Spark Plasma Sintering of Ceramics Based on Solid Solutions of Na1+2xZr2−xCox(PO4)3 Phosphates: Thermal Expansion and Mechanical Properties Research
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Features of the Crystal Structure of NZP Compound
References
- Orlova, A.I.; Ojovan, M.I. Ceramic mineral waste-forms for nuclear waste immobilization. Materials 2019, 12, 2638. [Google Scholar] [CrossRef] [PubMed]
- Orlova, A.I. Crystalline phosphates for HLW immobilization–composition, structure, properties and production of ceramics. Spark Plasma Sintering as a promising sintering technology. J. Nucl. Mater. 2022, 559, 153407. [Google Scholar] [CrossRef]
- Kanunov, A.E.; Orlova, A.I. Phosphors based on phosphates of NaZr2(PO4)3 and langbeinite structural families. Rev. J. Chem. 2018, 8, 1–33. [Google Scholar] [CrossRef]
- Wei, Y.; Luo, P.; Wang, J.; Wen, J.; Zhan, L.; Zhang, X.; Yang, S.; Wang, J. Microwave-sintering preparation, phase evolution and chemical stability of Na1-2xSrxZr2(PO4)3 ceramics for immobilizing simulated radionuclides. J. Nucl. Mater. 2020, 540, 152366. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Wang, Y.; Liao, Q.; Zhu, H.; Li, L.; Zhu, Y. Synthesis and characterization of iron phosphate based glass-ceramics containing sodium zirconium phosphate phase for nuclear waste immobilization. J. Nucl. Mater. 2020, 531, 151988. [Google Scholar] [CrossRef]
- Scheetz, B.E.; Agrawal, D.K.; Breval, E.; Roy, R. Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: A review. Waste Manag. 1994, 14, 489–505. [Google Scholar] [CrossRef]
- Burakov, B.E.; Ojovan, M.I.; Lee, W.E. Crystalline Materials for Actinide Immobilisation; Imperial College Press: London, UK, 2010. [Google Scholar]
- Alamo, J. Chemistry and properties of solids with the [NZP] skeleton. Solid State Ion. 1993, 63–65, 547–561. [Google Scholar] [CrossRef]
- Wang, J.; Wei, Y.; Wang, J.; Zhang, X.; Wang, Y.; Li, N. Simultaneous immobilization of radionuclides Sr and Cs sodium zirconium phosphate type ceramics and its chemical durability. Ceram. Int. 2022, 48, 12772–12778. [Google Scholar] [CrossRef]
- Orlova, A.I.; Volgutov, V.Y.; Mikhailov, D.A.; Bykov, D.M.; Skuratov, V.A.; Chuvil’deev, V.N.; Nokhrin, A.V.; Boldin, M.S.; Sakharov, N.V. Phosphate Ca1/4Sr1/4Zr2(PO4)3 of the NaZr2(PO4)3 structure type: Synthesis of a dense ceramic material and its radiation testing. J. Nucl. Mater. 2014, 446, 232–239. [Google Scholar] [CrossRef]
- Kryukova, A.I.; Kulikov, I.A.; Artem’eva, G.Y.; Demarin, V.T.; Pechnevskaya, O.V.; Alferov, V.A. Crystalline phosphates of sodium zirconium phosphate NaZr2(PO4)3 family. Radiation stability. Radiochemistry 1992, 34, 82–89. (In Russian) [Google Scholar]
- Orlova, A.I.; Volkov, Y.F.; Melkaya, R.F.; Masterova, L.Y.; Kulikov, I.A.; Alferov, V.A. Synthesis and radiation stability of NZP structure phosphates containing f-elements. Radiochemistry 1994, 36, 295–298. (In Russian) [Google Scholar]
- Orlova, A.I.; Zyryanov, V.N.; Kotel’nikov, A.R.; Demarin, V.T.; Rakitina, E.V. Ceramic phosphate matrixes for high-level wastes. Behavior under hydrothermal conditions. Radiochemistry 1993, 35, 120–126. (In Russian) [Google Scholar]
- Orlova, A.I.; Zyryanov, V.N.; Egor’kova, O.V.; Demarin, V.T. Long-term hydrothermal tests of NZP-type crystalline phosphates. Radiochemistry 1996, 38, 22–26. (In Russian) [Google Scholar]
- Oikonomou, P.; Dedeloudis, C.; Stournaras, C.J.; Ftikos, C. [NZP]: A new family of ceramics with low thermal expansion and tunable properties. J. Eur. Ceram. Soc. 2007, 27, 1253–1258. [Google Scholar] [CrossRef]
- Ahmadu, U.; Musa, A.O.; Jonah, S.A.; Rabiu, N. Synthesis and thermal characterization of NZP compounds Na1−xLixZr2(PO4)3 (x = 0.00–0.75). J. Therm. Anal. Calorim. 2010, 101, 175–179. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Asabina, E.A.; Lukuttsov, A.A.; Korchemkin, I.V.; Alekseev, A.A.; Demarin, V.T. Immobilization of cesium into mineral-like matrices of tridymite, kosnarite, and langbeinite structure. Radiochemistry 2015, 57, 632–639. [Google Scholar] [CrossRef]
