A Review of Cr2+ or Fe2+ Ion-Doped Zinc Sulfide and Zinc Selenide Ceramics as IR Laser Active Media
Abstract
1. State of the Art in Zinc Chalcogenide Active Media
2. Zinc Chalcogenide Optical Ceramic Technology
3. ZnSe- and ZnS-Based Laser Ceramics
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinogradov, E.A.; Mavrin, B.N.; Novikova, N.N.; Yakovlev, V.A.; Popova, D.M. Lattice dynamics of ZnSexS1−x semiconductor crystals. Laser Phys. 2009, 19, 162–170. [Google Scholar] [CrossRef]
- Popov, P.A.; Kuznetsov, S.V.; Krugovykh, A.A.; Mitroshenkov, N.V.; Balabanov, S.S.; Fedorov, P.P. Study of the thermal conductivity of PbS, CuFeS2, ZnS. Condens. Matter Interphases 2020, 22, 97–105. [Google Scholar] [CrossRef]
- Piao, M.; Cui, Q.; Zhu, H.; Xue, C.; Zhang, B. Diffraction efficiency change of multilayer diffractive optics with environmental temperature. J. Opt. 2014, 16, 035707. [Google Scholar] [CrossRef]
- Starobor, A.; Mironov, E.; Palashov, O.; Balabanov, S. Thermal lens in magneto-active ZnS, ZnSe and CdSe semiconductor media. Opt. Mater. 2023, 138, 113740. [Google Scholar] [CrossRef]
- Title, R.S. Electron Paramagnetic Resonance Spectra of Cr+, Mn++, and Fe3+ in Cubic ZnS. Phys. Rev. 1963, 131, 623–627. [Google Scholar] [CrossRef]
- Page, R.H.; DeLoach, L.D.; Wilke, G.D.; Payne, S.A.; Beach, R.J.; Krupke, W.F. Cr2+-doped II-VI crystals: New widely tunable, room-temperature mid-IR lasers Lasers and Electro-Optics Society Annual Meeting. In Proceedings of the 8th Annual Meeting Conference Proceedings, San Francisco, CA, USA, 30–31 October 1995; pp. 449–450. [Google Scholar]
- DeLoach, L.D.; Page, R.H.; Wilke, G.D.; Payne, S.A.; Krupke, W.F. Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media. IEEE J. Quantum Electron. 1996, 32, 885–895. [Google Scholar] [CrossRef]
- Adams, J.J.; Bibeau, C.; Page, R.H.; Krol, D.M.; Furu, L.H.; Payne, S.A. 4.0–4.5-µm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material. Opt. Lett. 1999, 24, 1720–1722. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim-Zadeh, M.; Sorokina, I.T. Mid-Infrared Coherent Sources and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; ISBN 140206439X. [Google Scholar]
- Mirov, S.B.; Moskalev, I.S.; Vasilyev, S.; Smolski, V.; Fedorov, V.V.; Martyshkin, D.; Peppers, J.; Mirov, M.; Dergachev, A.; Gapontsev, V. Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1601829. [Google Scholar] [CrossRef]
- Kozlovsky, V.I.; Korostelin, Y.V.; Podmar’kov, Y.P.; Skasyrsky, Y.K.; Frolov, M.P. Middle infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe lasers: New results. J. Phys. Conf. Ser. 2016, 740, 012006. [Google Scholar] [CrossRef]
- Dormidonov, A.E.; Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Kotereva, T.V.; Savin, D.V.; Timofeeva, N.A. High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy. Appl. Phys. B 2016, 122, 211. [Google Scholar] [CrossRef]
- Shcherbakov, I.A. Laser physics in medicine. Phys.-Uspekhi 2010, 53, 631–635. [Google Scholar] [CrossRef]
- Ma, J.; Qin, Z.; Xie, G.; Qian, L.; Tang, D. Review of mid-infrared mode-locked laser sources in the 2.0 μm–3.5 μm spectral region. Appl. Phys. Rev. 2019, 6, 021317. [Google Scholar] [CrossRef]
- Ebrahim-Zadeh, M.; Helmy, A.S.; Leo, G.; Schunemann, P.G. Mid-infrared coherent sources and applications: Introduction. J. Opt. Soc. Am. B 2021, 38, MIC1. [Google Scholar] [CrossRef]
- Akimov, V.A.; Kozlovskii, V.I.; Korostelin, Y.V.; Landman, A.I.; Podmar’kov, Y.P.; Frolov, M.P. Intracavity laser spectroscopy using a Cr2+:ZnSe laser. Quantum Electron. 2004, 34, 185–188. [Google Scholar] [CrossRef]
