Biocompatibility of Ceramic Materials in Ca2P2O7–Ca(PO3)2 System Obtained via Heat Treatment of Cement-Salt Stone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Reagents and Synthesis
2.2. Preparation of the Calcium Pyrophosphate and Calcium Polyphosphate Ceramics
2.3. Characterization
2.3.1. Determination of Plastic Strength
2.3.2. Determination of Strength Properties
2.3.3. Determination of True Density
2.3.4. Thermal Analysis
2.3.5. pH Measurements
2.3.6. In Vivo Tests
- 4—no sign;
- 3—weakly expressed sign;
- 2—moderately pronounced sign;
- 1—a well-defined sign;
- 0—the most pronounced sign
- 0—no sign;
- 1—weakly expressed sign;
- 2—moderately pronounced sign;
- 3—a well-defined sign;
- 4—the most pronounced sign.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kucko, N.W.; Herber, R.-P.; Leeuwenburgh, S.C.G.; Jansen, J.A. Calcium Phosphate Bioceramics and Cements. Princ. Regen. Med. 2019, 3, 591–611. [Google Scholar]
- Salimi, E. Functionally graded calcium phosphate bioceramics: An overview of preparation and properties. Ceram. Int. 2020, 46, 19664–19668. [Google Scholar] [CrossRef]
- Safronova, T.V. Inorganic Materials for Regenerative Medicine. Inorg. Mater. 2021, 57, 443–474. [Google Scholar] [CrossRef]
- Safronova, T.V.; Kurbatova, S.A.; Shatalova, T.B.; Knotko, A.V.; Yevdokimov, P.V.; Putlyayev, V.I. Calcium pyrophosphate powder for production of bioceramics synthesized from pyrophosphoric acid and calcium acetate. Inorg. Mater. Appl. Res. 2017, 8, 118–125. [Google Scholar] [CrossRef]
- Safronova, T.V.; Shatalova, T.B.; Filippov, Y.Y.; Krut’ko, V.K.; Musskaya, O.N.; Safronov, A.S.; Toshev, O.U. Ceramics in the Ca2P2O7–Ca(PO3)2 system obtained by annealing of the samples made from hardening mixtures based on calcium citrate tetrahydrate and monocalcium phosphate monohydrate. Inorg. Mater. Appl. Res. 2020, 11, 777–786. [Google Scholar] [CrossRef]
- Metsger, D.S.; Driskell, T.D.; Paulsrud, J.R. Tricalcium phosphate ceramic—A resorbable bone implant: Review and current status. J. Am. Dent. Assoc. 1982, 105, 1035–1038. [Google Scholar] [CrossRef]
- Daculsi, G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 1998, 19, 1473–1478. [Google Scholar] [CrossRef]
- Valletregi, M. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 2004, 32, 1–31. [Google Scholar] [CrossRef]
- Habraken, W.; Habibovic, P.; Epple, M.; Bohner, M. Calcium phosphates in biomedical applications: Materials for the future? Mater. Today 2016, 19, 69–87. [Google Scholar] [CrossRef]
- Canillas, M.; Pena, P.; de Aza, A.H.; Rodriguez, M.A. Calcium phosphates for biomedical applications. Bol. Soc. Esp. Ceram. Vidr. 2017, 56, 91–112. [Google Scholar] [CrossRef]
- Bouler, J.M.; Pilet, P.; Gauthier, O.; Verron, E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 2017, 53, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, J.H.; Shim, J.H.; Hwang, N.S.; Heo, C.Y. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019, 23, 4. [Google Scholar] [CrossRef] [PubMed]
