Effect of Diamond Phase Dispersion on the Properties of Diamond-SiC-Si Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruzhkin, A. High-Pressure synthesized materials: A chest of treasure andhints. High Press. Res. 2007, 27, 333–351. [Google Scholar] [CrossRef]
- Shul’zhenko, A.A.; Bakulya, V.N. (Eds.) Synthesis of Diamond and Similar Materials; Inst. Sverkhtverd. Mater. im. V. N. Bakulya: Kiev, Ukraine, 2003. [Google Scholar]
- Pantea, C.; Qian, J.; Voronin, G.A.; Zerda, T.W. High pressure study ofgraphitization of diamond crystals. J. Appl. Phys. 2002, 91, 1957–1962. [Google Scholar] [CrossRef]
- Seal, M. Graphitization of diamond. Nature 1960, 185, 522–523. [Google Scholar] [CrossRef]
- James, T.; James, A.P.F. Study of the transformation of diamond to graphite. Proc. R. Soc. Lond. Ser. A Math. 1964, 277, 260–269. [Google Scholar]
- Khmelnitsky, R.; Gippius, A. Transformation of diamond to graphite under heattreatment at low pressure. Phase Transit. 2014, 87, 175–192. [Google Scholar] [CrossRef]
- Ko, Y.S.; Tsurumi, T.; Fukunaga, O.; Yano, T. High pressure sintering of diamond-SiC composite. J. Mater. Sci. 2001, 36, 469–475. [Google Scholar] [CrossRef]
- Ekimov, E.A.; Gavriliuk, A.G.; Palosz, B.; Gierlotka, S.; Dluzewski, P.; Tatianin, E.; Kluev, Y.; Naletov, A.M.; Presz, A. High-pressure, high-temperature synthesis ofSiC-diamond nanocrystalline ceramics. Appl. Phys. Lett. 2000, 77, 954–956. [Google Scholar] [CrossRef]
- Herrmann, M.; Matthey, B.; Höhn, S.; Kinski, I.; Rafaja, D.; Michaelis, A. Diamond-ceramics composites—New materials for a wide range of challenging applications. J. Eur. Ceram. Soc. 2012, 32, 1915–1923. [Google Scholar] [CrossRef]
- Mlungwane, K.; Herrmann, M.; Sigalas, I. The low-pressure infiltration of diamond by silicon to form diamond–silicon carbide composites. J. Eur. Ceram. Soc. 2008, 28, 321–326. [Google Scholar] [CrossRef]
- Gordeev, S.; Zhukov, S.; Danchukova, L.; Ekström, T. Method of Manufacturing a Diamond–Silicon Carbide–Silicon Composite and a Composite Produced by This Method. U.S. Patent 709 747, 25 September 2002. [Google Scholar]
- He, Z.; Katsui, H.; Goto, T. High-Hardness Diamond Composite Consolidated by Spark Plasma Sintering. J. Am. Ceram. Soc. 2016, 99, 1862–1865. [Google Scholar] [CrossRef]
- Herrmann, M.; Kluge, E.; Rödel, C.; McKie, A.; van Staden, F. Corrosion behaviour of silicon carbide–diamond composite materials in aqueous solutions. J. Eur.Ceram. Soc. 2014, 10, 2143–2151. [Google Scholar] [CrossRef]
- Yang, Z.; He, X.; Wu, M.; Zhang, L.; Ma, A.; Liu, R.; Hu, H.; Zhang, Y.; Qu, X. Fabrication of diamond/SiC composites by Si-vapor vacuum reactive infiltration. Ceram. Int. 2013, 3, 3399–3403. [Google Scholar] [CrossRef]