- Akimov, V.A.; Voronov, A.A.; Kozlovskii, V.I.; Korostelin, Y.V.; Landman, A.I.; Podmar’kov, Y.P.; Frolov, M.P. Intracavity laser spectroscopy by using a Fe2+:ZnSe laser. Quantum Electron. 2007, 37, 1071–1075. [Google Scholar] [CrossRef]
- Zakharov, N.G.; Savikin, A.P.; Sharkov, V.V.; Eremeykin, O.N. Intracavity laser spectroscopy of CH4 and NH3 gases by using a pulse-periodic Cr2+:ZnSe laser. Opt. Spectrosc. 2012, 112, 32–35. [Google Scholar] [CrossRef]
- Fjodorow, P.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Schulz, C.; Leonov, S.O.; Skasyrsky, Y.K. Room-temperature Fe:ZnSe laser tunable in the spectral range of 3.7–5.3 µm applied for intracavity absorption spectroscopy of CO2 isotopes, CO and N2O. Opt. Express 2021, 29, 12033. [Google Scholar] [CrossRef]
- Komar, V.K.; Nalivaiko, D.P.; Sulima, S.V.; Zagoruiko, Y.A.; Fedorenko, O.A.; Kovalenko, N.O.; Chugai, O.N.; Terzin, I.S.; Gerasimenko, A.S.; Dubina, N.G. ZnSe:Cr2+ laser crystals grown by Bridgman method. Funct. Mater. 2009, 16, 192–196. [Google Scholar]
- Jelínková, H.; Doroshenko, M.E.; Jelínek, M.; Šulc, J.; Němec, M.; Kubeček, V.; Zagoruiko, Y.A.; Kovalenko, N.O.; Gerasimenko, A.S.; Puzikov, V.M.; et al. Fe:ZnSe and Fe:ZnMgSe lasers pumped by Er:YSGG radiation. Proc. SPIE 2015, 9342, 93421V. [Google Scholar]
- Doroshenko, M.E.; Jelínková, H.; Koranda, P.; Šulc, J.; Basiev, T.T.; Osiko, V.V.; Komar, V.K.; Gerasimenko, A.S.; Puzikov, V.M.; Badikov, V.V.; et al. Tunable mid-infrared laser properties of Cr2+:ZnMgSe and Fe2+:ZnSe crystals. Laser Phys. Lett. 2010, 7, 38–45. [Google Scholar] [CrossRef]
- Su, C.-H.; Feth, S.; Volz, M.P.; Matyi, R.; George, M.A.; Chattopadhyay, K.; Burger, A.; Lehoczky, S.L. Vapor growth and characterization of Cr-doped ZnSe crystals. J. Cryst. Growth 1999, 207, 35–42. [Google Scholar] [CrossRef]
- Akimov, V.A.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Landman, A.I.; Podmar’kov, Y.P.; Voronov, A.A. Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers. Phys. Status Solidi C 2006, 3, 1213–1216. [Google Scholar] [CrossRef]
- Kozlovsky, V.I.; Akimov, V.A.; Frolov, M.P.; Korostelin, Y.V.; Landman, A.I.; Martovitsky, V.P.; Mislavskii, V.V.; Podmar’kov, Y.P.; Skasyrsky, Y.K.; Voronov, A.A. Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase. Phys. Status Solidi 2010, 247, 1553–1556. [Google Scholar] [CrossRef]
- Gavrishchuk, E.; Savin, D.; Tomilova, T.; Ikonnikov, V.; Kurashkin, S.; Mashin, A.; Nezhdanov, A.; Usanov, D. Spray pyrolysis deposited Cr and In doped CdS films for laser application. Opt. Mater. 2021, 117, 111153. [Google Scholar] [CrossRef]
- Demirbas, U.; Sennaroglu, A.; Kurt, A.; Somer, M. Preparation and Spectroscopic Investigation of Diffusion-Doped Fe2+:ZnSe and Cr2+:ZnSe. In Advanced Solid-State Photonics (TOPS); OSA: Washington, DC, USA, 2005; p. 63. [Google Scholar]
- Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Rodin, S.A.; Savin, D.V.; Timofeeva, N.A. Room temperature Fe2+:ZnS laser. Proc. SPIE 2015, 9810, 98100W. [Google Scholar]
- Moskalev, I.; Mirov, S.; Mirov, M.; Vasilyev, S.; Smolski, V.; Zakrevskiy, A.; Gapontsev, V. 140 W Cr:ZnSe laser system. Opt. Express 2016, 24, 21090. [Google Scholar] [CrossRef]