- Nakayama, S.; Itoh, K. Immobilization of strontium by crystalline zirconium phosphate. J. Eur. Ceram. Soc. 2003, 23, 1047–1052. [Google Scholar] [CrossRef]
- Kryukova, A.I.; Korshunov, I.A.; Vorob’eva, N.V.; Mitrofanova, V.A.; Skiba, O.V.; Kazantsev, G.N.; Zakharova, G.A. Double phosphates of alkali and rare earth elements and titanium, zirconium, and hafnium in alkali metal chloride melts. Radiochemistry 1978, 20, 818–822. (In Russian) [Google Scholar]
- Kryukova, A.I.; Artem’eva, G.Y.; Korshunov, I.A.; Skiba, O.V.; Klapshin, Y.P.; Denisova, M.S. Thermal stability of phosphates of titanium, zirconium, and hafnium and solubility in alkali-chloride melts. Russ. J. Inorg. Chem. 1986, 31, 193–197. (In Russian) [Google Scholar]
- Kryukova, A.I.; Artem’eva, G.Y.; Skiba, O.V.; Korshunov, I.A.; Polunina, M.V. Solubility and stability in chloride melts of alkaline earth group IV metal orthophosphates. Russ. J. Inorg. Chem. 1987, 32, 862–864. (In Russian) [Google Scholar]
- Kryukova, A.I.; Chernikov, A.A.; Skiba, O.V.; Kazantsev, G.N. Trends in chlorination of phosphates and tungstates of some actinide and fission elements in chloride melts. Radiochemistry 1988, 30, 622–628. (In Russian) [Google Scholar]
- Pet’kov, V.; Asabina, E.; Loshkarev, V.; Sukhanov, M. Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization. J. Nucl. Mater. 2016, 471, 122–128. [Google Scholar] [CrossRef]
- Gregg, D.J.; Karatchevtseva, I.; Thorogood, G.J.; Davis, J.; Benjamin, D.C.B.; Jackson, M.; Dayal, P.; Ionescu, M.; Triani, G.; Short, K.; et al. Ion beam irradiation effects in strontium zirconium phosphate with NZP-structure type. J. Nucl. Mater. 2014, 446, 224–231. [Google Scholar] [CrossRef]
- Bohre, A.; Avasthi, K.; Pet’kov, V.I. Vitreous and crystalline phosphate high level waste matrices: Present status and future challenges. J. Ind. Eng. Chem. 2017, 50, 1–14. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Sukhanov, M.V.; Kurazhkovskaya, V.S. Molybdenum fixation in crystalline NZP matrices. Radiochemistry 2003, 45, 620–625. [Google Scholar] [CrossRef]
- Bykov, D.M.; Konings, R.J.M.; Apostolidis, C.; Hen, A.; Colineau, E.; Wiss, T.; Raison, P. Synthesis and investigation of neptunium zirconium phosphate, a member of the NZP family: Crystal structure, thermal behaviour and Mössbauer spectroscopy studies. Dalton Trans. 2017, 46, 11626–11635. [Google Scholar] [CrossRef]
- Bykov, D.M.; Orlova, A.I.; Tomilin, S.V.; Lizin, A.A.; Lukinykh, A.N. Americium and plutonium in trigonal phosphates (NZP type)Am1/3[Zr2(PO4)3] and Pu1/4[Zr2(PO4)3]. Radiochemistry 2006, 48, 234–239. [Google Scholar] [CrossRef]
- Ananthanarayanan, A.; Ambashta, R.D.; Sudarsan, V.; Ajithkumar, T.; Sen, D.; Mazumder, S.; Wattal, P.K. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste. J. Nucl. Mater. 2017, 487, 5–12. [Google Scholar] [CrossRef]
- Bohre, A.; Shrivastava, O.P. Crystal chemistry of immobilization of divalent Sr in ceramic matrix of sodium zirconium phosphates. J. Nucl. Mater. 2013, 433, 486–493. [Google Scholar] [CrossRef]
- Chourasia, R.; Bohre, A.; Ambastha, R.D.; Shrivastava, O.P.; Wattal, P.K. Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium. J. Mater. Sci. 2010, 45, 533–545. [Google Scholar] [CrossRef]
- Bohre, A.; Shrivastava, O.P. Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium and strontium. Int. J. Appl. Ceram. Technol. 2013, 10, 552–563. [Google Scholar] [CrossRef]
- Ewing, R.C.; Lutze, W. High-level nuclear waste immobilization with ceramics. Ceram. Int. 1991, 17, 287–293. [Google Scholar] [CrossRef]
- Ivanets, A.; Shashkova, I.; Kitikova, N.; Radkevich, A.; Venhlinskaya, E.; Dzikaya, A.; Trukhanov, A.V.; Sillanpää, M. Facile synthesis of calcium magnesium zirconium phosphate adsorbents transformed into MZr4P6O24 (M: Ca, Mg) ceramic matrix for radionuclides immobilization. Sep. Purif. Technol. 2021, 272, 118912. [Google Scholar] [CrossRef]
