Ultra-Broadband Plasmon Resonance in Gold Nanoparticles Precipitated in ZnO-Al2O3-SiO2 Glass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glass Synthesis
2.2. Glass Characterization
3. Results
3.1. Optical Properties of Glasses upon Heat Treatment
3.2. Structural Study of Glasses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.; Iatì, M. Surface Plasmon Resonance in Gold Nanoparticles: A Review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E. Gold Nanoparticle-Based Plasmonic Biosensors. Biosensors 2023, 13, 411. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, N.; Khan, I. Plasmonic Gold Nanoparticles (AuNPs): Properties, Synthesis and Their Advanced Energy, Environmental and Biomedical Applications. Chem. Asian J. 2021, 16, 720–742. [Google Scholar] [CrossRef] [PubMed]
- Shafiqa, A.R.; Abdul Aziz, A.; Mehrdel, B. Nanoparticle Optical Properties: Size Dependence of a Single Gold Spherical Nanoparticle. J. Phys. Conf. Ser. 2018, 1083, 012040. [Google Scholar] [CrossRef]
- Núñez-Leyva, J.M.; Kolosovas-Machuca, E.S.; Sánchez, J.; Guevara, E.; Cuadrado, A.; Alda, J.; González, F.J. Computational and Experimental Analysis of Gold Nanorods in Terms of Their Morphology: Spectral Absorption and Local Field Enhancement. Nanomaterials 2021, 11, 1696. [Google Scholar] [CrossRef] [PubMed]
- Djorović, A.; Oldenburg, S.J.; Grand, J.; Le Ru, E.C. Extinction-to-Absorption Ratio for Sensitive Determination of the Size and Dielectric Function of Gold Nanoparticles. ACS Nano 2020, 14, 17597–17605. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Peng, Y.; Yang, Y.; Li, Z.-Y. Plasmon-Enhanced Light–Matter Interactions and Applications. NPJ Comput. Mater. 2019, 5, 45. [Google Scholar] [CrossRef]
- Srabionyan, V.V.; Vetchinnikov, M.P.; Rubanik, D.S.; Durymanov, V.A.; Viklenko, I.A.; Avakyan, L.A.; Zinina, E.M.; Shakhgildyan, G.Y.; Sigaev, V.N.; Bugaev, L.A. Local Electric Field Enhancement in the Vicinity of Aggregates of Ag, Au, Rb Containing Nanoparticles in Oxide Glasses. J. Non Cryst. Solids 2024, 631, 122927. [Google Scholar] [CrossRef]
- Shakhgildyan, G.; Lipatiev, A.; Lotarev, S.; Fedotov, S.; Sigaev, V. Glass: Home of the Periodic Table. Front. Chem. 2020, 8, 384. [Google Scholar] [CrossRef] [PubMed]
- Shakhgil’dyan, G.Y.; Ziyatdinova, M.Z.; Kovgar, V.V.; Lotarev, S.V.; Sigaev, V.N.; Prusova, I.V. Effect of Gold Nanoparticles on the Spectral Luminescence Properties of Eu3+-Doped Phosphate Glass. Glass Ceram. 2019, 76, 121–125. [Google Scholar] [CrossRef]
- Savinkov, V.I.; Shakhgil’Dyan, G.Y.; Paleari, A.; Sigaev, V.N. Synthesis of Optically Uniform Glasses Containing Gold Nanoparticles: Spectral and Nonlinear Optical Properties. Glass Ceram. 2013, 70, 143–148. [Google Scholar] [CrossRef]
- Som, T.; Karmakar, B. Plasmon Tuning of Nano-Au in Dichroic Devitrified Antimony Glass Nanocomposites by Refractive Index Control. Chem. Phys. Lett. 2009, 479, 100–104. [Google Scholar] [CrossRef]
- Chen, F.; Dai, S.; Xu, T.; Shen, X.; Lin, C.; Nie, Q.; Liu, C.; Heo, J. Surface-Plasmon Enhanced Ultrafast Third-Order Optical Nonlinearities in Ellipsoidal Gold Nanoparticles Embedded Bismuthate Glasses. Chem. Phys. Lett. 2011, 514, 79–82. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, J.; Fuhrmann, S.; Sajzew, R.; Wondraczek, L.; Ebendorff-Heidepriem, H. Controlled Formation of Gold Nanoparticles with Tunable Plasmonic Properties in Tellurite Glass. Light Sci. Appl. 2023, 12, 293. [Google Scholar] [CrossRef] [PubMed]
