Exchange-Coupling Behavior in SrFe12O19/La0.7Sr0.3MnO3 Nanocomposites
Abstract
:1. Introduction
2. Experimental
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Asthana, S.; Nigam, A.K.; Bahadur, D. Magnetic and magnetotransport properties in (LaxSm1–x)2/3Sr1/3MnO3 (x = 1/3, 1/2 and 2/3) manganites. Phys. Stat. Sol. B 2006, 243, 1922–1928. [Google Scholar] [CrossRef]
- Jonker, G.H.; Vansanten, J.H. Ferromagnetic compounds of manganese with perovskite structure. Physica 1950, 16, 337–349. [Google Scholar] [CrossRef]
- Jonker, G.H. Magnetic compounds with perovskite structures IV Conducting and non-conducting compounds. Physica 1956, 22, 707–722. [Google Scholar] [CrossRef]
- Fu, Y.P.; Lin, C.H. Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwave-induced combustion process. J. Alloys Compd. 2005, 386, 222–227. [Google Scholar] [CrossRef]
- Chen, N.; Mu, G.; Pan, X.; Gan, K.; Gu, M. Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders. Mater. Sci. Eng. B 2007, 139, 256–260. [Google Scholar] [CrossRef]
- Rai, B.K.; Wang, L.; Mishra, S.R.; Nguyen, V.V.; Liu, J.P. Synthesis and Magnetic Properties of Hard-Soft SrFe10Al2O19/NiZnFe2O4 Ferrite nanocomposites. J. Nanosci. Nanotechnol. 2014, 14, 5272–5277. [Google Scholar] [CrossRef]
- Liu, X.; Zhong, W.; Gu, B.; Du, Y. Exchange-coupling interaction in nanocomposite SrFe12O19/γ-Fe2O3 permanent ferrites. J. Appl. Phys. 2002, 92, 1028–1032. [Google Scholar] [CrossRef]
- Fei, C.; Zhang, Y.; Yang, Z.; Liu, Y.; Xiong, R.; Shi, J.; Ruan, X. Synthesis and magnetic properties of hard magnetic (CoFe2O4)–soft magnetic (Fe3O4) nano-composite ceramics by SPS technology. J. Magn. Magn. Mater. 2011, 323, 1811–1816. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wang, Q. Preparation and magnetic properties of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite. J. Magn. Magn. Mater. 2012, 324, 3024–3028. [Google Scholar] [CrossRef]
- Roy, D.; Anil Kumar, P.S. Enhancement of (BH)max in a hard-soft- ferrite nanocomposite using exchange spring mechanism. J. Appl. Phys. 2009, 106, 073902. [Google Scholar] [CrossRef]
- Dai, Q.; Patel, K.; Ren, S. Exchange-coupled ferrite nanocomposites through chemical synthesis. Chem. Commun. 2016, 52, 10354–10356. [Google Scholar] [CrossRef] [PubMed]
- Torkian, S.; Ghasemi, A. Energy product enhancement in sufficiently exchange-coupled nanocomposite ferrites. J. Magn. Magn. Mater. 2019, 469, 119–127. [Google Scholar] [CrossRef]
- Zi, Z.F.; Sun, Y.P.; Zhu, X.B.; Hao, C.Y.; Luo, X.; Yang, Z.R.; Dai, J.M.; Song, W.H. Electrical transport and magnetic properties in La0.7Sr0.3MnO3 and SrFe12O19 composite system. J. Alloys Compd. 2008, 477, 414–419. [Google Scholar] [CrossRef]
- Hazra, S.; Patra, M.K.; Vadera, S.R.; Ghosh, N.N. A Novel But Simple “One-Pot” Synthetic Route for Preparation of (NiFe2O4)x–(BaFe12O19)1−x Composites. J. Am. Ceram. Soc. 2012, 95, 60–63. [Google Scholar] [CrossRef]
- Radmanesh, A.; Seyyed Ebrahimi, S.A. Synthesis and magnetic properties of hard/soft SrFe12O19/Ni0.7Zn0.3Fe2O4 nanocomposite magnets. J. Magn. Magn. Mater. 2012, 324, 3094–3098. [Google Scholar] [CrossRef]