- Roy, R.; Vance, E.R.; Alamo, J. [NZP], a new radiophase for ceramic waste forms. Mater. Res. Bull. 1982, 17, 585–589. [Google Scholar] [CrossRef]
- Alekseeva, L.S.; Nokhrin, A.V.; Karazanov, K.O.; Orlova, A.I.; Boldin, M.S.; Lantcev, E.A.; Murashov, A.A.; Chevil’deev, V.N. Mechanical properties and thermal shock resistance of fine-grained Nd:YAG/SiC ceramics. Inorg. Mater. 2022, 58, 199–204. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.Z.; Wang, Y.Y.; Zhou, C.L.; Liu, R.X.; Yang, L.P. Preparation and properties of NZP family ceramics. Solid State Phenom. 2018, 281, 450–455. [Google Scholar] [CrossRef]
- Agrawal, D.K.; Roy, R. Composite route to “zero” expansion ceramics. J. Mater. Sci. 1985, 20, 4617–4623. [Google Scholar] [CrossRef]
- Breval, E.; Mckinstry, H.A.; Agrawal, D.K. New [NZP] materials for protection coatings. Tailoring of thermal expansion. J. Mater. Sci. 2000, 35, 3359–3364. [Google Scholar] [CrossRef]
- Alekseeva, L.S.; Nokhrin, A.V.; Boldin, M.S.; Lantsev, E.A.; Orlova, A.I.; Chuvil’deev, V.N.; Sakharov, N.V. Fabrication of fine-grained CeO2-SiC ceramics for inert fuel matrices by Spark Plasma Sintering. J. Nucl. Mater. 2020, 539, 152225. [Google Scholar] [CrossRef]
- Golovkina, L.S.; Orlova, A.I.; Chuvil’deev, V.N.; Boldin, M.S.; Lantcev, E.A.; Nokhrin, A.V.; Sakharov, N.V.; Zelenov, A.Y. Spark Plasma Sintering of high-density fine-grained Y2.5Nd0.5Al5O12+SiC composite ceramics. Mater. Res. Bull. 2018, 103, 211–215. [Google Scholar] [CrossRef]
- Clark, B.M.; Tumurugoti, P.; Sundaram, S.K.; Amoroso, J.W.; Marra, J.C.; Shuthanandan, V.; Tang, M. Radiation damage of hollandite in multiphase ceramic waste forms. J. Nucl. Mater. 2017, 494, 61–66. [Google Scholar] [CrossRef]
- Chakraborty, N.; Basu, D.; Fischer, W. Thermal expansion of Ca1−xSrxZr4(PO4)6 ceramics. J. Eur. Ceram. Soc. 2005, 25, 1885–1893. [Google Scholar] [CrossRef]
- Limaye, S.Y.; Agrawal, D.K.; Mckinstry, H.A. Synthesis and thermal expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba). J. Am. Ceram. Soc. 1987, 70, C-232–C-236. [Google Scholar] [CrossRef]
- Savinykh, D.O.; Khainakov, S.A.; Orlova, A.I.; Garcia-Granda, S.; Alekseeva, L.S. The synthesis and thermal expansion behavior of sodium and calcium zirconium copper phosphates. Inorg. Mater. 2020, 56, 388–394. [Google Scholar] [CrossRef]
- Savihykh, D.O.; Khainakov, S.A.; Orlova, A.I.; Garcia-Granda, S. New phosphate-sulfates with NZP structure. Russ. J. Inorg. Chem. 2018, 63, 714–724. [Google Scholar] [CrossRef]
- Orlova, A.I.; Koryttzeva, A.K.; Lipatova, Y.V.; Zharinova, M.V.; Trubach, I.G.; Evseeva, Y.V.; Buchirina, N.V.; Kazantsev, G.N.; Samoilov, S.G.; Beskrovny, A.I. New NZP-based phosphates with low and controlled thermal expansion. J. Mater. Sci. 2005, 40, 2741–2743. [Google Scholar] [CrossRef]
- Kazantsev, G.N.; Orlova, A.I.; Zharinova, M.V.; Samoilov, S.G.; Pet’kov, V.I.; Kurazhkovskaya, V.S. Thermal expansion of mixed zirconium phosphates. Russ. J. Appl. Chem. 2004, 77, 369–375. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Orlova, A.I.; Kazantsev, G.N.; Samoilov, S.G.; Spiridonova, M.L. Thermal expansion in the Zr and 1-, 2-valent complex phosphates of NaZr2(PO4)3 structure. J. Therm. Anal. Calorim. 2001, 66, 623–632. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Asabina, E.A.; Shchelokov, I.A. Thermal expansion of NASICON materials. Inorg. Mater. 2013, 49, 502–506. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Su, C.; Tong, N.; Han, Z.; Liu, F. Effect of Mg3(PO4)2 addition on the crystal structure, mechanical and thermophysical properties of CaZr4P6O24 ceramics. J. Alloys Compd. 2019, 896, 302–309. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Lavrenov, D.A.; Kovalsky, A.M. Synthesis, characterization and thermal expansion of the zinc-containing phosphates with the mineral-like framework structure. J. Therm. Anal. Calorim. 2020, 139, 1791–1798. [Google Scholar] [CrossRef]
