In Vitro Antibacterial Activity of Different Bioceramic Root Canal Sealers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Agar Disc Diffusion Test
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viapiana, R.; Flumignan, D.L.; Guerreiro-Tanomaru, J.M.; Camilleri, J.; Tanomaru-Filho, M. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sealers. Int. Endod. J. 2014, 47, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Schafer, E.; Zandbiglari, T. Solubility of root-canal sealers in water and artificial saliva. Int. Endod. J. 2003, 36, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Grossman, L. Endodontic Practice, 11th ed.; Lea & Febiger: Philadelphia, PA, USA, 1988. [Google Scholar]
- Torabinejad, M.; Walton, R.E. Endodontics: Principles and Practice; Saunders Elsevier: St. Louis, MO, USA, 2009. [Google Scholar]
- Orstavik, D.; Nordhal, I.; Tibbals, J.E. Dimensional change following setting of root canal sealer materials. Dent. Mater. 2001, 17, 146–151. [Google Scholar] [CrossRef]
- Silva, E.J.; Rosa, T.P.; Herrera, D.R.; Jacinto, R.C.; Gomes, B.P.; Zaia, A.A. Evaluation of cytotoxicity and physicochemical properties of calcium silicate-based endodontic sealer MTA Fillapex. J. Endod. 2013, 39, 274–277. [Google Scholar] [CrossRef] [PubMed]
- American National Standards/American Dental Association. Endodontic Sealing Material; ANSI/ADA Speci Cation no. 57; American National Standards/American Dental Association: Chicago, IL, USA, 2000. [Google Scholar]
- ISO 6876; Dental Root Canal Sealing Materials. International Organization for Standardization: Geneva, Switzerland, 2001.
- Poggio, C.; Lombardini, M.; Conti, A.; Rindi, S. Solubility of root-end-filling materials: A comparative study. J. Endod. 2007, 33, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.P.; Zhang, P.; Michalek, S.; Eleazer, P.D. pH required to kill Enterococcus faecalis in vitro. J. Endod. 2004, 30, 218–219. [Google Scholar] [CrossRef]
- Stuart, C.H.; Schwartz, S.A.; Beeson, T.J.; Owatz, C.B. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J. Endod. 2006, 32, 93–98. [Google Scholar] [CrossRef]
- Okabe, T.; Sakamoto, M.; Takeuchi, H.; Matsushima, K. Effects of pH on mineralization ability of human dental pulp cells. J. Endod. 2012, 32, 198–201. [Google Scholar] [CrossRef]
- Sjogren, U.; Figdor, D.; Persson, S.; Sundqvist, G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int. Endod. J. 1997, 30, 297–306. [Google Scholar] [CrossRef]
- Kakehashi, S.; Stanley, S.R.; Fitzgerald, R.J. The effect of surgical exposures of dental pulps in germ free and conventional laboratory rats. J. Oral Surg. 1965, 20, 340–349. [Google Scholar] [CrossRef]
- Brannstrom, M.; Nordenvali, K.J. Bacterial penetration, pulpul reaction and the inner surface of concise enamel bond composite filling in etched and unetched cavities. J. Dent. Res. 1978, 57, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Fabricus, I.; Dahlen, G.; Holm, S.E.; Moller, A.J.R. Influence of combinations of oral bacteria on peri-apical tissues of monkeys. Scand. J. Dent. Res. 1982, 90, 200–206. [Google Scholar]
- Barnett, F.; Stevens, R.; Tronstad, L. Demonstration of Bacteroides intermedius in peri-apical tissue using indirect immmunofluoroscence microscopy. Endod. Dent. Traumatol. 1990, 6, 153–156. [Google Scholar] [CrossRef]