- Ding, J.; McCormick, P.G.; Street, R. Remanence enhancement in mechanically alloyed isotropic Sm7Fe93-nitride. J. Magn. Magn. Mater. 1993, 124, 1–4. [Google Scholar] [CrossRef]
- Hong, J.H.; Kim, W.S.; Lee, J.I.; Hur, N.H. Exchange-coupled magnetic nanocomposites of Sm (Co1− xFex)5/Fe3O4 with core/shell structure. Solid. State Commun. 2007, 141, 541–544. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, Y.; Bonder, M.J.; Hadjipanayis, G.C. Fabrication of Sm–Co/Co (Fe) composites by electroless Co and Co–Fe plating. J. Appl. Phys. 2003, 93, 6498–6500. [Google Scholar] [CrossRef]
- Le Breton, J.M.; Larde, R.; Chiron, H.; Pop, V.; Givord, D.; Isnard, O.; Chicinas, I. A structural investigation of SmCo5/Fe nanostructured alloys obtained by high-energy ball milling and subsequent annealing. Phys. D: Appl. Phys. 2010, 43, 085001. [Google Scholar] [CrossRef]
- Dahal, J.N.; Wang, L.; Mishra, S.R.; Nguyen, V.V.; Liu, J.P. Synthesis and magnetic properties of SrFe12−x−yAlxCoyO19 nanocomposites prepared via autocombustion technique. J. Alloy Compd. 2014, 595, 213–220. [Google Scholar] [CrossRef]
- Varma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev. 2016, 116, 14493–14586. [Google Scholar] [CrossRef] [PubMed]
- Sutka, A.; Mezinskis, G. Sol–Gel Auto-Combustion Synthesis of Spinel-Type Ferrite Nanomaterials. Front. Mater. Sci. 2012, 6, 128–141. [Google Scholar] [CrossRef]
- Azadmanjiri, J.; Seyyed Ebrahimi, S.A. Influence of stoichiometry and calcination condition on the microstructure and phase constitution of NiFe2O4 powders prepared by sol-gel autocombustion method. Phys. Stat. Solidi (c) 2004, 1, 3414–3417. [Google Scholar] [CrossRef]
- Bahadur, D.; Fisher, W.; Rane, M.V. In-situ high-temperature X-ray diffraction studies of non-stoichiometric Ni–Zr substituted barium hexagonal ferrites prepared by citrate precursor route. Mater. Sci. Eng A 1998, 252, 109–116. [Google Scholar] [CrossRef]
- Bahadur, D.; Rajkumar, S.; Kumar, A. Influence of fuel ratios on auto combustion synthesis of barium ferrite nano particles. J. Chem. Sci. 2006, 118, 15–21. [Google Scholar] [CrossRef]
- Luo, H.; Rai, B.K.; Mishra, S.R.; Nguyen, V.V.; Liu, J.P. Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J. Magn. Magn. Mater. 2012, 324, 2602–2608. [Google Scholar] [CrossRef]
- Cullity, B.D. Element of X-Ray Diffraction, 2nd ed.; Addison-Wesley Publishing Company Inc.: Boston, MA, USA, 1978; p. 102. [Google Scholar]
- Fan, D.N.; Chen, L.Q. Topological evolution during coupled grain growth and Ostwald ripening in volume-conserved 2-D two-phase polycrystals. Acta Mater. 1997, 45, 4145–4154. [Google Scholar] [CrossRef]
- Gonzalez, F.N.T.; Miro, A.M.B.; De Jesús, F.S.; Serna, P.V.; Gonzalez, N.M.; Marcos, J.S. Crystal structure and magnetic properties of high Mn-doped strontium hexaferrite. J. Alloys. Compd. 2017, 695, 2083–2090. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Kim, D.H.; Kang, Y.M. Magnetic coupling behaviors in M-type hexaferrite-perovskite manganese composites. J. Magn. Magn. Mater. 2017, 439, 349–352. [Google Scholar] [CrossRef]
