Fedorov, P.P.; Garibin, E.A.; Gusev, P.E.; Kuznetsov, S.V.; Krutov, M.A.; Mironov, I.A.; et al. CaF2:Yb laser ceramics. Opt. Mater. 2013, 35, 444–450. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, X.P.; Gan, L.; Zhou, G.H.; Zhang, T.J.; Wang, S.W.; Chen, H.T. Preparation of sub-micron spherical Y2O3 particles and transparent ceramics. J. Inorg. Mater. 2024, 39, 691–696. [Google Scholar] [CrossRef]
- Feng, S.W.; Guo, Y.C.; Sun, X.M.; Fu, J.; Li, J.Q.; Jiang, J.; Qin, H.M.; Wang, H.; Yang, Y.F. Elevating photoluminescence properties of Y3MgAl3SiO12:Ce3+ transparent ceramics for high-power white lighting. J. Rare Earth 2023, 41, 649–657. [Google Scholar] [CrossRef]
- Wang, D.W.; Wang, J.P.; Yuan, H.C.; Liu, Z.; Zhou, J.; Deng, J.J.; Wang, X.; Wu, B.H.; Zhang, J.; Wang, S.W. Metre-scale Y3Al5O12 (YAG) transparent ceramics by vacuum reactive sintering. J. Inorg. Mater. 2023, 38, 1483–1484. [Google Scholar] [CrossRef]
- Rakov, N.; Matias, F.; Maciel, G.S. Temperature sensing performance of Er3+:Yb3+ co-doped CaF2 ceramic powders using near-infrared light. J. Rare Earth. 2024, in press. [CrossRef]
- Jin, X.H.; Dong, M.J.; Kan, Y.M.; Liang, B.; Dong, S.M. Fabrication of transparent AlON by gel casting and pressureless sintering. J. Inorg. Mater. 2023, 38, 193–198. [Google Scholar] [CrossRef]
- Yang, C.L.; Huang, J.Q.; Huang, Q.F.; Deng, Z.H.; Wang, Y.; Li, X.Y.; Zhou, Z.H.; Chen, J.; Liu, Z.G.; Guo, W. Optical, thermal, and mechanical properties of (Y1−xScx)2O3 transparent ceramics. J. Adv. Ceram. 2022, 11, 901–911. [Google Scholar] [CrossRef]
- Basiev, T.T.; Doroshenko, M.E.; Fedorov, P.P.; Konyushkin, V.A.; Kuznetsov, S.V.; Osiko, V.V.; Akchurin, M.S. Efficient laser based on CaF2-SrF2-YbF3 nanoceramics. Opt. Lett. 2008, 33, 521–523. [Google Scholar] [CrossRef]
- Jiang, Y.G.; Jiang, B.X.; Zhang, P.D.; Chen, S.L.; Gan, Q.J.; Fan, J.T.; Mao, X.J.; Jiang, N.; Su, L.B.; Li, J.; et al. Transparent Nd-doped Ca1−xYxF2+x ceramics prepared by the ceramization of single crystals. Mater. Des. 2017, 113, 326–330. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Z.; Mei, B.; Zhang, Y.; Liu, X. Fabrication and upconversion luminescence properties of Er:SrF2 transparent ceramics compared with Er:CaF2. Ceram. Int. 2021, 47, 17139–17146. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Chen, N.; Cheng, J.; Dang, M.; Wang, F.; Xu, X.; Wang, H. Low temperature fired CaF2-based microwave dielectric ceramics with enhanced microwave properties. J. Eur. Ceram. Soc. 2022, 42, 4969–4973. [Google Scholar] [CrossRef]
- Liu, Z.D.; Shen, Q.L.; Fu, S.C.; Yang, L.T.; Chen, X.; Li, S.Y.; Cao, Y.; Liu, B.; Yu, Y.S.; Jing, Q.S.; et al. Effects of LiF sintering additive on the microstructure and mechanical properties of hot-pressed CaF2 transparent ceramics. Opt. Mater. 2022, 14, 100147. [Google Scholar] [CrossRef]
- Wang, P.; Huang, Z.F.; Morita, K.; Li, Q.Z.; Yang, M.J.; Zhang, S.; Goto, T.; Tu, R. Influence of spark plasma sintering conditions on microstructure, carbon contamination, and transmittance of CaF2 ceramics. J. Eur. Ceram. Soc. 2022, 42, 245–257. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Z.; Mei, B.; Li, W.; Zhang, Y.; Liu, X. Energy transfer and controllable colors of upconversion emission in Er3+ and Dy3+ co-doped CaF2 transparent ceramics. J. Eur. Ceram. Soc. 2021, 41, 7835–7844. [Google Scholar] [CrossRef]