- Siqueira, J.F.; Favieri, A.; Gahyva, S.M.; Moraes, S.R.; Lima, K.C.; Lopes, H.P. Antimicrobial activity and flow rate of newer and established root canal sealers. J. Endod. 2000, 26, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Gupta, I.; Elshamy, F.M.; Boreak, N.; Homeida, H.E. In vitro comparison of antibacterial properties of bioceramic- based sealer, resin-based sealer and zinc oxide eugenol-based sealer and two mineral trioxide aggregates. Eur. J. Dent. 2016, 10, 366–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matigatti, S.; Jain, D.; Ratnakar, P.; Moturi, S. Antimicrobial effect of conventional root canal medicament vs. propolis against Enterococcus faecalis, staph aureus and candida albicans. J. Contemp. Dent. Pract. 2012, 13, 305–309. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Y.; Ruse, N.D.; Haapasalo, M. Antibacterial activity of endodontic sealers by modi ed direct contact test against Enterococcus faecalis. J. Endod. 2009, 35, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- López-García, S.; Myong-Hyun, B.; Lozano, A.; García-Bernal, D.; Forner, L.; Llena, C.; Guerrero-Gironés, J.; Murcia, L.; Rodríguez-Lozano, F.J. Cytocompatibility, bioactivity potential, and ion release of three premixed calcium silicate-based sealers. Clin. Oral Investig. 2020, 24, 1749–1759. [Google Scholar] [CrossRef]
- Tonini, R.; Giovarruscio, M.; Gorni, F.; Ionescu, A.; Brambilla, E.; Mikhailovna, I.M.; Luzi, A.; Maciel Pires, P.; Sauro, S. In Vitro Evaluation of Antibacterial Properties and Smear Layer Removal/Sealer Penetration of a Novel Silver-Citrate Root Canal Irrigant. Materials 2020, 13, 194. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Shen, Y.; Zheng, W.; Li, L.; Zheng, Y.; Haapasalo, M. Physical Properties of 5 root canal sealers. J. Endod. 2013, 39, 1281–1286. [Google Scholar] [CrossRef]
- Zhou, H.M.; Du, T.F.; Shen, Y.; Wang, Z.J.; Zheng, Y.F.; Haapasalo, M. In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J. Endod. 2015, 41, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Xuereb, M.; Vella, P.; Damidot, D.; Sammut, C.V.; Camilleri, J. In situ assessment of the setting of tricalcium silicate-based sealers using a dentin pressure model. J. Endod. 2015, 41, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Kogan, P.; He, J.; Glickman, G.N.; Watanabe, I. The effects of various additives on setting properties of MTA. J. Endod. 2006, 32, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Filho, J.E.; Rodrigues, G.; Watanabe, S.; Estrada Bernabe, P.F.; Lodi, C.S.; Gomes, A.C.; Faria, D.M.; dos Sanots, D.A.; Moraes, J.C.S. Evaluation of the tissuereaction to fast endodontic cement (CER) and Angelus MTA. J. Endod. 2009, 35, 1377–1380. [Google Scholar] [CrossRef] [PubMed]
- Salles, L.P.; Gomes-Cornelio, A.L.; Guimaraes, F.C.; Herrera, B.S.; Bao, S.N.; Rossa-Junior, C.; Guerreiro-Tanaomaru, J.M.; Tanomaru-Filho, M. Mineral trioxide aggregate-based endodontic sealer stimulates hydroxyapatite nucleation inhuman osteoblast-like cell culture. J. Endod. 2012, 38, 971–976. [Google Scholar] [CrossRef]
- Candeiro, G.T.; Correia, F.C.; Duarte, M.A.; Ribeiro-Siqueira, D.C.; Gavini, G. Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J. Endod. 2012, 38, 842–845. [Google Scholar] [CrossRef] [Green Version]
- Loushine, B.A.; Bryan, T.E.; Looney, S.W.; Gillen, B.M.; Loushine, R.J.; Weller, R.N.; Pashley, D.H.; Tay, F.R. Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J. Endod. 2011, 37, 673–677. [Google Scholar] [CrossRef]
- Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F. Dentin-cement interfacial interaction: Calcium silicates and polyalkenoates. J. Dent. Res. 2012, 91, 454–459. [Google Scholar] [CrossRef]
- Baumgartner, G.; Zehnder, M.; Paqué, F. Enterococcus faecalis type strain leakage through root canals filled with gutta-percha/AH Plus or Resilon/Epiphany. J. Endod. 2007, 33, 45–47. [Google Scholar] [CrossRef]
- Morgental, R.D.; Vier-Pelisser, F.V.; Oliveira, S.D.; Antunes, F.C.; Cogo, D.M.; Kopper, P.M.P. Antibacterial activity of two MTA-based root canal sealers. Int. Endod. J. 2011, 44, 1128–1133. [Google Scholar] [CrossRef]
