Structural-Phase Change of Multilayer Ceramics Zr-Y-O/Si-Al-N under High Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yasuda, K.; Goto, Y.; Takeda, H. Influence of Tetragonality on Tetragonal-to-Monoclinic Phase Trans-formation during Hydrothermal Aging in Plasma-Sprayed Yttria-Stabilized Zirconia Coatings. J. Am. Ceram. Soc. 2020, 84, 1037–1042. [Google Scholar]
- Langjahr, P.A.; Oberacker, R.; Hoffmann, M.J. Long-Term Behavior and Application Limits of Plasma-Sprayed Zirconia Thermal Barrier Coatings. J. Am. Ceram. Soc. 2001, 84, 1301–1308. [Google Scholar] [CrossRef]
- Gruninger, M.F.; Boris, M.V. Thermal Barrier Ceramics for Gas Tur-bine and Reciprocating Heat Engine Applications. In Thermal Spray: International Advances in Coatings Technology; Berndt, C.C., Ed.; ASM International: Almere, The Netherlands, 1992; pp. 487–492. [Google Scholar]
- Soechting, F.O. A Design Perspective on Thermal Barrier Coatings. In Proceedings of the Thermal Barrier Coating Workshop, NASA CP-33, Westlake, OH, USA, 27–29 March 1995; Volume 12, pp. 1–15. [Google Scholar]
- Bose, S.; Demasi-Marcin, J. Thennal Barrier Coating Experience inGas Turbine Engine at Pratt & Whitney. In Proceedings of the Thermal Barrier Coating Workshop, NASA CP-3312, Westlake, OH, USA, 27–29 March 1995; pp. 63–73. [Google Scholar]
- Tanaka, M. Ion- and electron-beam-induced structural changes in cubic yttria stabilized zirconia. Appl. Phys. A 2018, 124, 647. [Google Scholar] [CrossRef]
- Sinitsyn, D.Y.; Anikin, V.N.; Eremin, S.A.; Yudin, A.G. Protective coatings based on ZrO2-Y2O3 and Al2O3–TiO2 systems with modifying additives on CCCM. Refract. Ind. Ceram. 2017, 58, 194–201. [Google Scholar] [CrossRef]
- Zhigachev, A.O.; Golovin, Y.I.; Umrikhin, A.V.; Korenkov, V.V.; Tyurin, A.I.; Rodaev, V.V.; Dyachek, T.A. Ceramic Materials Based on Zirconium Dioxide; Golovin, Y.I., Ed.; Technosfera: Moscow, Russia, 2018; 358p. [Google Scholar]
- Stubican, V.S.; Hink, R.C.; Ray, S.P. Phase Equilibria and Ordering in the System ZrO2-Y2O3. J. Am. Ceram. Soc. 1978, 6, 17–21. [Google Scholar] [CrossRef]
- Lyakishev, N.P. (Ed.) Diagrams of Binary Metallic Systems; Mashinostroenie: Moscow, Russia, 1997. [Google Scholar]
- Kulkov, S.N.; Buyakova, S.P. Phase composition and features of structure formation based on stabilized zirconium dioxide. Russ. Nanotechnol. 2007, 2, 119–132. [Google Scholar]
- Lughi, V.; Sergo, V. Low Temperature Degradation -Aging- of Zirconia: A Critical Review of the Relevant Aspects in Dentistry. Dent. Mater. 2010, 8, 807–820. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The Ttetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Eichler, J.; Rodel, J.; Ulrich, E.; Mark, H. Effect of Grain Size on Mechanical Properties of Submicrometer 3Y-TZP: Fracture Strength and Hydrothermal Degradation. J. Am. Ceram. Soc. 2007, 90, 2830–2836. [Google Scholar] [CrossRef]
- Hannink, R.H.; Kelly, P.M.; Muddle, B.C. Transformation Toughening in Zirconia-Containing Ceramics. J. Am. Ceram. Soc. 2000, 83, 461–487. [Google Scholar] [CrossRef]
- Zhou, K.; Xie, F.; Wu, X.; Wang, S. Fretting wear behavior of nano ZrO2 doped plasma electrolytic oxidation. Surf. Coat. Technol. 2021, 421, 127429. [Google Scholar] [CrossRef]