- Chen, L.; Mei, B.C.; Li, W.W.; Zhou, Z.W.; Yang, Y.; Zhang, Y.Q. Effect of reactive raw materials and pre-loading pressure on the microstructure and transmittance of pure CaF2 transparent ceramics. Mater. Chem. Phys. 2023, 297, 127315. [Google Scholar] [CrossRef]
- Kuznetsov, S.V.; Alexandrov, A.A.; Fedorov, P.P. Optical Fluoride Nanoceramics. Inorg. Mater. 2021, 57, 555–578. [Google Scholar] [CrossRef]
- Li, W.W.; Huang, H.J.; Mei, B.C.; Wang, C.; Liu, J.; Wang, S.Z.; Jiang, D.P.; Su, L.B. Effect of Yb concentration on the microstructures, spectra, and laser performance of Yb:CaF2 transparent ceramics. J. Am. Ceram. Soc. 2020, 103, 5787–5795. [Google Scholar] [CrossRef]
- Sarthou, J.; Aballea, P.; Patriarche, G.; Serier-Brault, H.; Suganuma, A.; Gredin, P.; Mortier, M.; Riman, R. Wet-route synthesis and characterization of Yb:CaF2 optical ceramics. J. Am. Ceram. Soc. 2016, 99, 1992–2000. [Google Scholar] [CrossRef]
- Aballea, P.; Suganuma, A.; Druon, F.; Hostalrich, J.; Georges, P.; Gredin, P.; Mortier, M. Laser performance of diode-pumped Yb:CaF2 optical ceramics synthesized using an energy-efficient process. Optica 2015, 2, 288–291. [Google Scholar] [CrossRef]
- Li, W.W.; Jing, W.; Mei, B.C.; Zhai, P.F.; Yang, Y.; Song, J.H. Effect of NaF doping on the transparency, microstructure and spectral properties of Yb3+:CaF2 transparent ceramics. J. Eur. Ceram. Soc. 2020, 40, 4572–4577. [Google Scholar] [CrossRef]
- Li, W.W.; Huang, H.J.; Mei, B.C.; Wang, C.; Liu, J.; Wang, S.Z.; Jiang, D.P.; Su, L.B. Fabrication, microstructure and laser performance of Yb3+ doped CaF2-YF3 transparent ceramics. Ceram. Int. 2020, 46, 19530–19536. [Google Scholar] [CrossRef]
- Liu, X.Q.; Hao, Q.Q.; Liu, J.; Liu, D.H.; Li, W.W.; Su, L.B. Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines. Chin. Phys. B 2022, 31, 114205. [Google Scholar] [CrossRef]
- Wei, J.B.; Toci, G.; Pirri, A.; Patrizi, B.; Feng, Y.G.; Vannini, M.; Li, J. Fabrication and property of Yb:CaF2 laser ceramics from co-precipitated nanopowders. J. Inorg. Mater. 2019, 34, 1341–1348. [Google Scholar] [CrossRef]
- Huang, X.Y.; Chen, G.M.; Wei, J.B.; Liu, Z.Y.; Feng, Y.G.; Tian, F.; Xie, T.F.; Li, J. Fabrication of Yb,La:CaF2 transparent ceramics by air pre-sintering with hot isostatic pressing. Opt. Mater. 2021, 116, 111108. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Wei, J.B.; Toci, G.; Pirri, A.; Patrizi, B.; Feng, Y.G.; Xie, T.F.; Hreniak, D.; Vannini, M.; Li, J. Microstructure and laser emission of Yb:CaF2 transparent ceramics fabricated by air pre-sintering and hot isostatic pressing. Opt. Mater. 2022, 129, 112540. [Google Scholar] [CrossRef]
- Kitajima, S.; Yamakado, K.; Shirakawa, A.; Ueda, K.I.; Ezura, Y.; Ishizawa, H. Yb3+-doped CaF2-LaF3 ceramics laser. Opt. Lett. 2017, 42, 1724–1727. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.H.; Shi, Y.; Tian, F.; Chen, H.H.; Toci, G.; Pirri, A.; Patrizi, B.; Vannini, M.; Li, J. Microstructure and laser performance of fine-grained Yb:CaF2 transparent ceramics prepared by two-step sintering. Opt. Mater. 2023, 140, 113841. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Wang, J.; Ma, J.; Ni, M.; Lin, H.; Zhang, J.; Liu, P.; Xu, X.D.; Tang, D.Y. High transparency Pr:Y2O3 ceramics: A promising gain medium for red emission solid-state lasers. J. Adv. Ceram. 2022, 11, 874–881. [Google Scholar] [CrossRef]
