Electrical Behavior of Electric Field-Assisted Pressureless Sintered Ceria-20 mol% Samaria
Abstract
:1. Introduction
1.1. Flash Sintering
1.2. Flash Sintering Ceria
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cologna, M.; Rashkova, B.; Raj, R. Flash Sintering of nanograin zirconia in < 5 s at 850 °C. J. Am. Ceram. Soc. 2010, 93, 3556–3559. [Google Scholar]
- Yu, M.; Grasso, S.; Mckinnon, R.; Saunders, T.; Reece, M.J. Review of flash sintering: Materials, mechanisms and modelling. Adv. Appl. Ceram. 2017, 116, 24–60. [Google Scholar] [CrossRef]
- Dancer, C.E.J. Flash sintering of ceramic materials. Res. Express 2016, 3, 1–25. [Google Scholar] [CrossRef]
- Muccillo, R.; Muccillo, E.N.S. Electric field assisted sintering of electroceramics and in situ analysis by impedance spectroscopy. J. Electroceram. 2016, 38, 24–42. [Google Scholar] [CrossRef]
- Guillon, O.; Elsässer, C.; Gutfleisch, O.; Janek, F.; Korte-Kerzel, S.; Raabe, D.; Volkert, C.A. Manipulation of matter by electric and magnetic fields: Toward novel synthesis and processing routes of inorganic materials. Mater. Today 2018, 21, 527–536. [Google Scholar] [CrossRef]
- Biesuz, M.; Sglavo, V.M. Flash sintering of ceramics. J. Eur. Ceram. Soc. 2019, 39, 115–143. [Google Scholar] [CrossRef]
- Yang, D.; Conrad, H. Enhanced sintering rate of zirconia (3Y-TZP) by application of a small AC electric field. Scr. Mater. 2010, 63, 328–331. [Google Scholar] [CrossRef]
- Cologna, M.; Prette, A.L.G.; Raj, R. Flash-sintering of cubic yttria-stabilized zirconia at 750 degrees C for possible use in SOFC manufacturing. J. Am. Ceram. Soc. 2011, 94, 316–319. [Google Scholar] [CrossRef]
- Muccillo, R.; Kleitz, M.; Muccillo, E.N.S. Flash grain welding in yttria stabilized zirconia. J. Eur. Ceram. Soc. 2011, 31, 1517–1521. [Google Scholar] [CrossRef]
- Raj, R. Joule heating during flash sintering. J. Eur. Ceram. Soc. 2012, 32, 2293–2301. [Google Scholar] [CrossRef]
- Muccillo, R.; Muccillo, E.N.S. An experimental setup for shrinkage evaluation during electric field-assisted flash sintering: Application to yttria-stabilized zirconia. J. Eur. Ceram. Soc. 2013, 33, 515–520. [Google Scholar] [CrossRef]
- Downs, J.A.; Sglavo, V.M. Electric field assisted sintering of cubic zirconia at 390 °C. J. Am. Ceram. Soc. 2013, 96, 1342–1344. [Google Scholar] [CrossRef]
- Francis, J.S.C.; Raj, R. Influence of the field and the current limit on flash sintering at isothermal furnace temperatures. J. Am. Ceram. Soc. 2013, 96, 2754–2758. [Google Scholar] [CrossRef]
- M’Peko, J.C.; Francis, J.S.C.; Raj, R. Impedance spectroscopy and dielectric properties of flash versus conventionally sintered yttria-doped zirconia electroceramics viewed at the microstructural level. J. Am. Ceram. Soc. 2013, 96, 3760–3767. [Google Scholar] [CrossRef]
- Muccillo, R.; Muccillo, E.N.S. Shrinkage control of yttria-stabilized zirconia during ac electric field-assisted sintering. J. Eur. Ceram. Soc. 2014, 34, 3871–3877. [Google Scholar] [CrossRef]
- Todd, R.I.; Zapata-Solvas, E.; Bonilla, R.S.; Sneddon, T.; Wilshaw, P.R. Electrical characteristics of flash sintering: Thermal runaway of Joule heating. J. Eur. Ceram. Soc. 2015, 35, 1865–1877. [Google Scholar] [CrossRef]
- Da Silva, J.G.P.; Lebrun, J.M.; Al-Qureshi, H.A.; Janssen, R.; Raj, R. Temperature Distributions During flash sintering of 8% yttria-stabilized zirconia. J. Am. Ceram. Soc. 2015, 98, 3525–3528. [Google Scholar] [CrossRef]
- Dong, Y.H.; Chen, I.W. Onset criterion for flash sintering. J. Am. Ceram. Soc. 2015, 98, 3624–3627. [Google Scholar] [CrossRef]
- Du, Y.X.; Stevenson, A.J.; Vernat, D.; Diaz, M.; Marinha, D. Estimating Joule heating and ionic conductivity during flash sintering of 8YSZ. J. Eur. Ceram. Soc. 2016, 36, 749–759. [Google Scholar] [CrossRef]
- Jha, S.K.; Terauds, K.; Lebrun, J.M.; Raj, R. Beyond flash sintering in 3 mol % yttria-stabilized zirconia. J. Ceram. Soc. Jpn. 2016, 124, 283–288. [Google Scholar] [CrossRef]
- Qin, W.; Yun, J.; Thron, A.M.; van Benthem, K. Temperature gradient and microstructure evolution in AC flash sintering of 3 mol% yttria-stabilized zirconia. Mater. Manufact. Proc. 2017, 32, 549–556. [Google Scholar] [CrossRef]
- Carvalho, S.G.M.; Muccillo, E.N.S.; Muccillo, R. AC Electric field assisted pressureless sintering zirconia: 3 mol% yttria solid electrolyte. Phys. Status Solidi A 2018, 215, 1700647. [Google Scholar] [CrossRef]