- Borik, М.А.; Kulebyakin, A.V.; Myzina, V.A.; Lomonova, E.E.; Milovich, F.O.; Ryabochkina, P.A.; Sidorova, N.V.; Shulga, N.Y.; Tabachkova, N.Y. Mechanical characteristics, structure, and phase stability of tetragonal crystals of ZrO2-Y2O3 solid solutions doped with cerium and neodymium oxides composite coatings on TC21 titanium alloy. J. Phys. Chem. Solids 2021, 150, 109908. [Google Scholar] [CrossRef]
- Pang, E.L.; Olson, G.B.; Schuh, C.A. Schuh, The mechanism of thermal transformation hysteresis in ZrO2-CeO2 shape-memory ceramics. Acta Mater. 2021, 213, 116972. [Google Scholar] [CrossRef]
- Kablov, E.N.; Muboyadzhyan, S.A. Heat-resistant and heat-shielding coatings for turbine blades high-pressure promising gas turbine engines. Aviat. Mater. Technol. 2012, 1, 60–70. [Google Scholar]
- Tamarin, Y. Protective Coatings for Turbine Blades USA; ASM International: Almere, The Netherlands, 2002; pp. 3–300. [Google Scholar]
- Boissonnet, G.; Chalk, C.; Nicholls, J.R.; Bonnet, G.; Pedraza, F. Phase stability and thermal insulation of YSZ and erbia-yttria co-doped zirconia EB-PVD thermal barrier coating systems. Surf. Coat. Technol. 2020, 389, 125566. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, Z.; Mu, R.; He, L.; Liu, G. Y–Er–ZrO2 thermal barrier coatings by EB-PVD: Thermal conductivity. Appl. Surf. Sci. Adv. 2021, 3, 100043. [Google Scholar] [CrossRef]
- Takahashi, J.M.K.; Assis, F.; Piorino Neto, D.A.P. Reis Thermal conductivity study of ZrO2-YO1.5-NbO2.5 TBC. J. Mater. Res. Technol. 2022, 19, 4932–4938. [Google Scholar] [CrossRef]
- Sergeev, V.P.; Yanovsky, V.P.; Paraev, Y.N.; Kozlov, S.A.; Zhuravlyov, S.A. Installation of ion magnetron sputtering of nanocrystalline coatings “KVANT”. Phys. Mesomech. 2004, 7, 333–336. [Google Scholar]
- Saltykov, S.A. Stereometric Metallography; Metallurgy: Moscow, Russia, 1970. [Google Scholar]
- Morris, D.G.; Morris, M.A. Microstructure and Strength of Nanocrystalline Copper Alloy prepared by mechanical Alloying. Acta Met. 1991, 39, 1763–1770. [Google Scholar] [CrossRef]
- Ivanov, Y.F.; Kozlov, E.V. Electron microscopic analysis of nanocrystalline materials. Phys. Met. Met. Sci. 1991, 7, 206–208. [Google Scholar]
- Korotaev, A.D.; Tyumentsev, A.N. Physical Design Principles of Thermally Stable Multicomponent Nanocomposite Coatings. Phys. Mesomech. 2023, 26, 137–151. [Google Scholar] [CrossRef]
- Kozlov, E.V. Structure and Resistance to Deformation of UFG Metals and Alloys. In Severe Plastic Deformation; Altan, B.S., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2005; pp. 295–332. [Google Scholar]
- Panin, V.E.; Panin, A.V.; Elsukova, T.F.; Popkova, Y.F. Fundamental role of crystal structure curvature in plasticity and strength of solids. Phys. Mesomech. 2015, 18, 89–93. [Google Scholar] [CrossRef]
- Gorelik, S.S.; Rastorguev, L.N.; Skakov, Y.A. X-ray and Electron-Optical Analysis; Metallurgy: Moscow, Russia, 1994; pp. 124–127. [Google Scholar]
- Fedorischeva, M.; Kalashnikov, M.; Bozhko, I.; Sergeev, V. Influence of the structural-phase state of a copper substrate upon modification with titanium ions on the thermal cyclic resistance of a coating based on Zr-Y-O. Metals 2022, 12, 65. [Google Scholar] [CrossRef]