- Yang, Z.; He, X.; Wu, M.; Zhang, L.; Ma, A.; Liu, R.; Hu, H.; Zhang, Y.; Qu, X. Infiltration mechanism of diamond/SiC composites fabricated by Si-vapor vacuum reactive infiltration process. J. Eur. Ceram. Soc. 2013, 4, 869–878. [Google Scholar] [CrossRef]
- Gordeev, S.K. Advanced diamond based composites for engineering applications. In Diamond Based Composites; Kluwer: Dordrecht, The Netherlands, 1997; pp. 1–11. [Google Scholar]
- Zhuk, A.E. Zakonomernosti obrazovaniya SiC v almazosoderzachey compozicei pri nizcich davleniyach (Patterns of SiC formation in a diamond-containing composition at low pressures). In Metalloobrabotka. Mashinostroenie (Vestnik BNTU Metallurgy. Metalworking. Mechanical Engineering); Vestnik BNTU Metallurgiya: Impopo, South Africa, 2007; Volume 4, pp. 27–31. [Google Scholar]
- Park, J.S.; Sinclair, R.; Rowcliffe, D.; Stern, M.; Davidson, H. Orientation relationship in diamond and silicon carbide composites. Diam. Relat. Mater. 2007, 16, 562–565. [Google Scholar] [CrossRef]
- Shevchenko, V.Y.; Perevislov, S.N. Reaction–diffusion mechanism of synthesis in the dia-mond–silicon carbide system. Russ. J. Inorg. Chem. 2021, 8, 1107–1114. [Google Scholar] [CrossRef]
- Gordeev, S.K.; Korchagina, S.B.; Zapevalov, V.E.; Parshin, V.V.; Serov, E.A. Diamond–Silicon Carbide Composite as a Promising Material for Microelectronics and High-Power Electronics. Radiophys. Quantum Electron. 2022, 65, 434–441. [Google Scholar] [CrossRef]
- Pittari, J.; Subhash, G.; Trachet, A.; Zheng, J.; Halls, V.; Karandikar, P. The Rate-Dependent Response of Pressureless-Sintered and Reaction-bonded Silicon Carbide-Based Ceramics. Int. J. Appl. Ceram. Technol. 2014, 12, E207–E216. [Google Scholar] [CrossRef]
- Matthey, B.; Höhn, S.; Wolfrum, A.-K.; Mühle, U.; Motylenko, M.; Rafaja, D.; Herrmann, M. Microstructural investigation of diamond-SiC composites produced by pressureless silicon infiltration. J. Eur. Ceram. Soc. 2017, 37, 1917–1928. [Google Scholar] [CrossRef]
- Voronin, G.A.; Zerda, T.W.; Gubicza, J.; Ungár, T.; Dub, S.N. Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique. J. Mater. Res. 2004, 19, 2703–2707. [Google Scholar] [CrossRef] [Green Version]
- Matthey, B.; Kunze, S.; Hörner, M.; Blug, B.; van Geldern, M.; Michaelis, A.; Herrmann, M. SiC-bonded diamond materials produced by pressureless silicon infiltration. J. Mater. Res. 2017, 32, 3362–3371. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Wang, C.; Nan, B.; Zhao, Z.; Cheng, L.; Zhang, L. Microstructure and properties of diamond/SiC composites via hot molding forming and CVI densifying. Adv. Eng. Mater. 2019, 21, 1800640. [Google Scholar] [CrossRef]