- Sukhanov, M.V.; Pet’kov, V.I.; Firsov, D.V.; Kurazhkovskaya, V.S.; Borovikova, E.Y. Synthesis, structure, and thermal expansion of sodium zirconium arsenate phosphates. Russ. J. Inorg. Chem. 2011, 56, 1351. [Google Scholar] [CrossRef]
- Orlova, A.I.; Kanunov, A.E.; Samoilov, S.G.; Kazakova, A.Y.; Kazantsev, G.N. Study of calcium-containing orthophosphates of NaZr2(PO4)3 structural type by high-temperature X-ray diffraction. Crystallogr. Rep. 2013, 58, 204–209. [Google Scholar] [CrossRef]
- Orlova, A.I.; Pet’kov, V.I.; Zharinova, M.V.; Koryttseva, A.K.; Sukhanov, M.V.; Kazantsev, G.N.; Samoilov, G.S.; Kurazhkovskaya, V.S. Synthesis and thermal expansion of complex niobium(IV) phosphates with bivalent elements. Russ. J. Appl. Chem. 2003, 76, 12–16. [Google Scholar] [CrossRef]
- Sato, I.; Ichikawa, Y.; Sakanoue, J.; Mizutani, M.; Adachi, N.; Ota, T. Flexible ceramics in the system KZr2(PO4)3-KAlSi2O6 prepared by mimicking the microstructure of itacolumite. J. Am. Ceram. Soc. 2008, 91, 607–610. [Google Scholar] [CrossRef]
- Oota, T.; Yamai, I. Thermal expansion behavior of NaZr2(PO4)3 type compounds. J. Am. Ceram. Soc. 1986, 69, 1–6. [Google Scholar] [CrossRef]
- Lenain, G.E.; McKinstry, H.A.; Alamo, J.; Agraval, D.K. Structural model for thermal expansion in MZr2P3O12 (M = Li, Na, K, Rb, Cs). J. Mater. Sci. 1987, 22, 17–22. [Google Scholar] [CrossRef]
- Lenain, G.E.; McKinstry, H.A.; Limaye, S.Y.; Woodward, D.A. Low thermal expansion of alkali-zirconium phosphates. Mater. Res. Bull. 1984, 19, 1451–1456. [Google Scholar] [CrossRef]
- Orlova, A.I.; Kemenov, D.V.; Samoilov, S.G.; Kazantsev, G.N.; Pet’kov, V.I. Thermal expansion of NZP-family alkali-metal (Na, K) zirconium phosphates. Inorg. Mater. 2000, 36, 830–834. [Google Scholar] [CrossRef]
- Volgutov, V.Y.; Orlova, A.I. Thermal expansion of phosphates with the NaZr2(PO4)3 structure containing lanthanides and zirconium: R0.33Zr2(PO4)3 (R = Nd, Eu, Er) and Er0.33(1–x)Zr0.25xZr2(PO4)3. Crystallogr. Rep. 2015, 60, 721–728. [Google Scholar] [CrossRef]
- Tantri, S.; Ushadevi, S.; Ramasesha, S.K. High-temperature X-ray studies on barium and strontium phosphate based low thermal expansion materials. Mater. Res. Bull. 2002, 37, 1141–1147. [Google Scholar] [CrossRef]
- Kierkegaard, P. The Crystal Structure of NaMeIV2(PO4)3; MeIV = Ge, Ti, Zr. Acta Chemica Scandinavica 1968, 22, 1822–1832. [Google Scholar] [CrossRef]
- Govindan Kutty, K.V.; Asuvathraman, R.; Sridharan, R. Thermal expansion studies on the sodium zirconium phosphate family of compounds A1/2M2(PO4)3: Effect of interstitial and framework cations. J. Mater. Sci. 1998, 33, 4007–4013. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Shipilov, A.S.; Dmitrienko, A.S.; Alekseev, A.A. Characterization and controlling thermal expansion of materials with kosnarite- and langbeinite-type structure. J. Ind. Eng. Chem. 2018, 57, 236–243. [Google Scholar] [CrossRef]
- Bortsova, Y.V.; Koryttseva, A.K.; Orlova, A.I.; Kurazhkovskaya, V.S.; Kazantsev, G.N.; Samoilov, S.G.; Karuchkina, Y.A. New NZP-phosphates B0.5FeTa(PO4)3 (where B—Ca, Sr, Ba): Synthesis, crystallochemical investigation and thermal expansion. J. Alloys Compd. 2009, 475, 74–78. [Google Scholar] [CrossRef]
- Orlova, A.I. Isomorphism in Crystalline Phosphates of the NaZr2(PO4)3 Structural Type and Radiochemical Problems. Radiochemistry 2002, 44, 385–403. (In Russian) [Google Scholar]
- Volkov, Y.F.; Orlova, A.I. Systematics and Crystallochemical Aspect of Inorganic Compounds with One-Core Tetrahedral Oxoanions; NIIAR: Dimitrovgrad, Russia, 2004; 286p. (In Russian) [Google Scholar]
- Roy, R.; Agrawal, D.K.; Alamo, J.; Roy, R.A. [CTP]: A New Structural Family of Near-Zero Expansion Ceramics. Mater. Res. Bull. 1984, 19, 471–477. [Google Scholar] [CrossRef]
- Alamo, J.; Roy, R. Ultralow-Expansion Ceramics in the System Na2O–ZrO2–P2O5–SiO2. J. Am. Ceram. Soc. 1984, 67, 78–80. [Google Scholar] [CrossRef]