- Velikanov, S.D.; Gavrishchuk, E.M.; Zaretsky, N.A.; Zakhryapa, A.V.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Maneshkin, A.A.; Mashkovskii, D.A.; Saltykov, E.V.; et al. Repetitively pulsed Fe: ZnSe laser with an average output power of 20 W at room temperature of the polycrystalline active element. Quantum Electron. 2017, 47, 303–307. [Google Scholar] [CrossRef]
- Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Rodin, S.A.; Savin, D.V.; Timofeeva, N.A. High-energy room-temperature Fe2+: ZnS laser. Laser Phys. Lett. 2016, 13, 015001. [Google Scholar] [CrossRef]
- Timofeeva, N.A.; Gavrishchuk, E.M.; Savin, D.V.; Rodin, S.A.; Kurashkin, S.V.; Ikonnikov, V.B.; Tomilova, T.S. Fe2+ Diffusion in CVD ZnSe during Annealing in Different (Ar, Zn, and Se) Atmospheres. Inorg. Mater. 2019, 55, 1201–1205. [Google Scholar] [CrossRef]
- Gavrishuk, E.; Ikonnikov, V.; Kotereva, T.; Savin, D.; Rodin, S.; Mozhevitina, E.; Avetisov, R.; Zykova, M.; Avetissov, I.; Firsov, K.; et al. Growth of high optical quality zinc chalcogenides single crystals doped by Fe and Cr by the solid phase recrystallization technique at barothermal treatment. J. Cryst. Growth 2017, 468, 655–661. [Google Scholar] [CrossRef]
- Gavrishchuk, E.M.; Savin, D.V.; Tomilova, T.S.; Ikonnikov, V.B.; Kurashkin, S.V.; Rodin, S.A.; Kononov, I.G.; Podlesnykh, S.V.; Firsov, K.N. Laser properties of active media based on ZnSe doped with Fe and In from spray pyrolysis deposited films. Laser Phys. Lett. 2022, 19, 065801. [Google Scholar] [CrossRef]
- Kurashkin, S.V.; Martynova, O.V.; Savin, D.V.; Gavrishchuk, E.M.; Rodin, S.A.; Savikin, A.P. Doping profile influence on a polycrystalline Cr2+: ZnSe laser efficiency. Laser Phys. Lett. 2018, 15, 025002. [Google Scholar] [CrossRef]
- Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Kotereva, T.V.; Savin, D.V.; Timofeeva, N.A. Room-temperature laser on a ZnSe: Fe2+ polycrystal with undoped faces, excited by an electrodischarge HF laser. Laser Phys. Lett. 2016, 13, 055002. [Google Scholar] [CrossRef]
- Kurashkin, S.V.; Martynova, O.V.; Savin, D.V.; Gavrishchuk, E.M.; Balabanov, S.S.; Ikonnikov, V.B.; Sharkov, V.V. Cr2+: ZnSe active media with complex profiles of internal doping. Laser Phys. Lett. 2019, 16, 075801. [Google Scholar] [CrossRef]
- Balabanov, S.S.; Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kononov, I.G.; Kurashkin, S.V.; Podlesnykh, S.V.; Savin, D.V.; Sirotkin, A.A. Room-temperature lasing on Fe2+: ZnSe with meniscus inner doped layer fabricated by solid-state diffusion bonding. Laser Phys. Lett. 2019, 16, 055004. [Google Scholar] [CrossRef]
- Alekseev, E.E.; Kazantsev, S.Y.; Podlesnikh, S.V. Potential of crystals with a nonuniform doping profile for a Fe2+: ZnSe laser. Opt. Mater. Express 2020, 10, 2075. [Google Scholar] [CrossRef]
- Dormidonov, A.E.; Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kononov, I.G.; Kurashkin, S.V.; Podlesnykh, S.V.; Savin, D.V. Suppression of Transverse Parasitic Oscillation in Fe:ZnSe and Fe:ZnS Lasers Based on Polycrystalline Active Elements: A Review. Phys. Wave Phenom. 2020, 28, 222–230. [Google Scholar] [CrossRef]
- Ruan, P.; Pan, Q.; Alekseev, E.E.; Kazantsev, S.Y.; Mashkovtseva, L.S.; Mironov, Y.B.; Podlesnikh, S.V. Performance improvement of a Fe2+:ZnSe laser pumped by non-chain pulsed HF laser. Optik 2021, 242, 167005. [Google Scholar] [CrossRef]
- Savin, D.V.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Eremeykin, O.N.; Egorov, A.S. Laser generation in polycrystalline Cr2+:ZnSe with undoped faces. Quantum Electron. 2015, 45, 8–10. [Google Scholar] [CrossRef]
- Nitsuk, Y.A. Diffusion of chromium and impurity absorption in ZnS crystals. Funct. Mater. 2013, 20, 10–15. [Google Scholar] [CrossRef]