- Safronova, T.V.; Putlyaev, V.I. Powder systems for calcium phosphate ceramics. Inorg. Mater. 2017, 53, 17–26. [Google Scholar] [CrossRef]
- Hurle, K.; Oliveira, J.M.; Reis, R.L.; Pina, S.; Goetz-Neunhoeffer, F. Ion-doped Brushite Cements for Bone Regeneration. Acta Biomater. 2021, 123, 51–71. [Google Scholar] [CrossRef]
- Boanini, E.; Silingardi, F.; Gazzano, M.; Bigi, A. Synthesis and Hydrolysis of Brushite (DCPD): The Role of Ionic Substitution. Cryst. Growth Des. 2021, 21, 1689–1697. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, L.; Gbureck, U.; Bhaduri, S.B.; Sikder, P. Monetite, an important calcium phosphate compound–Its synthesis, properties and applications in orthopedics. Acta Biomater. 2021, 127, 41–55. [Google Scholar] [CrossRef]
- Motameni, A.; Alshemary, A.Z.; Evisa, Z. A review of synthesis methods, properties and use of monetite cements as filler for bone defects. Ceram. Int. 2021, 47, 13245–13256. [Google Scholar] [CrossRef]
- Safronova, T.V.; Putlyaev, V.I.; Kurbatova, S.A.; Shatalova, T.B.; Larionov, D.S.; Kozlov, D.A.; Evdokimov, P.V. Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the preparation of bioceramics. Inorg. Mater. 2015, 51, 1177–1184. [Google Scholar] [CrossRef]
- Lee, J.H.; Chang, B.-S.; Jeung, U.-O.; Park, K.-W.; Kim, M.-S.; Lee, C.-K. The first clinical trial of beta-calcium pyrophosphate as a novel bone graft extender in instrumented posterolateral lumbar fusion. Clin. Orthop. Surg. 2011, 3, 238. [Google Scholar] [CrossRef] [PubMed]
- Safronova, T.V.; Putlyaev, V.I.; Ivanov, V.K.; Knot’ko, A.V.; Shatalova, T.B. Powders mixtures based on ammonium hydrophosphate and calcium carbonate for preparation of biocompatible porous ceramic in the CaO–P2O5 system. Refract. Ind. Ceram. 2016, 56, 502–509. [Google Scholar] [CrossRef]
- Safronova, T.V.; Putlayev, V.I.; Bessonov, K.A.; Ivanov, V.K. Ceramics based on calcium pyrophosphate nanopowders. Proc. Appl. Ceram. 2013, 7, 9–14. [Google Scholar] [CrossRef]
- Lin, F.-H.; Liao, C.-J.; Chen, K.S.; Sun, J.-S.; Liu, H.-C. Degradation behaviour of a new bioceramic: Ca2P2O7 with addition of Na4P2O7•10H2O. Biomaterials 1997, 18, 915–921. [Google Scholar] [CrossRef]
- Webb, N.C. The crystal structure of β-Ca2P2O7. Acta Cryst. 1966, 21, 942–948. [Google Scholar] [CrossRef]
- Weil, M.; Puchberger, M.; Schmedt auf der Günne, J.; Weber, J. Synthesis, crystal structure, and characterization (Vibrational and Solid-State31P MAS NMR Spectroscopy) of the high-temperature modification of calciumcatena-polyphosphate(V). Chem. Mater. 2007, 19, 5067–5073. [Google Scholar] [CrossRef]
- Kondrashenko, E.V.; Kondrashenko, V.I.; Kudryavtseva, V.D.; Grebennikov, D.A.; Semak, A.V. Opredeleniye Plasticheskoy Prochnosti Rastvornykh i Betonnykh Smesey; Library of National Technical University, Kharkiv Polytechnic Institute: Kharkiv, Ukraine, 2012. [Google Scholar]