- Li, X.; Yin, J.; Lai, Y.M.; Zhang, X.; Yu, S.Q. Improved microstructure and optical properties of Nd:YAG ceramics by hot isostatic pressing. Ceram. Int. 2023, 49, 31939–31947. [Google Scholar] [CrossRef]
- Zhang, L.X.; Li, X.Y.; Hu, D.J.; Liu, Z.Y.; Xie, T.F.; Wu, L.X.; Yang, Z.X.; Li, J. Fabrication and properties of non-stoichiometric Tb2(Hf1−xTbx)2O7−x magneto-optical ceramics. J. Adv. Ceram. 2022, 11, 784–793. [Google Scholar] [CrossRef]
- Li, W.W.; Huang, H.J.; Mei, B.C.; Song, J.H. Comparison of commercial and synthesized CaF2 powders for preparing transparent ceramics. Ceram. Int. 2017, 43, 10403–10409. [Google Scholar] [CrossRef]
- Akinribide, O.J.; Mekgwe, G.N.; Akinwamide, S.O.; Gamaoun, F.; Abeykoon, C.; Johnson, O.T.; Olubambi, P.A. A review on optical properties and application of transparent ceramics. J. Mater. Res. Technol. 2022, 21, 712–738. [Google Scholar] [CrossRef]
- Liu, Z.D.; Ji, Y.M.; Xu, C.Y.; Wang, Y.; Liu, Y.; Shen, Q.; Yi, G.; Yu, Y.; Mei, B.; Liu, P.; et al. Microstructural, spectroscopic and mechanical properties of hot-pressed Er:SrF2 transparent ceramics. J. Eur. Ceram. Soc. 2021, 41, 4907–4914. [Google Scholar] [CrossRef]
- Yi, G.Q.; Liu, Z.D.; Li, W.W.; Mei, B.C.; Yin, S.M.; Xue, L.H.; Yan, Y.W. Gd3+ doping induced microstructural evolution and enhanced visible luminescence of Pr3+ activated calcium fluoride transparent ceramics. Ceram. Int. 2023, 49, 7333–7340. [Google Scholar] [CrossRef]
- Chen, J.M.; Mei, B.C.; Li, W.W.; Zhang, Y.Q. Fabrication and spectral performance of Ndx:(La0.05Lu0.05Gd0.05Y0.05)Ca0.8−xF2.2+x High-entropy transparent fluoride ceramics. Ceram. Int. 2024, 50, 6128–6134. [Google Scholar] [CrossRef]
Output Coupler Transmission/% | Maximum Power/W | Slope Efficiency/% | Optical Efficiency/% | Lasing Wavelength/nm |
---|---|---|---|---|
1.8 | 0.36 | 7.6 | 5.7 | 1028.9 |
5.8 | 0.47 | 9.2 | 8.1 | 1029.0 |
12.3 | 0.33 | 8.9 | 6.4 | 1030.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Hu, C.; Guo, L.; Wu, J.; Toci, G.; Pirri, A.; Patrizi, B.; Vannini, M.; Liu, Q.; Hreniak, D.; et al. Optimization of Yb:CaF2 Transparent Ceramics by Air Pre-Sintering and Hot Isostatic Pressing. Ceramics 2024, 7, 1053-1065. https://doi.org/10.3390/ceramics7030069
Li X, Hu C, Guo L, Wu J, Toci G, Pirri A, Patrizi B, Vannini M, Liu Q, Hreniak D, et al. Optimization of Yb:CaF2 Transparent Ceramics by Air Pre-Sintering and Hot Isostatic Pressing. Ceramics. 2024; 7(3):1053-1065. https://doi.org/10.3390/ceramics7030069
Chicago/Turabian StyleLi, Xiang, Chen Hu, Lihao Guo, Junlin Wu, Guido Toci, Angela Pirri, Barbara Patrizi, Matteo Vannini, Qiang Liu, Dariusz Hreniak, and et al. 2024. "Optimization of Yb:CaF2 Transparent Ceramics by Air Pre-Sintering and Hot Isostatic Pressing" Ceramics 7, no. 3: 1053-1065. https://doi.org/10.3390/ceramics7030069
APA StyleLi, X., Hu, C., Guo, L., Wu, J., Toci, G., Pirri, A., Patrizi, B., Vannini, M., Liu, Q., Hreniak, D., & Li, J. (2024). Optimization of Yb:CaF2 Transparent Ceramics by Air Pre-Sintering and Hot Isostatic Pressing. Ceramics, 7(3), 1053-1065. https://doi.org/10.3390/ceramics7030069