- Shaboldo, O.P.; Gordeev, S.K.; Vikhman, V.B.; Trubin, D.A. Materials and Technologies of New Generation for Perspective Products of Aviation and Space Equipment. In Proceedings of the 5th Russian Science and Technology Conference, Moscow, Russia, 19 July 2021; pp. 8–22. [Google Scholar]
- Dolmatov, V.Y. Detonation synthesis ultradispersed diamonds: Properties and applications. Russ. Chem. Rev. 2001, 70, 607–626. [Google Scholar] [CrossRef]
- Madhan, M.; Prabhakaran, G. Microwave versus conventional sintering: Microstructure and mechanical properties of Al2O3–SiC ceramic composites. Boletín Soc. Española Cerámica Vidr. 2018, 58, 125–134. [Google Scholar] [CrossRef]
Material | Compound | Density, g/cm3 | Young’s Modulus, GPa | Speed of Sound, m/s | Flexural Strength, MPa | Fracture Toughness, MPa·m−0.5 | Hardness, GPa | Source | |
---|---|---|---|---|---|---|---|---|---|
«Ideal» | Diamond (20–28 µm)/(225–250 µm) = 1/2 | 3.40 | 720 | 15,000 | 420 | 4.7 | 63 | [19] | |
«Skeleton»® | Diamond—72 vol% | 3.38 | 785 | - | - | - | - | [20] | |
Diamond—70 vol% | 3.40 | 800 | - | - | - | - | |||
Diamond—63 vol% | 3.34 | 700 | - | - | - | - | |||
Diamond—61 vol% | 3.34 | 700 | - | - | - | - | |||
Diamond—40 vol% | 3.25 | 600 | - | - | - | - | |||
RBSC-D | SiC—85 vol%, residual Si—1 vol%, diamond—14 vol% | 3.22 | 507 | 12,548 | - | - | - | [21] | |
DSc A10 | Diamond grain size10 µm | Residual Si—3.2 vol% | 3.25 | 525 | - | - | - | 49.6 * | [22] |
DSc A50 | Diamond grain size 50 µm | Residual Si—11.3 vol% | 3.15 | 518 | - | - | - | >35 * | |
Diamond-silicon carbide composites | Diamond grain size 1–2 µm | Diamond—76 vol%, SiC—24 vol% | 3.34 | - | - | - | 12 | 42 * | [23] |
Diamond grain size 10–14 µm | Diamond—83 vol%, SiC—17 vol% | 3.44 | - | - | - | 11 | 50 * | ||
Diamond grain size 40–60 µm | Diamond—86 vol%, SiC—14 vol% | 3.46 | - | - | - | 10 | 52 * | ||
Diamond composite | SiC-coated diamond | - | - | - | - | - | 36 | [12] | |
D10-1 | Diamond grain size 10 µm | 3.29 | - | - | - | 4.8 | 48.6 | [24] | |
D10-2 | Diamond grain size 10 µm | 3.29 | - | - | 390 | - | - | ||
D50-1 | Diamond grain size 50 µm | 3.14 | - | - | - | - | - | ||
D50-2 | Diamond grain size 50 µm | 3.18 | - | - | - | 3.5 | - | ||
B50/5-1 | 70% Diamond grain size 50 µm 30% Diamond grain size 2 µm | 3.31 | - | - | 370 | - | - | ||
B50/5-2 | 70% Diamond grain size 50 µm 30% Diamond grain size 2 µm | 3.25 | - | - | - | 4.9 | - | ||
T100-1 | 65% Diamond grain size 100 µm 30% Diamond grain size 20 µm 5% Diamond grain size 2 µm | 3.32 | - | - | - | - | - | ||
FD50 | Size and weight of large diamond particle [g] 50 µm. 16 | Diamond—54.74 vol%, SiC—32.56 vol% | 3.00 | - | - | 248.33 | 4.65 | - | [25] |