- Lipat’ev, A.S.; Shakhgil’dyan, G.Y.; Lipat’eva, T.O.; Lotarev, S.V.; Fedotov, S.S.; Vetchinnikov, M.P.; Ignat’eva, E.S.; Golubev, N.V.; Sigaev, V.N.; Kazanskii, P.G. Formation of Luminescent and Birefringent Microregions in Phosphate Glass Containing Silver. Glass Ceram. 2016, 73, 277–282. [Google Scholar] [CrossRef]
- Srabionyan, V.V.; Heinz, M.; Kaptelinin, S.Y.; Avakyan, L.A.; Sukharina, G.B.; Skidanenko, A.V.; Pryadchenko, V.; Abdulvakhidov, K.G.; Mikheykin, A.; Durymanov, V.; et al. Effect of Thermal Post-Treatment on Surface Plasmon Resonance Characteristics of Gold Nanoparticles Formed in Glass by UV Laser Irradiation. J. Alloys Compd. 2019, 803, 354–363. [Google Scholar] [CrossRef]
- Heinz, M.; Srabionyan, V.V.; Avakyan, L.A.; Bugaev, A.L.; Skidanenko, A.V.; Pryadchenko, V.V.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; et al. Formation and Implantation of Gold Nanoparticles by ArF-Excimer Laser Irradiation of Gold-Coated Float Glass. J. Alloys Compd. 2018, 736, 152–162. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Martín-Yerga, D.; Yu, X.; Terekhina, I.; Henriksson, G.; Cornell, A. In Situ Catalyst Reactivation for Enhancing Alcohol Electro-Oxidation and Coupled Hydrogen Generation. Chem. Commun. 2020, 56, 4011–4014. [Google Scholar] [CrossRef]
- Cormier, L.; Delbes, L.; Baptiste, B.; Montouillout, V. Vitrification, Crystallization Behavior and Structure of Zinc Aluminosilicate Glasses. J. Non Cryst. Solids 2021, 555, 120609. [Google Scholar] [CrossRef]
- Shakhgildyan, G.Y.; Ziyatdinova, M.Z.; Vetchinnikov, M.P.; Lotarev, S.V.; Savinkov, V.I.; Presnyakova, N.N.; Lopatina, E.V.; Vilkovisky, G.A.; Sigaev, V.N. Thermally-Induced Precipitation of Gold Nanoparticles in Phosphate Glass: Effect on the Optical Properties of Er3+ Ions. J. Non Cryst. Solids 2020, 550, 120408. [Google Scholar] [CrossRef]
- Jiménez, J.A. Photoluminescence of Sm3+ Ions in Au-Doped Plasmonic and Dichroic Phosphate Glass. Eur. Phys. J. D 2023, 77, 124. [Google Scholar] [CrossRef]
- Jiménez, J.A. Dichroism in Plasmonic Cu Nanocomposite Glass: Selective Enhancement of the Orange-Red Emission from Sm3+. Opt. Mater. X 2019, 1, 100002. [Google Scholar] [CrossRef]
- Singh, S.P.; Nath, M.; Karmakar, B. Quantum and Dielectric Confinements of Sub-10 Nm Gold in Dichroic Phosphate Glass Nanocomposites. Mater. Chem. Phys. 2014, 146, 198–203. [Google Scholar] [CrossRef]
- Som, T.; Karmakar, B. Surface Plasmon Resonance and Enhanced Fluorescence Application of Single-Step Synthesized Elliptical Nano Gold-Embedded Antimony Glass Dichroic Nanocomposites. Plasmonics 2010, 5, 149–159. [Google Scholar] [CrossRef]
- Montazerian, M.; Mancini, M.; Mauro, J.C. Advanced Tools for Unveiling Nucleation in Nanostructured Glass-Ceramics. Crit. Rev. Solid State Mater. Sci. 2023, 48, 411–439. [Google Scholar] [CrossRef]
- Jiazhi, L.; Ying, S.; Guanging, H. An Investigation of Relationship between Phase Separation and Crystallization of ZnO-Al2O3-SiO2 Glasses. J. Phys. Colloq. 1982, 43, C9-231–C9-234. [Google Scholar] [CrossRef]