- Liu, Y.; Molokeev, M.S.; Liu, Q.; Xia, Z. Crystal structure, phase transitions and thermal expansion properties NaZr2(PO4)3-SrZr4(PO4)6 solid solutions. Inorg. Chem. Front. 2018, 5, 619–625. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Tong, N.; Han, Z.; Liu, F. Crystal structure, mechanical and thermophysical properties of Ca0.5Sr0.5Zr4−xSnxP6O24 ceramics. J. Alloys Compd. 2019, 784, 8–15. [Google Scholar] [CrossRef]
- Roy, R.; Agrawal, D.K.; McKinstry, H.A. Very Low Thermal Expansion Coefficient Materials. Annu. Rev. Mater. Sci. 1989, 19, 59–81. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Orlova, A.I. Crystal-Chemical Approach to Predicting the Thermal Expansion of Compounds in the NZP Family. Inorg. Mater. 2003, 39, 1013–1023. [Google Scholar] [CrossRef]
- Roy, S.; Padma Kumar, P. Framework Flexibility of Sodium Zirconium Phosphate: Role of Disorder, and Polyhedral Distortions from Monte Carlo Investigation. J. Mater. Sci. 2012, 47, 4949–4954. [Google Scholar] [CrossRef]
- Orlova, A.; Kazantsev, G.; Samoilov, S. Ultralow thermal expansion in the Cs-Ln-Zr and M-Hf phosphates (Ln = Pr, Sm, Gd; M = Na, K, Rb, Cs). High Temp.-High Press. 1999, 31, 105–111. [Google Scholar] [CrossRef]
- Savinykh, D.O.; Khainakov, S.A.; Boldin, M.S.; Orlova, A.I.; Aleksandrov, A.A.; Lantsev, E.A.; Sakharov, N.V.; Murashov, A.A.; Garcia-Granda, S.; Nokhrin, A.V.; et al. Preparation of NZP-Type Ca0.75+0.5xZr1.5Fe0.5(PO4)3–x(SiO4)x Powders and Ceramic, Thermal Expansion Behavior. Inorg. Mater. 2018, 54, 1267–1273. [Google Scholar] [CrossRef]
- Tokita, M. Progress in Spark Plasma Sintering (SPS) method, system, ceramics applications and industrialization. Ceramics 2021, 4, 160–198. [Google Scholar] [CrossRef]
- Olevsky, E.A.; Dudina, D.V. Field-Assisted Sintering: Science and Application; Springer Nature: Cham, Switzerland, 2018; 425p. [Google Scholar] [CrossRef]
- Hu, Z.-Y.; Zhang, Z.-H.; Cheng, X.-W.; Wang, F.-C.; Zhang, Y.-F.; Li, S.-L. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Mater. Des. 2020, 191, 108662. [Google Scholar] [CrossRef]
- Lantcev, E.; Nokhrin, A.; Malekhonova, N.; Boldin, M.; Chuvil’deev, V.; Blagoveshchenskiy, Y.; Isaeva, N.; Andreev, P.; Smetanina, K.; Murashov, A. A study of the impact of graphite on the kinetics of SPS in nano- and submicron WC-10%Co powder composition. Ceramics 2021, 4, 331–363. [Google Scholar] [CrossRef]
- Orlova, A.I.; Koryttseva, A.K.; Kanunov, A.E.; Chuvil’deev, V.N.; Moskvicheva, A.V.; Sakharov, N.V.; Boldin, M.S.; Nokhrin, A.V. Fabrication of NaZr2(PO4)3-type ceramic materials by spark plasma sintering. Inorg. Mater. 2012, 48, 313–317. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Papynov, E.K.; Maiorov, V.Y.; Belov, A.A.; Modin, E.B.; Buravlev, I.Y.; Azarova, Y.A.; Golub, A.V.; Gridasova, E.A.; Sukhodara, A.E.; et al. Spark Plasma Sintering of Aluminosilicate Ceramic Matrices for Immobilization of Cesium Radionuclides. Radiochemistry 2019, 61, 185–191. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Buravlev, I.Y.; Portnyagin, A.S.; Mayorov, V.Y.; Belov, A.A.; Sukhorada, A.E.; Gridasova, E.A.; Tananaev, I.G.; Sergienko, V.I. UO2-Eu2O3 compound fuel fabrication via spark plasma sintering. J. Alloys Compd. 2021, 854, 155904. [Google Scholar] [CrossRef]
- Papynov, E.K.; Belov, A.A.; Shichalin, O.O.; Buralev, I.Y.; Azon, S.A.; Gridasova, E.A.; Parotkina, Y.A.; Yagofarov, V.Y.; Dankov, A.N.; Golub, A.V.; et al. Synthesis of perovskite-like SrTiO3 ceramics for radioactive strontium immobilization by Spark Plasma Sintering-Reactive Synthesis. Russ. J. Inorg. Chem. 2021, 66, 645–653. [Google Scholar] [CrossRef]
- Papynov, E.K.; Belov, A.A.; Shichalin, O.O.; Buravlev, I.Y.; Azon, S.A.; Golub, A.V.; Gerasimenko, A.V.; Parotkina, Y.A.; Zavjalov, A.P.; Tananaev, I.G.; et al. SrAl2Si2O8 ceramic matrices for 90Sr immobilization obtained via spark plasma sintering-reactive synthesis. Nucl. Eng. Technol. 2021, 53, 2289–2294. [Google Scholar] [CrossRef]