- Yudin, N.; Antipov, O.; Balabanov, S.; Eranov, I.; Getmanovskiy, Y.; Slyunko, E. Effects of the Processing Technology of CVD-ZnSe, Cr2+:ZnSe, and Fe2+:ZnSe Polycrystalline Optical Elements on the Damage Threshold Induced by a Repetitively Pulsed Laser at 2.1 µm. Ceramics 2022, 5, 459–471. [Google Scholar] [CrossRef]
- Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Rodin, S.A.; Savin, D.V.; Timofeeva, N.A. Characteristics of a polycrystalline ZnSe:Fe2+ laser at room temperature. Proc. SPIE 2015, 9810, 98101R. [Google Scholar]
- Balabanov, S.S.; Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Kotereva, T.V.; Savin, D.V.; Timofeeva, N.A. Laser properties of Fe2+: ZnSe fabricated by solid-state diffusion bonding. Laser Phys. Lett. 2018, 15, 045806. [Google Scholar] [CrossRef]
- Rodin, S.A.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Savin, D.V. Effect of Annealing Atmosphere on Chromium Diffusion in CVD ZnSe. Inorg. Mater. 2018, 54, 21–25. [Google Scholar] [CrossRef]
- Ikonnikov, V.B.; Kotereva, T.V.; Savin, D.V.; Gavrishchuk, E.M. Diffusion of chromium in zinc chalcogenides during hot isostatic pressing. Opt. Mater. 2021, 117, 111200. [Google Scholar] [CrossRef]
- Gafarov, O.; Martinez, A.; Fedorov, V.; Mirov, S. Enhancement of Cr and Fe diffusion in ZnSe/S laser crystals via annealing in vapors of Zn and hot isostatic pressing. Opt. Mater. Express 2017, 7, 25. [Google Scholar] [CrossRef]
- Steinmeyer, G.; Tomm, J.W.; Fuertjes, P.; Griebner, U.; Balabanov, S.S.; Elsaesser, T. Efficient Electronic Excitation Transfer via Phonon-Assisted Dipole-Dipole Coupling in Fe2+:Cr2+:ZnSe. Phys. Rev. Appl. 2023, 19, 054043. [Google Scholar] [CrossRef]
- Fürtjes, P.; Tomm, J.W.; Griebner, U.; Steinmeyer, G.; Balabanov, S.S.; Gavrishchuk, E.M.; Elsaesser, T. Kinetics of excitation transfer from Cr2+ to Fe2+ ions in co-doped ZnSe. Opt. Lett. 2022, 47, 2129. [Google Scholar] [CrossRef] [PubMed]
- Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Rodin, S.A.; Savin, D.V.; Sirotkin, A.A.; Timofeeva, N.A. CVD-grown Fe2+: ZnSe polycrystals for laser applications. Laser Phys. Lett. 2017, 14, 055805. [Google Scholar] [CrossRef]
- Avetisov, R.I.; Balabanov, S.S.; Firsov, K.N.; Gavrishchuk, E.M.; Gladilin, A.A.; Ikonnikov, V.B.; Kalinushkin, V.P.; Kazantsev, S.Y.; Kononov, I.G.; Zykova, M.P.; et al. Hot-pressed production and laser properties of ZnSe:Fe2+. J. Cryst. Growth 2018, 491, 36–41. [Google Scholar] [CrossRef]
- Ikesue, A. Processing of Ceramics: Breakthroughs in Optical Materials; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 1119538815. [Google Scholar]
- Li, J.; Pan, Y.; Zeng, Y.; Liu, W.; Jiang, B.; Guo, J. The history, development, and future prospects for laser ceramics: A review. Int. J. Refract. Met. Hard Mater. 2013, 39, 44–52. [Google Scholar] [CrossRef]
- Sanghera, J.; Kim, W.; Villalobos, G.; Shaw, B.; Baker, C.; Frantz, J.; Sadowski, B.; Aggarwal, I. Ceramic laser materials: Past and present. Opt. Mater. 2013, 35, 693–699. [Google Scholar] [CrossRef]
- Gallian, A.; Fedorov, V.V.; Mirov, S.B.; Badikov, V.V.; Galkin, S.N.; Voronkin, E.F.; Lalayants, A.I. Hot-pressed ceramic Cr2+:ZnSe gain-switched laser. Opt. Express 2006, 14, 11694. [Google Scholar] [CrossRef]
- Moskalev, I.S.; Fedorov, V.V.; Mirov, S.B. CW Single-Frequency Tunable, CW Multi-Watt Polycrystalline, and CW Hot-Pressed-Ceramic Cr2+:ZnSe Lasers. In Proceedings of the 2007 Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 6–11 May 2007; pp. 1–2. [Google Scholar]