- Kim, D.H.; Kang, Y.M.; Ur, S.C.; You, J.H.; Yoo, S.I. Structure and magnetic properties of La0.7Sr0.3MnO3(1−x)–SrFe12O19(x) composites. J. Magn. Magn. Mater. 2018, 449, 567–570. [Google Scholar] [CrossRef]
- Xia, A.L.; Zuo, C.H.; Zhang, L.J.; Cao, C.X.; Deng, Y.; Xu, W.; Xie, M.F.; Ran, S.L.; Jin, C.G.; Liu, X.G. Magnetic properties, exchange-coupling and novel stripe domains in bulk SrFe12O19/(Ni,Zn)Fe2O4 composites. J. Phys. D Appl. Phys. 2014, 47, 415004. [Google Scholar] [CrossRef]
- Rong, C.; Zhang, H.; Chen, R.; He, S.; Shen, B. The role of dipolar interaction in nanocomposite permanent magnets. J. Magn. Magn. Mater. 2006, 302, 126–136. [Google Scholar] [CrossRef]
- Stoner, E.C.; Wohlfarth, E.P. A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1948, 240, 599–642. [Google Scholar] [CrossRef]
- Schrefl, T.; Fidler, J.; Kronmuller, H. Remanence and Coercivity in isotropic nanocrystalline permanent magnets. Phys. Rev. B 1993, 49, 6100. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, X.; Li, S. Structure, magnetic, electrical transport and magnetoresistance properties of La0.67Sr0.33Mn1−xFexO3 (x = 0–0.15) doped manganite coatings. Ceram. Int. 2017, 43, 3679–3687. [Google Scholar] [CrossRef]
- Moon, K.W.; Cho, S.G.; Choa, Y.H.; Kim, K.H.; Kim, J. Synthesis and magnetic properties of nano Ba-hexaferrite/NiZn ferrite composites. Phys. Stat. Solidi A 2007, 204, 4141–4144. [Google Scholar] [CrossRef]
- Darbandi, M.; Stromberg, F.; Landers, J.; Reckers, N.; Sanyal, B.; Keune, W.; Wende, H. Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J. Phys. D Appl. Phys. 2012, 45, 195001. [Google Scholar] [CrossRef]
- Si, W.; Zhao, G.P.; Ran, N.; Peng, Y.; Morvan, F.J.; Wan, X.L. Deterioration of the coercivity due to the diffusion induced interface layer in hard/soft multilayers. Sci. Rep. 2015, 5, 16212. [Google Scholar] [CrossRef] [PubMed]
- Tavakolinia, F.; Yousefi, M.; Afghahi, S.S.S.; Baghshahi, S.; Samadi, S. Synthesis of novel hard/soft ferrite composites particles with improved magnetic properties and exchange-coupling. Proc. Appl. Ceram. 2018, 12, 249–257. [Google Scholar] [CrossRef]
- Fukunaga, H.; Kuma, J.; Kanai, Y. Effect of strength of intergrain exchange interaction on magnetic properties of nanocomposite magnets. IEEE Trans. Magn. 1999, 35, 3235–3240. [Google Scholar] [CrossRef]
- Gao, R.W.; Zhang, D.H.; Li, W.; Li, X.M.; Zhang, J.C. Hard magnetic property and dM(H) plot for sintered NdFeB magnet. J. Magn. Magn. Matter. 2000, 208, 239–243. [Google Scholar] [CrossRef]
- Neupane, D.; Ghimire, M.; Adhikari, H.; Lisfi, A.; Mishra, S.R. Synthesis and magnetic study of magnetically hard-soft SrFe12−yAlyO19−x Wt.% Ni0.5Zn0.5Fe2O4 nanocomposites. AIP Adv. 2017, 7, 055602. [Google Scholar] [CrossRef]
- Fullerton, E.E.; Jiang, J.S.; Bader, S.D. Hard/soft magnetic heterostructures: model exchange-spring magnets. J. Magn. Magn. Mater. 1999, 200, 392–404. [Google Scholar] [CrossRef]