- Chuvil’deev, V.N.; Boldin, M.S.; Nokhrin, A.V.; Popov, A.A. Advanced Materials Obtained by Spark Plasma Sintering. Acta Astronaut. 2017, 135, 192–197. [Google Scholar] [CrossRef]
- Sukhanov, M.V.; Pet’kov, V.I.; Firsov, D.V. Sintering mechanism for high-density NZP ceramics. Inorg. Mater. 2011, 47, 674–678. [Google Scholar] [CrossRef]
- Wang, J.; Luo, P.; Wang, J.; Zhan, L.; Wei, Y.; Zhu, Y.; Yang, S.; Zhang, K. Microwave-sintering preparation and densification behavior of sodium zirconium phosphate ceramics with ZnO additive. Ceram. Int. 2020, 46, 3023–3027. [Google Scholar] [CrossRef]
- Golovkina, L.S.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Chuvil’deev, V.N.; Sakharov, N.V.; Belkin, O.A.; Shotin, S.V.; Zelenov, A.Y. Spark Plasma Sintering of fine-grain ceramic-metal composites based on garnet-structure oxide Y2.5Nd0.5Al5O12 for Inert Matrix Fuel. Mater. Chem. Phys. 2018, 214, 516–526. [Google Scholar] [CrossRef]
- O’Brien, R.C.; Ambrosi, R.M.; Bannister, N.P.; Howe, S.D.; Atkinson, H.V. Spark Plasma Sintering of simulated radioisotope materials within tungsten cermets. J. Nucl. Mater. 2009, 393, 108–119. [Google Scholar] [CrossRef]
- O’Brien, R.C.; Jerred, N.D. Spark Plasma Sintering of W-UO2 cermets. J. Nucl. Mater. 2013, 433, 50–54. [Google Scholar] [CrossRef]
- Tucker, D.S.; Barnes, M.W.; Hone, L.; Cook, S. High density, uniformly distributed W/UO2 for use in Nuclear Thermal Propulsion. J. Nucl. Mater. 2017, 486, 246–249. [Google Scholar] [CrossRef]
- Cureton, W.F.; Zilinger, J.; Rosales, J.; Wilkerson, R.P.; Lang, M.; Barnes, M. Microstructural evolution of Mo-UO2 cermets under high temperature hydrogen environments. J. Nucl. Mater. 2020, 538, 152297. [Google Scholar] [CrossRef]
- Alekseeva, L.S.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Lantsev, E.A.; Chuvil’deev, V.N.; Murashov, A.A.; Sakharov, N.V. Spark Plasma Sintering of fine-grained YAG:Nd+MgO composite ceramics based on garnet-type oxide Y2.5Nd0.5Al5O12 for inert fuel matrices. Mater. Chem. Phys. 2019, 226, 323–330. [Google Scholar] [CrossRef]
- Mikhailov, D.A.; Orlova, A.I.; Malanina, N.V.; Nokhrin, A.V.; Potanina, E.A.; Chuvil’deev, V.N.; Boldin, M.S.; Sakharov, N.V.; Belkin, O.A.; Kalenova, M.Y.; et al. A study of fine-grained ceramics based oxides ZrO2-Ln2O3 (Ln = Sm, Yb) obtained by Spark Plasma Sintering for inert matrix fuel. Ceram. Int. 2018, 44, 18595–18608. [Google Scholar] [CrossRef]
- Potanina, E.A.; Orlova, A.I.; Mikhailov, D.A.; Nokhrin, A.V.; Chuvil’deev, V.N.; Boldin, M.S.; Sakharov, N.V.; Lantcev, E.A.; Tokarev, M.G.; Murashov, A.A. Spark Plasma Sintering of fine-grained SrWO4 and NaNd(WO4)2 tungstates ceramics with the scheelite structure for nuclear waste immobilization. J. Alloys Compd. 2019, 774, 182–190. [Google Scholar] [CrossRef]
- Alekseeva, L.S.; Nokhrin, A.V.; Orlova, A.I.; Boldin, M.S.; Lantsev, E.A.; Murashov, A.A.; Korchenkin, K.K.; Ryabkov, D.V.; Chuvil’deev, V.N. Ceramics based on the NaRe2(PO4)3 phosphate with kosnarite structure as waste forms for technetium immobilization. Inorg. Mater. 2022, 58, 325–332. [Google Scholar] [CrossRef]
- Bernard-Granger, G.; Benameur, N.; Guizard, C.; Nygren, M. Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering. Scr. Mater. 2009, 60, 164–167. [Google Scholar] [CrossRef]
- Nečina, V.; Pabst, W. Reduction on temperature gradient and carbon contamination in electric current assisted sintering (ECAS/SPS) using a “saw-tooth” heating schedule. Ceram. Int. 2019, 45, 22987–22990. [Google Scholar] [CrossRef]
- Hammoud, H.; Garnier, V.; Fantozzi, G.; Lachaud, E.; Tadier, S. Mechanism of carbon contamination in transparent MgAl2O4 and Y3Al5O12 ceramics sintered by Spark Plasma Sintering. Ceramics 2019, 2, 612–619. [Google Scholar] [CrossRef]
- Wang, P.; Huang, Z.; Morita, K.; Li, Q.; Yang, M.; Zhang, S.; Goto, T.; Tu, R. Influence of spark plasma sintering conditions on microstructure, carbon contamination, and transmittance of CaF2 ceramics. J. Eur. Ceram. Soc. 2022, 42, 245–257. [Google Scholar] [CrossRef]