- Mirov, S.B.; Fedorov, V.V.; Moskalev, I.S.; Martyshkin, D.V. Recent Progress in Transition-Metal-Doped II–VI Mid-IR Lasers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 810–822. [Google Scholar] [CrossRef]
- Carnall, J.E.; Mauer, P.B.; Parsons, W.F.; Roy, D.W. Zinc sulfide optical element. Patent US 3131025, 28 April 1964. [Google Scholar]
- Harris, D.C. Development of hot-pressed and chemical-vapor-deposited zinc sulfide and zinc selenide in the United States for optical windows. Proc. SPIE 2007, 6545, 654502. [Google Scholar]
- Chlique, C.; Merdrignac-Conanec, O.; Hakmeh, N.; Zhang, X.; Adam, J.-L. Transparent ZnS Ceramics by Sintering of High Purity Monodisperse Nanopowders. J. Am. Ceram. Soc. 2013, 96, 3070–3074. [Google Scholar] [CrossRef]
- Hakmeh, N.; Merdrignac-Conanec, O.; Zhang, X. Method of Manufacturing a Sulfide-Based Ceramic Element, Particularly for IR-Optics Applications. Patent application US 2017/0144934, 25 May 2017. [Google Scholar]
- Durand, G.R.; Hakmeh, N.; Dorcet, V.; Demange, V.; Cheviré, F.; Merdrignac-Conanec, O. New insights in structural characterization of transparent ZnS ceramics hot-pressed from nanocrystalline powders synthesized by combustion method. J. Eur. Ceram. Soc. 2019, 39, 3094–3102. [Google Scholar] [CrossRef]
- Chen, W.W.; Dunn, B. Characterization of Pore Size Distribution by Infrared Scattering in Highly Dense ZnS. J. Am. Ceram. Soc. 1993, 76, 2086–2092. [Google Scholar] [CrossRef]
- Choi, B.; Kim, D.; Lee, K.; Kim, B.; Kang, J.; Nahm, S. Highly IR transparent ZnS ceramics sintered by vacuum hot press using hydrothermally produced ZnS nanopowders. J. Am. Ceram. Soc. 2020, 103, 2663–2673. [Google Scholar] [CrossRef]
- Yeo, S.-Y.; Kwon, T.-H.; Park, C.-S.; Kim, C.-I.; Yun, J.-S.; Jeong, Y.-H.; Hong, Y.-W.; Cho, J.-H.; Paik, J.-H. Sintering and optical properties of transparent ZnS ceramics by pre-heating treatment temperature. J. Electroceramics 2018, 41, 1–8. [Google Scholar] [CrossRef]
- Lee, K.-T.; Choi, B.-H.; Woo, J.-U.; Kang, J.-S.; Paik, J.-H.; Chu, B.-U.; Nahm, S. Microstructural and optical properties of the ZnS ceramics sintered by vacuum hot-pressing using hydrothermally synthesized ZnS powders. J. Eur. Ceram. Soc. 2018, 38, 4237–4244. [Google Scholar] [CrossRef]
- Zhou, G.; Calvez, L.; Delaizir, G.; Zhang, X.; Rocherullé, J. Comparative study of ZnSe powders synthesized by two different methods and sintered by Hot-Pressing. Optoelectron. Adv. Mater. Rapid Commun. 2014, 8, 436–441. [Google Scholar]
- Gao, J.L.; Liu, P.; Zhang, J.; Xu, X.D.; Tang, D.Y. Fabrication of High Dense ZnSe Ceramic by Spark Plasma Sintering: The Effect of the Powder Process Method. Solid State Phenom. 2018, 281, 661–666. [Google Scholar] [CrossRef]
- Baláẑ, P.; Bálintová, M.; Bastl, Z.; Briančin, J.; Šepelák, V. Characterization and reactivity of zinc sulphide prepared by mechanochemical synthesis. Solid State Ionics 1997, 101–103, 45–51. [Google Scholar] [CrossRef]
- Achimovičová, M.; Bujňáková, Z.; Fabián, M.; Zorkovská, A. Study of de-aggregation of mechanochemically synthesized ZnSe nanoparticles by re-milling in the presence of ZnCl2 solution. Acta Montan. Slovaca Ročník 2013, 18, 119–124. [Google Scholar]
- Gotor, F.J.; Achimovicova, M.; Real, C.; Balaz, P. Influence of the milling parameters on the mechanical work intensity in planetary mills. Powder Technol. 2013, 233, 1–7. [Google Scholar] [CrossRef]