FD100 | Size and weight of large diamond particle [g] 100 µm. 16 | Diamond—54.21 vol%, SiC—36.59 vol% | 3.07 | - | - | 212.00 | 4.46 | - | |
FD250 | Size and weight of large diamond particle [g] 250 µm. 20 | Diamond—59.84 vol%, SiC—31.21 vol% | 3.09 | - | - | 92.50 | 3.71 | - | |
FD350 | Size and weight of large diamond diamond particle [g] 250 µm. 20 | Diamond—60.21 vol%, SiC—32.37 vol% | 3.14 | - | - | 78.00 | 3.60 | - | |
FD500 | Size and weight of large diamond particle [g] 500 µm. 25 | Diamond—60.23 vol%, SiC—33.72 vol% | 3.16 | - | - | 63.00 | 3.32 | - |
Sample No. | Diamond Matrix Composition | Size Ratio between Diamond Grains of Different Dispersion | Weight Ratios between Diamond Grains of Different Dispersion |
---|---|---|---|
1 | ASM 3/2 | ||
2 | ASM 7/5 | ||
3 | ASM 10/7 | ||
4 | ASM 14/10 | ||
5 | ASM 28/20 | ||
6 | ASM 50/40 | ||
7 | AS6 100/80 | ||
8 | AS160 250/200 | ||
9 | AS6 100/80 + ASM 10/7 | 10/1 | 60/40 |
10 | AS160 250/200 + ASM 28/20 | 10/1 | 50/50 |
11 | AS160 250/200 + ASM 28/20 | 10/1 | 60/40 |
12 | AS160 250/200 + ASM 28/20 | 10/1 | 70/30 |
13 | AS6 100/80 + ASM 3/2 | 33/1 | 75/25 |
14 | AS160 250/200 + ASM 10/7 | 25/1 | 75/25 |
15 | AS160 250/200 + ASM 28/20 + ASM 10/7 | 25/3/1 | 65/25/10 |
16 | AS160 250/200 + ASM 28/20 + ASM 10/7 | 25/3/1 | 61/12/27 |
17 | AS160 250/200 + AS6 100/80 + ASM 10/7 | 25/10/1 | 30/40/30 |
18 | AS160 250/200 + AS6 50/40 + ASM 10/7 | 25/5/1 | 50/20/30 |
19 | AS160 250/200 + ASM 28/20 + ASM 3/2 | 100/10/1 | 60/20/20 |
20 | AS160 250/200 + ASM 28/20 + DND | 100/10/1 | 54/36/10 |
Sample No * | Open Porosity, % | Density, g/cm3 | Volume Fraction, % | Speed of Sound, m/s | Young’s Modulus, GPa | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pycnometer | X-Ray | Pores | Diamond | SiC | Si | Graphite | ||||
1 top | 3.87 | 3.00 | 3.30 | 9.0 | 31.9 | 55.1 | 4.0 | 0.0 | 9700 | 255 |
1 bottom | 3.31 | 9.3 | 34.2 | 52.5 | 4.0 | 0.0 | ||||
2 top | 5.63 | 3.03 | - | - | - | - | - | - | 12,200 | 245 |
2 bottom | 3.34 | 9.2 | 38.9 | 50.1 | 1.8 | 0.0 | ||||
3 top | 5.91 | 3.05 | - | - | - | - | - | - | 13,100 | 421 |
3 bottom | 3.21 | 4.9 | 19.9 | 64.5 | 10.6 | 0.0 | ||||
4 top | 0.32 | 3.22 | 3.30 | 2.4 | 41.8 | 47.2 | 8.6 | 0.0 | 12,600 | 507 |
4 bottom | 3.30 | 2.3 | 36.3 | 56.1 | 2.2 | 3.2 | ||||
5 top | 0.34 | 3.25 | 3.30 | 1.5 | 42.2 | 47.7 | 8.7 | 0.0 | 12,900 | 532 |
5 bottom | 3.28 | 0.7 | 35.6 | 55.4 | 8.3 | 0.0 | ||||
6 top | 0.36 | 3.23 | 3.32 | 2.7 | 53.1 | 33.6 | 10.7 | 0.0 | 12,100 | 462 |
6 bottom | 3.31 | 2.5 | 46.1 | 43.5 | 7.8 | 0.0 | ||||
7 top | 0.47 | 3.18 | 3.41 | 6.8 | 68.0 | 21.0 | 4.2 | 0.0 | 12,300 | 473 |
7 bottom | 3.45 | 7.9 | 77.1 | 12.3 | 2.7 | 0.0 | ||||