- Mirtchi, A.A.; Lemaitre, J.; Terao, N. Calcium phosphate cements: Study of the beta-tricalcium phosphate—Monocalcium phosphate system. Biomaterials 1989, 10, 475–480. [Google Scholar]
- Mansour, S.A.A. Thermal decomposition of calcium citrate tetrahydrate. Thermochimica acta 1994, 233, 243–256. [Google Scholar] [CrossRef]
- Hill, W.L.; Hendricks, S.B.; Fox, E.J.; Cady, J.G. Acid pyro-and metaphosphates produced by thermal decomposition of monocalcium phosphate. Industrial & Engineering Chemistry 1947, 39, 1667–1672. [Google Scholar]
- Hill, W.L.; Hendricks, S.B. Composition and properties of superphosphate: Calcium phosphate and calcium sulfate constituents as shown by chemical and x-Ray diffraction Analysis. Ind. Eng. Chem. 1936, 28, 440–447. [Google Scholar] [CrossRef]
- Schrödter, K.; Bettermann, G.; Staffel, T.; Wahl, F.; Klein, T.; Hofmann, T. Phosphoric acid and phosphates. Ullmann’s Encycl. Ind. Chem. 2008, 26, 679–724. [Google Scholar]
- Rothammel, W.; Burzlaff, H.; Specht, R. Structure of calcium metaphosphate Ca(PO3)2. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1989, 45, 551–553. [Google Scholar] [CrossRef]
No | Expected Phase Composition of Ceramics | Expected Phase Composition of Samples after Forming | ||
---|---|---|---|---|
β-Ca(PO3)2 (g) | β-Ca2P2O7 (g) | Ca(H2PO4)2·H2O (g) | CaHPO4·2H2O (g) | |
1 | 0 | 100 | 0 | 135.4 |
2 | 5 | 95 | 6,4 | 128.7 |
3 | 10 | 90 | 12,7 | 121.9 |
4 | 20 | 80 | 25,4 | 108.3 |
Name of the Sample | 0/100_1000 | 5/95_1000 | 10/90_1000 | 20/80_1000 |
---|---|---|---|---|
Thickness capsule | 3 | 3 | 3 | 4 |
Vascularization | 2 | 2 | 1 | 1 |
Capsule maturity | 1 | 3 | 4 | 4 |
Fibroblasts | 1 | 1 | 3 | 3 |
Macrophages | 0 | 2 | 3 | 3 |
Lympho-macrophage infiltration | 0 | 2 | 3 | 4 |
Total | 7 | 13 | 17 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toshev, O.; Safronova, T.; Kaimonov, M.; Shatalova, T.; Klimashina, E.; Lukina, Y.; Malyutin, K.; Sivkov, S. Biocompatibility of Ceramic Materials in Ca2P2O7–Ca(PO3)2 System Obtained via Heat Treatment of Cement-Salt Stone. Ceramics 2022, 5, 516-532. https://doi.org/10.3390/ceramics5030039
Toshev O, Safronova T, Kaimonov M, Shatalova T, Klimashina E, Lukina Y, Malyutin K, Sivkov S. Biocompatibility of Ceramic Materials in Ca2P2O7–Ca(PO3)2 System Obtained via Heat Treatment of Cement-Salt Stone. Ceramics. 2022; 5(3):516-532. https://doi.org/10.3390/ceramics5030039
Chicago/Turabian StyleToshev, Otabek, Tatiana Safronova, Maksim Kaimonov, Tatiana Shatalova, Elena Klimashina, Yulia Lukina, Konstantin Malyutin, and Sergey Sivkov. 2022. "Biocompatibility of Ceramic Materials in Ca2P2O7–Ca(PO3)2 System Obtained via Heat Treatment of Cement-Salt Stone" Ceramics 5, no. 3: 516-532. https://doi.org/10.3390/ceramics5030039
APA StyleToshev, O., Safronova, T., Kaimonov, M., Shatalova, T., Klimashina, E., Lukina, Y., Malyutin, K., & Sivkov, S. (2022). Biocompatibility of Ceramic Materials in Ca2P2O7–Ca(PO3)2 System Obtained via Heat Treatment of Cement-Salt Stone. Ceramics, 5(3), 516-532. https://doi.org/10.3390/ceramics5030039