Properties of a Pressureless Sintered 2Y-TZP Material Combining High Strength and Toughness
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Powder Characterization
3.2. Density and Mechanical Properties
3.3. Microstructure
3.4. Phase Composition and Transformation Toughening Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hannink, R.H.J.; Kelly, P.M.; Muddle, B.C. Transformation Toughening in Zirconia-Containing Ceramics. J. Am. Ceram. Soc. 2000, 83, 461–487. [Google Scholar] [CrossRef]
- Kelly, P.M.; Rose, L.R.F. The martensitic transformation in ceramics—Its role in transformation toughening. Prog. Mater. Sci. 2002, 47, 463–557. [Google Scholar] [CrossRef]
- Rose, L.R.F. The mechanics of transformation toughening. Proc. R. Soc. Lond. A 1987, 412, 169–197. [Google Scholar] [CrossRef]
- Li, P.; Chen, I.-W.; Penner-Hahn, J.E. Effect of Dopants on Zirconia Stabilization—An X-ray Absorption Study: I, Trivalent Dopants. J. Am. Ceram. Soc. 1994, 77, 118–128. [Google Scholar] [CrossRef]
- Li, P.; Chen, I.-W.; Penner-Hahn, J.E. Effect of Dopants on Zirconia Stabilization—An X-ray Absorption Study: II, Tetravalent Dopants. J. Am. Ceram. Soc. 1994, 77, 1281–1288. [Google Scholar] [CrossRef]
- Chen, M.; Hallstedt, B.; Gauckler, L.J. Thermodynamic modeling of the ZrO2–YO1.5 system. Solid State Ion. 2004, 170, 255–274. [Google Scholar] [CrossRef]
- Kelly, J.R.; Denry, I. Stabilized zirconia as a structural ceramic: An overview. Dent. Mater. 2008, 24, 289–298. [Google Scholar] [CrossRef]
- Matsui, K.; Yoshida, H.; Ikuhara, Y. Phase-transformation and grain-growth kinetics in yttria-stabilized tetragonal zirconia polycrystal doped with a small amount of alumina. J. Eur. Ceram. Soc. 2010, 30, 1679–1690. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Ruiz, L.; Readey, M.J. Effect of Heat Treatment on Grain Size, Phase Assemblage, and Mechanical Properties of 3 mol% Y-TZP. J. Am. Ceram. Soc. 1996, 79, 2331–2340. [Google Scholar] [CrossRef]
- Binner, J.; Vaidhyanathan, B.; Paul, A.; Annaporani, K.; Raghupathy, B. Compositional Effects in Nanostructured Yttria Partially Stabilized Zirconia. Int. J. Appl. Ceram. Technol. 2011, 8, 766–782. [Google Scholar] [CrossRef]
- Chevalier, J.; Cales, B.; Drouin, M. Low-Temperature Aging of Y-TZP Ceramics. J. Am. Ceram. Soc. 1999, 82, 2150–2154. [Google Scholar] [CrossRef]
- Lange, F.F. Transformation toughening: Part 3 Experimental observations in the ZrO2- Y203 system. J. Mater. Sci. 1982, 17, 240–246. [Google Scholar] [CrossRef]
- Tsukuma, K. Thermal and Mechanical Properties of Y2O3-Stabilized Tetragonal Zirconia Polycrystals, Science and Technology of Zirconia II. Adv. Ceram. 1984, 12, 382–390. [Google Scholar]
- Kern, F.; Reveron, H.; Chevalier, J.; Gadow, R. Mechanical behaviour of extremely tough TZP bioceramics. J. Mech. Behav. Biomed. Mater. 2019, 90, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Hosoi, K.; Feng, B.; Yoshida, H.; Ikuhara, Y. Ultrahigh toughness zirconia ceramics. Proc. Natl. Acad. Sci. USA 2023, 120, e2304498120. [Google Scholar] [CrossRef] [PubMed]
- Imariouane, M.; Saâdaoui, M.; Denis, G.; Reveron, H.; Chevalier, J. Low-yttria doped zirconia: Bridging the gap between strong and tough ceramics. J. Eur. Ceram. Soc. 2023, 43, 4906–4915. [Google Scholar] [CrossRef]
- Imariouane, M.; Saâdaoui, M.; Cardinal, S.; Reveron, H.; Chevalier, J. Aging behavior of a 1.5 mol% yttria doped zirconia exhibiting optimized toughness and strength. J. Eur. Ceram. Soc. 2024, 44, 1053–1060. [Google Scholar] [CrossRef]