- Ahn, H.-Y.; Choi, W.J.; Lee, S.Y.; Ju, B.-K.; Cho, S.-H. Mechanochemical synthesis of ZnS for fabrication of transparent ceramics. Res. Chem. Intermed. 2018, 44, 4721–4731. [Google Scholar] [CrossRef]
- Kozitskii, S.V.; Pisarskii, V.P.; Polishchuk, D.D.; Chaus, I.S.; Kompanichenko, N.M.; Andreichenko, V.G. Chemical-composition and some properties of zinc-sulfide synthesized in a combustion wave. Inorg. Mater. 1990, 26, 2126–2129. [Google Scholar]
- Kovalenko, A.V. The peculiarities of the properties of ZnSxSe1-x nanocrystals obtained by self-propagating high-temperature synthesis. Funct. Mater. 2018, 25, 665–669. [Google Scholar] [CrossRef]
- Kozitskii, S.V.; Vaksman, Y.F. Luminescence of zinc selenide obtained by the method of self-propagating high-temperature synthesis. J. Appl. Spectrosc. 1997, 64, 345–349. [Google Scholar] [CrossRef]
- Bulaniy, M.F.; Kovalenko, A.V.; Morozov, A.S.; Khmelenko, O.V. Obtaining of nanocrystals ZnS: Mn by means of self-propagating high-temperature synthesis. J. Nano-Electron. Phys. 2017, 9, 2001–2007. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Fedorov, V.V.; Mirov, S.B.; Wu, Y. Hot-pressed chromium doped zinc sulfide infrared transparent ceramics. Scr. Mater. 2016, 125, 15–18. [Google Scholar] [CrossRef]
- Li, C.; Xie, T.; Kou, H.; Pan, Y.; Li, J. Hot-pressing and post-HIP treatment of Fe2+: ZnS transparent ceramics from co-precipitated powders. J. Eur. Ceram. Soc. 2017, 37, 2253–2257. [Google Scholar] [CrossRef]
- Shizen, Z.; Hongli, M.A.; Jean, R.; Odile, M.C.; Jean-Luc, A.; Jacques, L.; Xianghua, Z. Preparation and hot pressing of ZnS nano powders for producing transparent ceramics. Optoelectron Adv Mater 2007, 1, 667–671. [Google Scholar]
- Chlique, C.; Delaizir, G.; Merdrignac-Conanec, O.; Roucau, C.; Dollé, M.; Rozier, P.; Bouquet, V.; Zhang, X.H. A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS). Opt. Mater. 2011, 33, 706–712. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y. Transparent and Luminescent ZnS Ceramics Consolidated by Vacuum Hot Pressing Method. J. Am. Ceram. Soc. 2015, 98, 2972–2975. [Google Scholar] [CrossRef]
- Li, Y. Photoluminescent Zinc Sulfide Optical Ceramics; New York State College of Ceramics at Alfred University, Kazuo Inamori School of Engineering: Alfred Station, NY, USA, 2015. [Google Scholar]
- Li, C.; Pan, Y.; Kou, H.; Chen, H.; Wang, W.; Xie, T.; Li, J. Densification Behavior, Phase Transition, and Preferred Orientation of Hot-Pressed ZnS Ceramics from Precipitated Nanopowders. J. Am. Ceram. Soc. 2016, 99, 3060–3066. [Google Scholar] [CrossRef]
- Merdrignac-Conanec, O.; Hakmeh, N.; Durand, G.; Zhang, X.-H. Manufacturing of transparent ZnS ceramics by powders sintering. Proc. SPIE 2016, 9822, 982203. [Google Scholar]
- Li, C.; Chen, H.; Ivanov, M.; Xie, T.; Dai, J.; Kou, H.; Pan, Y.; Li, J. Large-scale hydrothermal synthesis and optical properties of Cr2+:ZnS nanocrystals. Ceram. Int. 2018, 44, 13169–13175. [Google Scholar] [CrossRef]
- Yu, S.; Wu, Y. Synthesis of Fe:ZnSe nanopowders via the co-precipitation method for processing transparent ceramics. J. Am. Ceram. Soc. 2019, 102, 7089–7097. [Google Scholar] [CrossRef]
- Yu, S.; Carloni, D.; Wu, Y. Microstructure development and optical properties of Fe:ZnSe transparent ceramics sintered by spark plasma sintering. J. Am. Ceram. Soc. 2020, 103, 4159–4166. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Zhang, J.; Liu, P.; Zhou, T.; Zhang, H.; Gong, D.; Tang, D.; Shen, D. Fabrication of transparent ZnS ceramic by optimizing the heating rate in spark plasma sintering process. Opt. Mater. 2015, 50, 36–39. [Google Scholar] [CrossRef]