- Pellerin, N.; Blondeau, J.-P.; Noui, S.; Allix, M.; Ory, S.; Veron, O.; De Sousa Meneses, D.; Massiot, D. Control of Selective Silicate Glass Coloration by Gold Metallic Nanoparticles: Structural Investigation, Growth Mechanisms, and Plasmon Resonance Modelization. Gold Bull. 2013, 46, 243–255. [Google Scholar] [CrossRef]
- Sigaev, V.N.; Savinkov, V.I.; Lotarev, S.V.; Shakhgildyan, G.Y.; Lorenzi, R.; Paleari, A. Spatially Selective Au Nanoparticle Growth in Laser-Quality Glass Controlled by UV-Induced Phosphate-Chain Cross-Linkage. Nanotechnology 2013, 24, 225302. [Google Scholar] [CrossRef] [PubMed]
- Simo, A.; Polte, J.; Pfänder, N.; Vainio, U.; Emmerling, F.; Rademann, K. Formation Mechanism of Silver Nanoparticles Stabilized in Glassy Matrices. J. Am. Chem. Soc. 2012, 134, 18824–18833. [Google Scholar] [CrossRef] [PubMed]
- Grand, J.; Adam, P.-M.; Grimault, A.-S.; Vial, A.; Lamy de la Chapelle, M.; Bijeon, J.-L.; Kostcheev, S.; Royer, P. Optical Extinction Spectroscopy of Oblate, Prolate and Ellipsoid Shaped Gold Nanoparticles: Experiments and Theory. Plasmonics 2006, 1, 135–140. [Google Scholar] [CrossRef]
- Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Mulvaney, P. Gold Nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev. 2005, 249, 1870–1901. [Google Scholar] [CrossRef]
- Berger, A. Prolate Silver Particles in Glass Surfaces. J. Non Cryst. Solids. 1993, 163, 185–194. [Google Scholar] [CrossRef]
- Mennig, M.; Berg, K.-J. Determination of Size Shape and Concentration of Spheroidal Silver Colloids Embedded in Glass by VIS-Spectroscopy. Mater. Sci. Eng. B 1991, 9, 421–424. [Google Scholar] [CrossRef]
- Suszynska, M.; Krajczyk, L.; Capelletti, R.; Baraldi, A.; Berg, K.J. Microstructure and Silver Nanoparticles in Ion-Exchanged and Deformed Soda-Lime Silicate Glasses. J. Non Cryst. Solids 2003, 315, 114–123. [Google Scholar] [CrossRef]
- Stalmashonak, A.; Matyssek, C.; Kiriyenko, O.; Hergert, W.; Graener, H.; Seifert, G. Preparing Large-Aspect-Ratio Prolate Metal Nanoparticles in Glass by Simultaneous Femtosecond Multicolor Irradiation. Opt. Lett. 2010, 35, 1671. [Google Scholar] [CrossRef] [PubMed]
- Shakhgildyan, G.Y.; Lipatiev, A.S.; Fedotov, S.S.; Vetchinnikov, M.P.; Lotarev, S.V.; Sigaev, V.N. Microstructure and Optical Properties of Tracks with Precipitated Silver Nanoparticles and Clusters Inscribed by the Laser Irradiation in Phosphate Glass. Ceram. Int. 2021, 47, 14320–14329. [Google Scholar] [CrossRef]
- Som, T.; Karmakar, B. Enhanced Frequency Upconversion of Sm3+ Ions by Elliptical Au Nanoparticles in Dichroic Sm3+: Au-Antimony Glass Nanocomposites. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 75, 640–646. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- De, S.; Medda, S.K.; De, G. Refractive Index Controlled Plasmon Tuning of Au Nanoparticles in SiO2 -ZrO2 Film Matrices. J. Nanosci. Nanotechnol. 2008, 8, 3868–3876. [Google Scholar] [CrossRef] [PubMed]
- De, G.; Medda, S.K.; De, S.; Pal, S. Metal Nanoparticle Doped Coloured Coatings on Glasses and Plastics through Tuning of Surface Plasmon Band Position. Bull. Mater. Sci. 2008, 31, 479–485. [Google Scholar] [CrossRef]
- Shakhgildyan, G.; Durymanov, V.; Ziyatdinova, M.; Atroshchenko, G.; Golubev, N.; Trifonov, A.; Chereuta, O.; Avakyan, L.; Bugaev, L.; Sigaev, V. Effect of Gold Nanoparticles on the Crystallization and Optical Properties of Glass in ZnO-MgO-Al2O3-SiO2 System. Crystals 2022, 12, 287. [Google Scholar] [CrossRef]