8 top | 9.74 | 2.85 | 3.13 | 9.1 | 21.6 | 47.5 | 21.8 | 0.0 | 11,100 | 307 |
8 bottom | 3.29 | 13.3 | 28.9 | 52.8 | 5.0 | 0.0 | ||||
9 top | 0.29 | 3.24 | 3.39 | 4.5 | 61.0 | 31.7 | 3.0 | 0.0 | 13,300 | 572 |
9 bottom | 3.38 | 4.2 | 55.8 | 38.1 | 1.9 | 0.0 | ||||
10 top | 0.04 | 3.32 | 3.39 | 1.9 | 61.0 | 33.5 | 3.5 | 0.0 | 14,700 | 698 |
10 bottom | 3.49 | 5.0 | 88.5 | 6.2 | 0.3 | 0.0 | ||||
11 top | 0.08 | 3.37 | 3.45 | 2.3 | 86.4 | 6.5 | 4.8 | 0.0 | 14,900 | 746 |
11 bottom | 3.43 | 1.7 | 65.5 | 28.6 | 4.2 | 0.0 | ||||
12 top | 0.09 | 3.29 | 3.43 | 4.1 | 76.5 | 14.9 | 4.4 | 0.0 | 14,600 | 703 |
12 bottom | 3.37 | 2.5 | 56.6 | 37.5 | 3.5 | 0.0 | ||||
13 top | 0.37 | 3.25 | 3.42 | 5.0 | 72.2 | 18.9 | 3.9 | 0.0 | 13,200 | 564 |
13 bottom | - | - | - | - | - | - | ||||
14 top | 1.04 | 3.33 | 3.43 | 3,0 | 74.7 | 19.8 | 2.4 | 0.0 | 14,300 | 661 |
14 bottom | - | - | - | - | - | - | ||||
15 top | 0.30 | 3.24 | 3.34 | 2.9 | 48.8 | 42.6 | 5.6 | 0.0 | 14,900 | 725 |
15 bottom | 3.31 | 2.1 | 30.4 | 66.5 | 1.1 | 0.0 | ||||
16 top | 0.37 | 3.19 | 3.30 | 3.5 | 33.1 | 60.5 | 3.0 | 0.0 | 14,900 | 713 |
16 bottom | 3.29 | 3.2 | 27.1 | 68.3 | 1.5 | 0.0 | ||||
17 top | 0.34 | 3.15 | 3.24 | 2.7 | 27.0 | 59.9 | 10.4 | 0.0 | 14,100 | 631 |
17 bottom | 3.35 | 5.9 | 43.1 | 49.5 | 1.5 | 0.0 | ||||
18 top | 0.25 | 3.35 | 3.40 | 1.4 | 62.2 | 34.7 | 1.7 | 0.0 | 14,800 | 735 |
18 bottom | 3.45 | 2.9 | 78.7 | 17.4 | 1.0 | 0.0 | ||||
19 top | 2.34 | 3.26 | 3.27 | 0.2 | 21.7 | 75.0 | 3.1 | 0.0 | 12,700 | 519 |
19 bottom | 3.37 | 3.2 | 51.2 | 45.2 | 0.6 | 0.0 | ||||
20 | 2.34 | 3.26 | 3.46 | 5.7 | 82.7 | 9.1 | 2.5 | 0.0 | 13,200 | 552 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanov, S.P.; Dolgin, A.S.; Perevislov, S.N.; Khristyuk, N.A.; Sychov, M.M. Effect of Diamond Phase Dispersion on the Properties of Diamond-SiC-Si Composites. Ceramics 2023, 6, 1632-1645. https://doi.org/10.3390/ceramics6030100
Bogdanov SP, Dolgin AS, Perevislov SN, Khristyuk NA, Sychov MM. Effect of Diamond Phase Dispersion on the Properties of Diamond-SiC-Si Composites. Ceramics. 2023; 6(3):1632-1645. https://doi.org/10.3390/ceramics6030100
Chicago/Turabian StyleBogdanov, Sergey P., Andrey S. Dolgin, Sergey N. Perevislov, Nikolay A. Khristyuk, and Maxim M. Sychov. 2023. "Effect of Diamond Phase Dispersion on the Properties of Diamond-SiC-Si Composites" Ceramics 6, no. 3: 1632-1645. https://doi.org/10.3390/ceramics6030100
APA StyleBogdanov, S. P., Dolgin, A. S., Perevislov, S. N., Khristyuk, N. A., & Sychov, M. M. (2023). Effect of Diamond Phase Dispersion on the Properties of Diamond-SiC-Si Composites. Ceramics, 6(3), 1632-1645. https://doi.org/10.3390/ceramics6030100