- Wang, P.; Yang, M.; Zhang, S.; Tu, R.; Goto, T.; Zhang, L. Suppression of carbon contamination in SPSed CaF2 transparent ceramics by Mo foil. J. Eur. Ceram. Soc. 2017, 37, 4103–4107. [Google Scholar] [CrossRef]
- Nokhrin, A.; Andreev, P.; Boldin, M.; Chuvil’deev, V.; Chegurov, M.; Smetanina, K.; Gryaznov, M.; Shotin, S.; Nazarov, A.; Shcherbak, G.; et al. Investigation of microstructure and corrosion resistance of Ti-Al-V titanium alloys obtained by Spark Plasma Sintering. Metals 2021, 11, 945. [Google Scholar] [CrossRef]
- Mikhailov, D.A.; Potanina, E.A.; Nokhrin, A.V.; Orlova, A.I.; Yunin, P.A.; Sakharov, N.V.; Boldin, M.S.; Belkin, O.A.; Skuratov, V.A.; Issatov, A.T.; et al. Investigation of microstructure of fine-grained YPO4:Gd ceramics with xenotime structure after Xe irradiation. Ceramics 2022, 5, 237–252. [Google Scholar] [CrossRef]
- Young, W.S.; Cutler, I.B. Initial sintering with constant rates of heating. J. Am. Ceram. Soc. 1970, 53, 659–663. [Google Scholar] [CrossRef]
- Nanda Kumar, A.K.; Watabe, M.; Kurokawa, K. The sintering kinetics of ultrafine tungsten carbide powders. Ceram. Int. 2011, 37, 2643–2654. [Google Scholar] [CrossRef]
- Potanina, E.A.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Sakharov, N.V.; Belkin, O.A.; Chuvil’deev, V.N.; Tokarev, M.G.; Shotin, S.V.; Zelenov, A.Y. Characterization of Nax(Ca/Sr)1-2xNdxWO4 complex tungstates fine-grained ceramics obtained by Spark Plasma Sintering. Ceram. Int. 2018, 44, 4033–4044. [Google Scholar] [CrossRef]
- Golovkina, L.S.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Lantsev, E.A.; Chuvil’deev, V.N.; Sakharov, N.V.; Shotin, S.V.; Zelenov, A.Y. Spark Plasma Sintering of fine-grained ceramic-metal composites YAG:Nd-(W,Mo) based on garnet-type oxide Y2.5Nd0.5Al5O12 for inert matrix fuel. J. Nucl. Mater. 2018, 511, 109–121. [Google Scholar] [CrossRef]
- Chuvil’deev, V.N.; Boldin, M.S.; Dyatlova, Y.G.; Rumyantsev, V.I.; Ordan’yan, S.S. Comparative study of hot pressing and high-speed Spark Plasma Sintering of Al2O3/ZrO2/Ti(C,N) powders. Russ. J. Inorg. Chem. 2015, 60, 987–993. [Google Scholar] [CrossRef]
- Boldin, M.S.; Popov, A.A.; Lantsev, E.A.; Nokhrin, A.V.; Chuvil’deev, V.N. Investigation of the densification behavior of alumina during Spark Plasma Sintering. Materials 2022, 15, 2167. [Google Scholar] [CrossRef]
- Boldin, M.S.; Popov, A.A.; Nokhrin, A.V.; Murashov, A.A.; Shotin, S.V.; Chuvil’deev, V.N.; Tabachkova, N.Y.; Smetanina, K.E. Effect of grain boundary state and grain size on the microstructure and mechanical properties of alumina obtained by SPS: A case of the amorphous layer on particle surface. Ceram. Int. 2022, 48, 25723–25740. [Google Scholar] [CrossRef]
- Lantsev, E.; Malekhonova, N.; Nokhrin, A.; Chuvil’deev, V.; Boldin, M.; Blagoveshchenskiy, Y.; Andreev, P.; Smetanina, K.; Isaeva, N.; Shotin, S. Influence of oxygen on densification kinetics of WC nanopowders during SPS. Ceram. Int. 2021, 47, 4294–4309. [Google Scholar] [CrossRef]
- Lantsev, E.A.; Malekhonova, N.V.; Nokhrin, A.V.; Chuvil’deev, V.N.; Boldin, M.S.; Andreev, P.V.; Smetanina, K.E.; Blagoveshchenskiy, Y.V.; Isaeva, N.V.; Shotin, S.V. Spark Plasma Sintering of fine-grained WC hard alloys with ultra-low cobalt content. J. Alloys Compd. 2021, 857, 157535. [Google Scholar] [CrossRef]
- Pelleg, J. Diffusion in Ceramics; Springer International Publishing: Cham, Switzerland, 2016; 448p. [Google Scholar]
- Smirnova, E.S.; Chuvil’deev, V.N.; Nokhrin, A.V. A theoretical model of lattice diffusion in oxide ceramics. Phys. B Condens. Matter 2018, 545, 297–304. [Google Scholar] [CrossRef]
- Chadwick, A.V. Diffusion in Non-Metallic Solids (Part 1); Landolt-Börnstein— Group III. Condensed Matter; Beke, D.L., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 33B1, Available online: http://link.springer.com/book/10.1007/b59654 (accessed on 29 September 2022).