- Shakhgildyan, G.; Avakyan, L.; Ziyatdinova, M.; Atroshchenko, G.; Presnyakova, N.; Vetchinnikov, M.; Lipatiev, A.; Bugaev, L.; Sigaev, V. Tuning the Plasmon Resonance of Gold Nanoparticles in Phase-Separated Glass via the Local Refractive Index Change. J. Non Cryst. Solids 2021, 566, 120893. [Google Scholar] [CrossRef]
- Stelling, C.; Singh, C.R.; Karg, M.; König, T.A.F.; Thelakkat, M.; Retsch, M. Plasmonic Nanomeshes: Their Ambivalent Role as Transparent Electrodes in Organic Solar Cells. Sci. Rep. 2017, 7, 42530. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, O.; de Castro, S.; Godoy, M.P.F.; Rebello Sousa Dias, M. Optoelectronic Characterization of Zn1-x Cdx O Thin Films as an Alternative to Photonic Crystals in Organic Solar Cells. Opt. Mater. Express 2019, 9, 3638. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 2007, 107, 4797–4862. [Google Scholar] [CrossRef] [PubMed]
- Ung, T.; Liz-Marzán, L.M.; Mulvaney, P. Optical Properties of Thin Films of Au@SiO 2 Particles. J. Phys. Chem. B 2001, 105, 3441–3452. [Google Scholar] [CrossRef]
- Nedyalkov, N.N.; Nakajima, Y.; Takami, A.; Koleva, M.; Karashanova, D.; Terakawa, M. Laser Induced Morphological and Optical Properties Changes in Au Doped Aluminum Oxide and Silicon Oxide Thin Films. Opt. Laser Technol. 2016, 79, 179–187. [Google Scholar] [CrossRef]
- Sendova, M.; Jiménez, J.A. Plasmonic Coupling in Silver Nanocomposite Glasses. J. Phys. Chem. C 2012, 116, 17764–17772. [Google Scholar] [CrossRef]
- Mackowski, D.W.; Mishchenko, M.I. A Multiple Sphere T-Matrix Fortran Code for Use on Parallel Computer Clusters. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 2182–2192. [Google Scholar] [CrossRef]
- Avakyan, L.A.; Heinz, M.; Skidanenko, A.V.; Yablunovski, K.A.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; Bugaev, L.A. Insight on Agglomerates of Gold Nanoparticles in Glass Based on Surface Plasmon Resonance Spectrum: Study by Multi-Spheres T-Matrix Method. J. Phys. Condens. Matter 2018, 30, 045901. [Google Scholar] [CrossRef] [PubMed]
- Rioux, D.; Vallières, S.; Besner, S.; Muñoz, P.; Mazur, E.; Meunier, M. An Analytic Model for the Dielectric Function of Au, Ag, and Their Alloys. Adv. Opt. Mater. 2014, 2, 176–182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakhgildyan, G.; Avakyan, L.; Atroshchenko, G.; Vetchinnikov, M.; Zolikova, A.; Ignat’eva, E.; Ziyatdinova, M.; Subcheva, E.; Bugaev, L.; Sigaev, V. Ultra-Broadband Plasmon Resonance in Gold Nanoparticles Precipitated in ZnO-Al2O3-SiO2 Glass. Ceramics 2024, 7, 562-578. https://doi.org/10.3390/ceramics7020037
Shakhgildyan G, Avakyan L, Atroshchenko G, Vetchinnikov M, Zolikova A, Ignat’eva E, Ziyatdinova M, Subcheva E, Bugaev L, Sigaev V. Ultra-Broadband Plasmon Resonance in Gold Nanoparticles Precipitated in ZnO-Al2O3-SiO2 Glass. Ceramics. 2024; 7(2):562-578. https://doi.org/10.3390/ceramics7020037
Chicago/Turabian StyleShakhgildyan, Georgiy, Leon Avakyan, Grigory Atroshchenko, Maxim Vetchinnikov, Alexandra Zolikova, Elena Ignat’eva, Mariam Ziyatdinova, Elena Subcheva, Lusegen Bugaev, and Vladimir Sigaev. 2024. "Ultra-Broadband Plasmon Resonance in Gold Nanoparticles Precipitated in ZnO-Al2O3-SiO2 Glass" Ceramics 7, no. 2: 562-578. https://doi.org/10.3390/ceramics7020037