- Kern, F. Neue Oxidkeramiken und Nanocomposites für Hochleistungsanwendungen; Shaker Verlag: Aachen, Germany, 2016; ISBN 3844049010. [Google Scholar]
- Akhlaghi, O.; Camposilvan, E.; Goharibajestani, Z.; Abkenar, S.K.; Ow-Yang, C.W.; Jorand, Y.; Gremillard, L.; Garnier, V.; Chevalier, J. Transparent high-strength nanosized yttria stabilized zirconia obtained by pressure-less sintering. J. Eur. Ceram. Soc. 2022, 42, 7187–7195. [Google Scholar] [CrossRef]
- Roitero, E.; Reveron, H.; Gremillard, L.; Garnier, V.; Ritzberger, C.; Chevalier, J. Ultra-fine Yttria-Stabilized Zirconia for dental applications: A step forward in the quest towards strong, translucent and aging resistant dental restorations. J. Eur. Ceram. Soc. 2023, 43, 2852–2863. [Google Scholar] [CrossRef]
- Cui, J.; Gong, Z.; Lv, M.; Rao, P. Determination of fracture toughness of Y-TZP ceramics. Ceram. Int. 2017, 43, 16319–16322. [Google Scholar] [CrossRef]
- Basu, B.; Vleugels, J.; van der Biest, O. Toughness tailoring of yttria-doped zirconia ceramics. Mater. Sci. Eng. A 2004, 380, 215–221. [Google Scholar] [CrossRef]
- Trunec, M.; Stastny, P.; Kastyl, J.; Roupcova, P.; Chlup, Z. 2Y-TZP ceramics with high strength and toughness by optimizing the microstructure. J. Eur. Ceram. Society 2024, 44, 3258–3266. [Google Scholar] [CrossRef]
- Niihara, K. A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. J. Mater. Sci. Lett. 1983, 2, 221–223. [Google Scholar] [CrossRef]
- Chantikul, P.; Anstis, G.R.; Lawn, B.R.; Marshall, D.B. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method. J. Am. Ceram. Soc. 1981, 64, 539–543. [Google Scholar] [CrossRef]
- Cook, R.F.; Braun, L.M.; Cannon, W.R. Trapped cracks at indentations: Part I: Experiments on yttria-tetragonal zirconia polycrystals. J. Mater. Sci. 1994, 29, 2133–2142. [Google Scholar] [CrossRef]
- Dransmann, G.W.; Steinbrech, R.W.; Pajares, A.; Guiberteau, F.; Dominguez-Rodriguez, A.; Heuer, A.H. Indentation Studies on Y2O3-Stabilized ZrO2: II, Toughness Determination from Stable Growth of Indentation-Induced Cracks. J. Am. Ceram. Soc. 1994, 77, 1194–1201. [Google Scholar] [CrossRef]
- Benzaid, R.; Chevalier, J.; Saadaoui, M.; Fantozzi, G.; Nawa, M.; Diaz, L.A.; Torrecillas, R. Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications. Biomaterials 2008, 29, 3636–3641. [Google Scholar] [CrossRef]
- Toraya, H.; Yoshimura, M.; Somiya, S. Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction. J. Am. Ceram. Soc. 1984, 67, C119–C121. [Google Scholar] [CrossRef]
- Kosmać, T.; Wagner, R.; Claussen, N. X-Ray Determination of Transformation Depths in Ceramics Containing Tetragonal ZrO2. J. Am. Ceram. Soc. 1981, 64, C-72–C-73. [Google Scholar] [CrossRef]
- McMeeking, R.M.; Evans, A.G. Mechanics of Transformation-Toughening in Brittle Materials. J. Am. Ceram. Soc. 1982, 65, 242–246. [Google Scholar] [CrossRef]
- Mendelson, M.I. Average Grain Size in Polycrystalline Ceramics. J. Am. Ceram. Soc. 1969, 52, 443–446. [Google Scholar] [CrossRef]
- Liens, A.; Swain, M.; Reveron, H.; Cavoret, J.; Sainsot, P.; Courtois, N.; Fabrègue, D.; Chevalier, J. Development of transformation bands in ceria-stabilized-zirconia based composites during bending at room temperature. J. Eur. Ceram. Soc. 2021, 41, 691–705. [Google Scholar] [CrossRef]
- Billovits, T.; Demel-Eckhart, S. Exploring the Boundaries of Strength and Toughness: AuerTec® 2Y-40A, Extended Abstract ECERS XVIII, Lyon, France. Available online: https://www.ecers2023.org/data/onglet34/module0/modalPreview.php?langue=fr¶mProjet=89 (accessed on 15 May 2024).