- Li, Y.; Tan, W.; Wu, Y. Phase transition between sphalerite and wurtzite in ZnS optical ceramic materials. J. Eur. Ceram. Soc. 2020, 40, 2130–2140. [Google Scholar] [CrossRef]
- Huang, F.; Banfield, J.F. Size-Dependent Phase Transformation Kinetics in Nanocrystalline ZnS. J. Am. Chem. Soc. 2005, 127, 4523–4529. [Google Scholar] [CrossRef]
- Aven, M.; Parodi, J.A. Study of the crystalline transformations in ZnS:Cu, ZnS:Ag and ZnS:Cu, Al. J. Phys. Chem. Solids 1960, 13, 56–64. [Google Scholar] [CrossRef]
- Volynets, F.K.; Gorokhova, E.I.; Qashqai, A.D. Kinetics of collective recrystallization of doped ZnS. Inorg. Mater. 1982, 18, 733–737. [Google Scholar]
- Gorokhova, E.I.; Ananyeva, G.V.; Volynets, F.K. Influence of alloying impurities on the phase composition of zinc sulfide ceramics. Inorg. Mater. 1987, 23, 142–144. [Google Scholar]
- Król, A.; Kozielski, M.J.; Nazarewicz, W. Infrared Studies of Al Complexes in Zinc Sulphide. Phys. Status Solidi 1978, 90, 649–656. [Google Scholar] [CrossRef]
- Osipov, V.V.; Platonov, V.V.; Tikhonov, E.V.; Lisenkov, V.V. Investigation of obtaining ZnSe nanopowders by means of a fiber ytterbium laser. In Proceedings of the 2022 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 20–24 June 2022; p. 1. [Google Scholar]
- Kolesnikov, N.N.; James, R.B.; Berzigiarova, N.S.; Kulakov, M.P. HPVB and HPVZM shaped growth of CdZnTe, CdSe, and ZnSe crystals. Proc. SPIE 2003, 4784, 93–104. [Google Scholar]
- Gavrushchuk, E.M. Polycrystalline Zinc Selenide for IR Optical Applications. Inorg. Mater. 2003, 39, 883–899. [Google Scholar] [CrossRef]
- Mironov, E.A.; Palashov, O.V.; Balabanov, S.S. High-purity CVD-ZnSe polycrystal as a magneto-active medium for a multikilowatt Faraday isolator. Opt. Lett. 2021, 46, 2119. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yin, M.; Chen, L.; Yu, S.; Kang, B. Hot-pressed Fe2+:ZnSe ceramics with powders fabricated via grinding chemical vapor deposition ZnSe polycrystalline. Opt. Mater. Express 2021, 11, 2744. [Google Scholar] [CrossRef]
- Andreev, V.M.; Gusakova, V.V.; Thomson, A.S.; Pogorelova, N.N.; Danilkov, N.K.; Sidorov, N.G.; Kartushina, A.A. Method for Obtaining Sulfides and Selenides of Metals. Patent SU 212238, 29 November 1968. [Google Scholar]
- Antipov, P.I.; Vladyko, M.N.; Grinberg, E.E.; Dernovsky, V.I.; Movum-Zade, A.A. Method for Producing Zinc Selenide Powder. Patent SU 1148832, 7 April 1985. [Google Scholar]
- Kiro, S.A.; Bezrodnykh, A.K.; Ageyev, N.D. Method of Producing Zinc Sulfide. Patent RU 1790550, 23 January 1993. [Google Scholar]
- Luo, Y.; Yin, M.; Chen, L.; Kang, B.; Yu, S. Hot-pressed Fe2+:ZnSe transparent ceramics with different doping concentrations. Ceram. Int. 2022, 48, 3473–3480. [Google Scholar] [CrossRef]
- Fujita, Y.; Nitta, T. Sintering of ZnS with a Small Amount of Ba2ZnS3. J. Am. Ceram. Soc. 1982, 65, C-18–C-19. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, L.; Yang, H.; Zhou, T.; Wong, C.; Zhang, Q.; Chen, H. Preliminary study of 3D ball-milled powder processing and SPS-accelerated densification of ZnSe ceramics. Opt. Mater. Express 2017, 7, 1131. [Google Scholar] [CrossRef]
- Hong, J.; Jung, W.K.; Choi, D.H. Effect of porosity and hexagonality on the infrared transmission of spark plasma sintered ZnS ceramics. Ceram. Int. 2020, 46, 16285–16290. [Google Scholar] [CrossRef]