- Biesuz, M.; Sglavo, V.M. Microstructural temperature gradient-driven diffusion: Possible densification mechanism for flash sintering of zirconia? Ceram. Int. 2019, 45, 1227–1236. [Google Scholar] [CrossRef]
- Campos, J.V.; Lavagnini, I.R.; de Souza, R.V.; Ferreira, J.A.; Pallone, E.M.D.A. Development of an instrumented and automated flash sintering setup for enhanced process monitoring and parameter control. J. Eur. Ceram. Soc. 2019, 39, 531–538. [Google Scholar] [CrossRef]
- Carvalho, S.G.M.; Muccillo, E.N.S.; Muccillo, R. Electrical Behavior and Microstructural Features of Electric Field-Assisted and Conventionally Sintered 3 mol % Yttria-Stabilized Zirconia. Ceramics 2018, 1, 3–12. [Google Scholar] [CrossRef]
- Bannister, M. Science and Technology of Zirconia V; Badwal, S.P.S., Bannister, M.J., Hannink, R.H.J., Eds.; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Hao, X.; Liu, Y.; Wang, Z.; Qiao, J.; Sun, K. A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current. J. Power Sources 2012, 210, 86–91. [Google Scholar] [CrossRef]
- Jiang, T.Z.; Wang, Z.H.; Zhang, J.; Hao, X.M.; Rooney, D.; Liu, Y.; Sun, W.; Qiao, J.S.; Sun, K.N. Understanding the flash sintering of rare-earth-doped ceria for solid oxide fuel cell. J. Am. Ceram. Soc. 2015, 98, 1717–1723. [Google Scholar] [CrossRef]
- Biesuz, M.; Dell’Agli, G.; Spiridigliozi, L.; Ferone, C.; Sglavo, V.M. Conventional and field-assisted sintering of nanosized Gd-doped ceria sinthesized by co-precipitation. Ceram. Int. 2016, 42, 11766–11771. [Google Scholar] [CrossRef]
- Valdebenito, J.U.; Akbari-Fakhrabadi, A.; Viswanathan, M.R. Effect of flash sintering on microstructure of Ce0.9Gd0.1O1.95 electrolyte fabricated by tape-casting. Mater. Lett. 2017, 209, 291–294. [Google Scholar] [CrossRef]
- Spiridigliosi, L.; Biesuz, M.; Dell’Agli, G.; Di Bartolomeo, E.; Zurlo, F.; Sglavo, V.M. Microstructural and electrical investigation of flash-sintered Gd/Sm-doped ceria. J. Mater. Sci. 2017, 52, 7479–7488. [Google Scholar] [CrossRef]
- Li, J.; Guan, L.L.; Zhang, W.; Luo, M.; Song, J.L.; Song, X.W.; An, S.L. Sintering behavior of samarium doped ceria under DC electrical field. Ceram. Int. 2018, 44, 2470–2477. [Google Scholar] [CrossRef]
- Jha, S.K.; Charalambous, H.; Wang, H.; Phuah, X.L.; Mead, C.; Okasinski, J.; Wang, H.; Tsakalakos, T. In-situ observation of oxygen mobility and abnormal lattice expansion in ceria during flash sintering. Ceram. Int. 2018, 44, 15362–15369. [Google Scholar] [CrossRef]
- Vendrell, X.; West, A.R. Induced p-type semi-conductivity in yttria-stabilised zirconia. J. Am. Ceram. Soc. 2019. [Google Scholar] [CrossRef]
- Samarium Doped Ceria (20% Sm)–Nanopowder. Available online: https://fuelcellmaterials.com/ products/powders/electrolyte-powders/samarium-doped-ceria-20-sm-nanopowder/ (accessed on 4 April 2019).
- Kleitz, M.; Kennedy, J.H. Resolution of multicomponent impedance diagrams. In Fast Ion Transport in Solids; Mundy, J.N., Shenoy, G.K., Vashishta, P., Eds.; Elsevier: North Holland, The Netherlands, 1979; pp. 185–188. [Google Scholar]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy, Theory, Experiment, and Applications; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Ding, D.; Liu, B.; Gong, M.; Liu, X.; Xia, C. Electrical properties of samaria-doped ceria electrolytes from highly active powders. Electrochim. Acta 2010, 55, 4529–4535. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, S.L.; Carvalho, S.G.M.; Muccillo, E.N.S.; Muccillo, R. Electrical Behavior of Electric Field-Assisted Pressureless Sintered Ceria-20 mol% Samaria. Ceramics 2019, 2, 385-392. https://doi.org/10.3390/ceramics2020030
Reis SL, Carvalho SGM, Muccillo ENS, Muccillo R. Electrical Behavior of Electric Field-Assisted Pressureless Sintered Ceria-20 mol% Samaria. Ceramics. 2019; 2(2):385-392. https://doi.org/10.3390/ceramics2020030
Chicago/Turabian StyleReis, Shirley L., Sabrina G.M. Carvalho, Eliana N.S. Muccillo, and Reginaldo Muccillo. 2019. "Electrical Behavior of Electric Field-Assisted Pressureless Sintered Ceria-20 mol% Samaria" Ceramics 2, no. 2: 385-392. https://doi.org/10.3390/ceramics2020030
APA StyleReis, S. L., Carvalho, S. G. M., Muccillo, E. N. S., & Muccillo, R. (2019). Electrical Behavior of Electric Field-Assisted Pressureless Sintered Ceria-20 mol% Samaria. Ceramics, 2(2), 385-392. https://doi.org/10.3390/ceramics2020030