- Akimov, G.Y.; Timchenko, V.M.; Gorelik, I.V. Specific features of phase transformations in finely dispersed zirconium dioxide deformed by high hydrostatic pressure. FTT 1994, 36, 3582–3585. [Google Scholar]
- Trunec, M. Effect of Grain Size on Mechanical Properties of 3Y-TZP Ceramics. Ceram. Silik. 2008, 52, 165–171. [Google Scholar]
- Scott, H.G. Phase relationships in the zirconia-yttria system. J. Mater. Sci. 1975, 10, 1527–1535. [Google Scholar] [CrossRef]
- Zhu, W.; Nakashima, S.; Marin, E.; Gu, H.; Pezzotti, G. Microscopic mapping of dopant content and its link to the structural and thermal stability of yttria-stabilized zirconia polycrystals. J. Mater. Sci. 2020, 55, 524–534. [Google Scholar] [CrossRef]
- Akimov, G.Y.; Marinin, G.A.; Kameneva, V.Y. Evolution of the phase composition and physical and mechanical properties of ceramics ZrO2+4mol.% Y2O3. Phys. Solid State 2005, 47, 2060–2062. [Google Scholar] [CrossRef]
- Stark, D. Diffusion in Solid; Trusov, Energy: Moscow, Russia, 1980; p. 239. [Google Scholar]
- Perevalova, O.B.; Konovalova, E.V.; Koneva, N.A.; Kozlov, E.V. Effect of Atomic Ordering on Grain Boundary Ensembles of FCC Solid Solutions; Portnova, T.C., Ed.; NTL Publisher: Tomsk, Russia, 2014; p. 250. [Google Scholar]
- Sergeev, V.P. Kinetics and Mechanism of the Formation of Nonequilibrium States of Surface Layers under Conditions of Magnetron Sputtering and Ion Bombardment; Lyachko, N.Z., Psahie, S.G., Eds.; Nanoengineering Surface; Publishing House of the SB RAS: Novosibirsk, Russia, 2008; pp. 227–276. [Google Scholar]
Temperature, (°C) | Average Value of the Transverse Grain Size, nm (TEM) | Average Grain Size by Microdiffraction, nm (TEM) | Size of Coherent Scattering Units (X-ray) | Average Value of Curvature of Torsion χ, (cm−1) (TEM) |
---|---|---|---|---|
Initial | 15 ± 2 | 20 ± 2 | 26 ± 2 | 2.51 |
400 | 20 ± 2 | 24 ± 2 | 3.28 | |
450 | 22 ± 2 | 26 ±2 | 37 ± 2 | 4.27 |
475 | 23 ± 2 | 22 ± 2 | 3.82 | |
600 | 19 ± 2 | 19 ± 2 | 2.02 | |
900 | 23 ± 2 | 22 ± 2 | 1.82 | |
1000 | - | - | 25 ± 2 | |
1100 | 26 ± 2 | |||
1300 | 35 ± 2 | |||
1400 | 37 ± 2 | |||
25 | 36 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorischeva, M.; Kalashnikov, M.; Bozhko, I.; Dorofeeva, T.; Sergeev, V. Structural-Phase Change of Multilayer Ceramics Zr-Y-O/Si-Al-N under High Temperature. Ceramics 2023, 6, 1227-1237. https://doi.org/10.3390/ceramics6020074
Fedorischeva M, Kalashnikov M, Bozhko I, Dorofeeva T, Sergeev V. Structural-Phase Change of Multilayer Ceramics Zr-Y-O/Si-Al-N under High Temperature. Ceramics. 2023; 6(2):1227-1237. https://doi.org/10.3390/ceramics6020074
Chicago/Turabian StyleFedorischeva, Marina, Mark Kalashnikov, Irina Bozhko, Tamara Dorofeeva, and Victor Sergeev. 2023. "Structural-Phase Change of Multilayer Ceramics Zr-Y-O/Si-Al-N under High Temperature" Ceramics 6, no. 2: 1227-1237. https://doi.org/10.3390/ceramics6020074
APA StyleFedorischeva, M., Kalashnikov, M., Bozhko, I., Dorofeeva, T., & Sergeev, V. (2023). Structural-Phase Change of Multilayer Ceramics Zr-Y-O/Si-Al-N under High Temperature. Ceramics, 6(2), 1227-1237. https://doi.org/10.3390/ceramics6020074