- Liu, Z.; Zeng, D.; Ramanujan, R.; Zhong, X.; Davies, H.A. Exchange interaction in rapidly solidified nanocrystalline RE–(Fe/Co)–B hard magnetic alloys. J. Appl. Phys. 2009, 105, 07A736. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, R.W.; Han, B.P.; Liu, M.; Han, G.B.; Feng, W.C. Exchange-coupling interaction, effective anisotropy and magnetic property of nano-magnetic materials. Prog. Nat. Sci. 2007, 17, 131–137. [Google Scholar]
- Li, D.; Wang, F.; Xia, A.; Zhang, L.; Li, T.; Jin, C.; Liu, X. A facile way to realize exchange-coupling interaction in hard/soft magnetic composites. J. Magn. Magn. Mater. 2016, 417, 355–358. [Google Scholar] [CrossRef]
SrFe12O19 | La0.7Sr0.3MnO3 | ||||||
---|---|---|---|---|---|---|---|
Sr(NO3)2 | Fe(NO3)3.9H2O | Citric Acid | La(NO3)2 | Sr(NO3)2 | Mn(NO3)2 | Citric Acid | |
x = 100% | 0 | 0 | 0 | 1.657 | 0.934 | 1.109 | 1.856 |
x = 0.0% | 0.199 | 4.567 | 2.573 | 0 | 0 | 0 | 0 |
x = 10.0% | 0.179 | 4.110 | 2.316 | 0.166 | 0.093 | 0.111 | 0.186 |
x = 20.0% | 0.159 | 3.654 | 2.059 | 0.331 | 0.187 | 0.222 | 0.371 |
x = 30.0% | 0.140 | 3.197 | 1.801 | 0.497 | 0.280 | 0.333 | 0.557 |
x = 40.0% | 0.120 | 2.740 | 1.544 | 0.663 | 0.374 | 0.443 | 0.742 |
wt % SFO | Crystallite Size (nm) | a (Å) | c (Å) | V (Å3) | wt % LSMO | Crystallite Size (nm) | a (Å) | c (Å) | V (Å3) |
---|---|---|---|---|---|---|---|---|---|
100% | 35.7 | 5.8744 ± 0.0004 | 23.043 ± 0.0017 | 684.7276 | 100% | 34.6 | 5.4901 ± 0.0003 | 13.3504 ± 0.0008 | 385.259 |
90% | 36.9 | 5.8765 ± 0.0006 | 23.0185 ± 0.0021 | 687.4498 | 10% | 27.7 | 5.4922 ± 0.0040 | 13.4290 ± 0.0020 | 378.177 |
80% | 40.9 | 5.8780 ± 0.0006 | 23.0075 ± 0.0032 | 686.8995 | 20% | 27.9 | 5.4902 ± 0.0027 | 13.4126 ± 0.0010 | 378.119 |
70% | 40.4 | 5.8804 ± 0.0006 | 23.0015 ± 0.0023 | 687.3428 | 30% | 29.1 | 5.4918 ± 0.0016 | 13.4051 ± 0.0031 | 379.144 |
60% | 40.3 | 5.8806 ± 0.0007 | 22.9952 ± 0.0029 | 687.4267 | 40% | 30.5 | 5.4915 ± 0.0007 | 13.4002 ± 0.0024 | 378.602 |
La3+ | Sr2+ | Mn4+ | Mn3+ (HS) | Fe3+ (HS) | Fe2+ (HS) |
---|---|---|---|---|---|
1.032 | 1.18 | 0.53 | 0.645 | 0.645 | 0.78 |
Ms * (emu/g) | Mr (emu/g) | Mr/Ms | Hc (kOe) | |
---|---|---|---|---|
La0.7Sr0.3MnO3 (LSMO) | 52.42 | 8.72 | 0.166 | 52 |
SrFe12O19 (SFO) | 59.66 | 33.37 | 0.559 | 3633 |
LSMO, x = 10% | 51.91 | 30.52 | 0.588 | 6060 |
x = 20% | 42.16 | 25.05 | 0.594 | 6249 |
x = 30% | 35.86 | 21.34 | 0.595 | 6252 |
x = 40% | 34.93 | 20.82 | 0.596 | 6569 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahal, J.N.; Neupane, D.; Mishra, S.R. Exchange-Coupling Behavior in SrFe12O19/La0.7Sr0.3MnO3 Nanocomposites. Ceramics 2019, 2, 100-111. https://doi.org/10.3390/ceramics2010010
Dahal JN, Neupane D, Mishra SR. Exchange-Coupling Behavior in SrFe12O19/La0.7Sr0.3MnO3 Nanocomposites. Ceramics. 2019; 2(1):100-111. https://doi.org/10.3390/ceramics2010010
Chicago/Turabian StyleDahal, Jiba Nath, Dipesh Neupane, and Sanjay R. Mishra. 2019. "Exchange-Coupling Behavior in SrFe12O19/La0.7Sr0.3MnO3 Nanocomposites" Ceramics 2, no. 1: 100-111. https://doi.org/10.3390/ceramics2010010
APA StyleDahal, J. N., Neupane, D., & Mishra, S. R. (2019). Exchange-Coupling Behavior in SrFe12O19/La0.7Sr0.3MnO3 Nanocomposites. Ceramics, 2(1), 100-111. https://doi.org/10.3390/ceramics2010010