- Volgutov, V.Y. Development of New Phosphate-Based Materials with NZP Structure, Resistant to High Temperatures, Thermal Stresses and Radiation. Ph.D. Thesis, Nizhny Novgorod State University, Nizhny Novgorod, Russia, 12 December 2013. [Google Scholar]
- Kohler, H.; Shulz, H. NASICON solid electrolytes Part II—X-ray diffraction experiments on sodium-zirconium-phosphate single crystals at 295 K and at 993 K. Mater. Res. Bull. 1986, 21, 23–31. [Google Scholar] [CrossRef]
- Orlova, A.I.; Koryttseva, A.K. Phosphates of pentavalent elements: Structure and properties. Crystallogr. Rep. 2004, 49, 724–732. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Dorokhova, G.I.; Orlova, A.I. Architecture of phosphates with {[L2(PO4)3]p−}3∞ frameworks. Crystallogr. Rep. 2001, 46, 69–74. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. Sect. B 1969, 25, 925–945. [Google Scholar] [CrossRef]
- Egor’kova, O.V.; Orlova, A.I.; Pet’kov, V.I. Preparation and study of complex alkali earth, rare earth and zirconium orthophosphates. Radiochemistry 1997, 39, 491–495. (In Russian) [Google Scholar]
- Petkov, V.I.; Orlova, A.I.; Egorkova, O.V. On the existence of phases with a structure of NaZr2(PO4)3 in series of binary orthophosphates with different alkaline element to zirconium ratios. J. Struct. Chem. 1996, 37, 933–940. [Google Scholar] [CrossRef]
- Voklkov, Y.F.; Tomilin, S.V.; Orlova, A.I.; Lizin, A.A.; Spiryako, V.I.; Lukinykh, A.N. Rhombohedral actinide phosphates AIM2IV(PO4)3 (MIV = U, Np, Pu; AI − Na, K, Rb). Radiochemistry 2003, 45, 319–328. [Google Scholar] [CrossRef]
- Abmamouch, R.; Arsalane, S.; Kasimi, M.; Zijad, M. Synthesis and properties of copper-hafnium triphosphate CuIHf2(PO4)3. Mater. Res. Bull. 1997, 32, 755–766. [Google Scholar] [CrossRef]
x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
---|---|---|---|---|---|
a, Å | 8.807 (8) | 8.818 (9) | 8.824 (9) | 8.831 (9) | 8.852 (7) |
c, Å | 22.880 (4) | 22.862 (3) | 22.834 (3) | 22.790 (4) | 22.760 (0) |
αa × 106, °C−1 | −2.271 | −1.022 | −0.682 | −2.272 | −1.136 |
αc × 106, °C−1 | 17.490 | 17.496 | 17.512 | 21.939 | 22.048 |
αav × 106, °C−1 | 4.316 | 5.151 | 5.383 | 5.798 | 6.592 |
β × 106, °C−1 | 14.253 | 14.742 | 16.109 | 18.577 | 17.894 |
∆α × 106, °C−1 | 19.761 | 18.518 | 18.194 | 24.211 | 23.184 |
Ceramics | Co, wt.% | Density, g/cm3 | Theoretical Density, g/cm3 | Relative Density, % | Hv, GPa | KIC, MPa·m1/2 |
---|---|---|---|---|---|---|
Na1.2Zr1.9Co0.1(PO4)3 | 1.20 | 3.151 | 3.187 | 98.87 | 4.7 ± 0.2 | 1.1 ± 0.2 |
Na1.5Zr1.75Co0.25(PO4)3 | 2.98 | 3.088 | 3.200 | 96.50 | 5.8 ± 0.4 | 0.7 ± 0.2 |
Na2Zr1.5Co0.5(PO4)3 | 5.93 | 3.006 | 3.222 | 93.30 | 3.0 ± 0.5 | 1.0 ± 0.2 |
Ceramics | Chemical Compositions, wt.% | ||||
---|---|---|---|---|---|
O | Na | P | Co | Zr | |
Na1.2Zr1.9Co0.1(PO4)3 | 38.08 | 5.40 | 16.60 | 0.84 | 38.87 |
Na1.5Zr1.75Co0.25(PO4)3 | 37.84 | 6.98 | 16.71 | 2.79 | 35.47 |
Na2Zr1.5Co0.5(PO4)3 | 38.30 | 7.92 | 16.65 | 5.30 | 31.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksandrov, A.A.; Orlova, A.I.; Savinykh, D.O.; Boldin, M.S.; Khainakov, S.A.; Murashov, A.A.; Popov, A.A.; Shcherbak, G.V.; Garcia-Granda, S.; Nokhrin, A.V.; et al. Spark Plasma Sintering of Ceramics Based on Solid Solutions of Na1+2xZr2−xCox(PO4)3 Phosphates: Thermal Expansion and Mechanical Properties Research. Ceramics 2023, 6, 278-298. https://doi.org/10.3390/ceramics6010017
Aleksandrov AA, Orlova AI, Savinykh DO, Boldin MS, Khainakov SA, Murashov AA, Popov AA, Shcherbak GV, Garcia-Granda S, Nokhrin AV, et al. Spark Plasma Sintering of Ceramics Based on Solid Solutions of Na1+2xZr2−xCox(PO4)3 Phosphates: Thermal Expansion and Mechanical Properties Research. Ceramics. 2023; 6(1):278-298. https://doi.org/10.3390/ceramics6010017
Chicago/Turabian StyleAleksandrov, A. A., A. I. Orlova, D. O. Savinykh, M. S. Boldin, S. A. Khainakov, A. A. Murashov, A. A. Popov, G. V. Shcherbak, S. Garcia-Granda, A. V. Nokhrin, and et al. 2023. "Spark Plasma Sintering of Ceramics Based on Solid Solutions of Na1+2xZr2−xCox(PO4)3 Phosphates: Thermal Expansion and Mechanical Properties Research" Ceramics 6, no. 1: 278-298. https://doi.org/10.3390/ceramics6010017
APA StyleAleksandrov, A. A., Orlova, A. I., Savinykh, D. O., Boldin, M. S., Khainakov, S. A., Murashov, A. A., Popov, A. A., Shcherbak, G. V., Garcia-Granda, S., Nokhrin, A. V., Chuvil’deev, V. N., & Tabachkova, N. Y. (2023). Spark Plasma Sintering of Ceramics Based on Solid Solutions of Na1+2xZr2−xCox(PO4)3 Phosphates: Thermal Expansion and Mechanical Properties Research. Ceramics, 6(1), 278-298. https://doi.org/10.3390/ceramics6010017