- Cobankara, F.K.; Altinöz, H.C.; Ergani, O.; Kav, K.; Belli, S. In vitro antibacterial activities of root-canal sealers by using two different methods. J. Endod. 2004, 30, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Rôças, I.N.; Jung, I.Y.; Lee, C.Y.; Siqueira, J.F., Jr. Polymerase chain reaction identification of microorganisms in previously root-filled teeth in a South Korean population. J. Endod. 2004, 30, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Hancock, H.H.; Sigurdsson, A.; Trope, M.; Moiseiwitsch, J. Bacteria isolated after unsuccessful endodontic treatment in a North Am population. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 91, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Kwak, S.W.; Ha, J.H.; Lee, W.; Kim, H.C. Physicochemical Properties of Epoxy Resin-Based and Bioceramic-Based Root Canal Sealers. Bioinorg. Chem. Appl. 2017, 2017, 2582849. [Google Scholar] [CrossRef]
Group | Material | Composition | Manufacturer |
---|---|---|---|
A | FillRoot ST | aluminosilicates, zirconium dioxide, fillers, thickening agents | Dental World srl. Molfetta, BA, Italy |
B | BioRoot RCS | Powder: zirconium dioxide, tricalcium silicate and povidone.Liquid: calcium chloride and polycarboxylate | Septodont, Saint-Maur-des-Fosses, France |
C | Well-Root PT | aluminosilicates, zirconium dioxide, fillers, thickening agents | Vericom Co., Chuncheon, Korea |
D | CeraSeal | Calcium silicates, zirconium dioxide, thickening agents | Meta Biomed Co., Cheongju, Korea |
E | Pulp Canal Sealer EWT | Powder: zinc oxide, silver powder, thymol iodide, dimeric acid resin. Liquid: 4-allyl-2-methoxyphenol, balsam resin and water | Kerr, Romulus, MI, USA |
S. mutans | S. sanguis | S. salivarius | Control | ||||||
---|---|---|---|---|---|---|---|---|---|
Group | Material | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h |
A | FillRoot ST | 0.005 (0.003–0.005) | 0.008 (0.005–0.01) | 0.007 (0.006–0.007) | 0.01 (0.007–0.012) | 0.003 (0.002–0.003) | 0.006 (0.003–0.008) | <0.000 | <0.000 |
B | BioRoot™RCS | 0.012 (0.01–0.013) | 0.019 (0.014–0.022) | 0.014 (0.012–0.015) | 0.021 (0.016–0.024) | 0.010 (0.008–0.011) | 0.017 (0.012–0.020) | <0.000 | <0.000 |
C | Well-Root™ PT | 0.007 (0.006–0.008) | 0.007 (0.005–0.008) | 0.009 (0.008–0.01) | 0.009 (0.007–0.01) | 0.005 (0.004–0.006) | 0.005 (0.003–0.006) | <0.000 | <0.000 |
D | CeraSeal | 0.006 (0.005–0.007) | 0.005 (0.004–0.007) | 0.008 (0.007–0.009) | 0.007 (0.006–0.009) | 0.004 (0.003–0.005) | 0.003 (0.002–0.005) | <0.000 | <0.000 |
E | Pulp Canal Sealer™ EWT | 0.31 (0.24–0.45) | 0.37 (0.26–0.49) | 0.32 (0.27–0.46) | 0.36 (0–0.42) | 0.28 (0.23–0.42) | 0.31 (0–0.28) | <0.000 | <0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dagna, A.; Colombo, M.; Poggio, C.; Russo, G.; Pellegrini, M.; Pietrocola, G.; Beltrami, R. In Vitro Antibacterial Activity of Different Bioceramic Root Canal Sealers. Ceramics 2022, 5, 901-907. https://doi.org/10.3390/ceramics5040065
Dagna A, Colombo M, Poggio C, Russo G, Pellegrini M, Pietrocola G, Beltrami R. In Vitro Antibacterial Activity of Different Bioceramic Root Canal Sealers. Ceramics. 2022; 5(4):901-907. https://doi.org/10.3390/ceramics5040065
Chicago/Turabian StyleDagna, Alberto, Marco Colombo, Claudio Poggio, Gianluigi Russo, Matteo Pellegrini, Giampiero Pietrocola, and Riccardo Beltrami. 2022. "In Vitro Antibacterial Activity of Different Bioceramic Root Canal Sealers" Ceramics 5, no. 4: 901-907. https://doi.org/10.3390/ceramics5040065
APA StyleDagna, A., Colombo, M., Poggio, C., Russo, G., Pellegrini, M., Pietrocola, G., & Beltrami, R. (2022). In Vitro Antibacterial Activity of Different Bioceramic Root Canal Sealers. Ceramics, 5(4), 901-907. https://doi.org/10.3390/ceramics5040065