- Zahabi, S.; Jamali, H.; Bakhshi, S.R.; Ashkian, A.; Loghman-Estarki, M. Comparing infrared transmission of zinc sulfide nanostructure ceramic produced via hot pressure and spark plasma sintering methods. Int. J. Appl. Ceram. Technol. 2022, 19, 1319–1327. [Google Scholar] [CrossRef]
- Chen, M.; Li, W.; Kou, H.; Jiang, B.; Pan, Y. Hot-pressed Cr:ZnSe ceramic as mid-infrared laser material. In Proceedings of the Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers, Shanghai, China, 19–22 May 2013; Shao, J., Jitsuno, T., Rudolph, W., Eds.; SPIE: Bellingham, WA, USA, 2013; Volume 8786, p. 87860L. [Google Scholar]
- Wei, Y.; Liu, C.; Ma, E.; Lu, Z.; Wang, F.; Song, Y.; Sun, Q.; Jie, W.; Wang, T. The optical spectra characterization of Cr2+:ZnSe polycrystalline synthesized by direct reaction of Zn–Cr alloy and element Se. Ceram. Int. 2020, 46, 21136–21140. [Google Scholar] [CrossRef]
- Karki, K.; Yu, S.; Fedorov, V.; Martyshkin, D.; Subedi, S.; Wu, Y.; Mirov, S. Hot-pressed ceramic Fe:ZnSe gain-switched laser. Opt. Mater. Express 2020, 10, 3417. [Google Scholar] [CrossRef]
- Velikanov, S.D.; Zaretsky, N.A.; Zotov, E.A.; Kazantsev, S.Y.; Kononov, I.G.; Korostelin, Y.V.; Maneshkin, A.A.; Firsov, K.N.; Frolov, M.P.; Yutkin, I.M. Room-temperature 1.2-J Fe2+: ZnSe laser. Quantum Electron. 2016, 46, 11–12. [Google Scholar] [CrossRef]
- Fedorov, V.V.; Mirov, M.S.; Mirov, S.B.; Gapontsev, V.P.; Erofeev, A.V.; Smirnov, M.Z.; Altshuler, G.B. Compact 1J mid-IR Cr:ZnSe Laser. In Frontiers in Optics 2012/Laser Science XXVIII; OSA: Washington, DC, USA, 2012; p. FW6B.9. [Google Scholar]
Reference, Year | [113], 2016 | [30], 2017 | [38], 2019 | [112], 2020 | [114], 2012 | [57], 2006 |
---|---|---|---|---|---|---|
Active element | Fe2+:ZnSe | Fe2+:ZnSe | Fe2+:ZnSe | Fe2+:ZnSe | Cr2+:ZnSe | Cr2+:ZnSe |
Synthesis method | PVD | CVD + HIP | CVD + SSDB * + HIP | Ceramic | Ceramic | |
Effective dopant concentration, at/cm3 | 2.6 × 1018 | (7–9) × 1018 | 9.0 × 1018 | |||
Doping | homogeneous | external, inhomogeneous | internal (meniscus), inhomogeneous | homogeneous | homogeneous | |
Active element dimensions, mm | d = 27, l = 15 | d = 64, l = 4 | d = 20, l = 7.5 | d = 18, l = 3.2 | d = 15, l = 10.5 | |
Pump laser | HF | HF | HF | Er:YAG | Er:Glass | Nd:YAG |
Pump diameter, mm | 17 | 14 × 16 (ellip-tical) | 8.8 | 2 | 6.5 | |
Output energy, J | 1.2 | 1.67 | 0.48 | 0.041 | 1.1 | 0.002 |
ηslope, % (with respect to the in-cident energy) | 25 | 27 | ||||
ηabs, % (with respect to the ab-sorbed energy) | 43 | 38 | 25 | 15 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofeeva, N.; Balabanov, S.; Li, J. A Review of Cr2+ or Fe2+ Ion-Doped Zinc Sulfide and Zinc Selenide Ceramics as IR Laser Active Media. Ceramics 2023, 6, 1517-1530. https://doi.org/10.3390/ceramics6030094
Timofeeva N, Balabanov S, Li J. A Review of Cr2+ or Fe2+ Ion-Doped Zinc Sulfide and Zinc Selenide Ceramics as IR Laser Active Media. Ceramics. 2023; 6(3):1517-1530. https://doi.org/10.3390/ceramics6030094
Chicago/Turabian StyleTimofeeva, Natalia, Stanislav Balabanov, and Jiang Li. 2023. "A Review of Cr2+ or Fe2+ Ion-Doped Zinc Sulfide and Zinc Selenide Ceramics as IR Laser Active Media" Ceramics 6, no. 3: 1517-1530. https://doi.org/10.3390/ceramics6030094
APA StyleTimofeeva, N., Balabanov, S., & Li, J. (2023). A Review of Cr2+ or Fe2+ Ion-Doped Zinc Sulfide and Zinc Selenide Ceramics as IR Laser Active Media. Ceramics, 6(3), 1517-1530. https://doi.org/10.3390/ceramics6030094