- Swain, M.V.; Rose, L.R.F. Strength Limitations of Transformation-Toughened Zirconia Alloys. J. Am. Ceram. Society 1986, 69, 511–518. [Google Scholar] [CrossRef]
- Mamivand, M.; Asle Zaeem, M.; El Kadiri, H. Phase field modeling of stress-induced tetragonal-to-monoclinic transformation in zirconia and its effect on transformation toughening. Acta Mater. 2014, 64, 208–219. [Google Scholar] [CrossRef]
- Evans, A.G. Perspective on the Development of High-Toughness Ceramics. J. Am. Ceram. Soc. 1990, 73, 187–206. [Google Scholar] [CrossRef]
Composition Mol% Y2O3 | Strength 1 [MPa] | Toughness 2 [MPa√m] | References |
---|---|---|---|
1.5 | 1088, 3PB | 14.5, DCM | [11] |
4.7, SCF | |||
1.5 | 2600, P3B | 13.8, DCM | [20] |
1.5 | 1438, P3B | 4.8, SEVNB | [21] |
1.5 | 1270, 3PB | 22, DCM | [16] |
1.5 | 995, 4PB | 8.5, SEVNB | [17] |
1320, 3B3B | |||
2 | 994 3PB | 6.4, SEVNB | [22] |
2 | 1560, 4PB | 9.6, ISB | [15] |
2088, P3B | |||
1670, 3B3B | |||
2 | n.d. | 5.9, DCM | [23] |
2 (3Y + 0Y) | 1270, 3PB | 10.3, DCM | |
1.5 (3Y + 0Y) | 630, 3PB | 14.5, DCM | [19] |
1.75 (3Y + 0Y) | 680, 3PB | 10.3, DCM | |
2 (3Y + 0Y) | 1050, 3PB | 8, DCM | |
2 | 1250, BA | 7.7, DCM | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kern, F.; Osswald, B. Properties of a Pressureless Sintered 2Y-TZP Material Combining High Strength and Toughness. Ceramics 2024, 7, 893-905. https://doi.org/10.3390/ceramics7030058
Kern F, Osswald B. Properties of a Pressureless Sintered 2Y-TZP Material Combining High Strength and Toughness. Ceramics. 2024; 7(3):893-905. https://doi.org/10.3390/ceramics7030058
Chicago/Turabian StyleKern, Frank, and Bettina Osswald. 2024. "Properties of a Pressureless Sintered 2Y-TZP Material Combining High Strength and Toughness" Ceramics 7, no. 3: 893-905. https://doi.org/10.3390/ceramics7030058
APA StyleKern, F., & Osswald, B. (2024). Properties of a Pressureless Sintered 2Y-TZP Material Combining High Strength and Toughness. Ceramics, 7(3), 893-905. https://doi.org/10.3390/ceramics7030058