Bacterial Adhesion on Lithium Disilicate Ceramic Surface Exposed to Different Hydrofluoric Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Analysis
2.2. Microbiological Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barao, V.A.; Gennari-Filho, H.; Goiato, M.C.; dos Santos, D.M.; Pesqueira, A.A. Factors to achieve aesthetics in all-ceramic restorations. J. Craniofac. Surg. 2010, 21, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Samra, A.P.; Pereira, S.K.; Delgado, L.C.; Borges, C.P. Color stability evaluation of aesthetic restorative materials. Braz. Oral. Res. 2008, 22, 205–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelhoff, D.; Brix, O. All-ceramic restorations in different indications: A case series. J. Am. Dent. Assoc. 2011, 142, 14s–19s. [Google Scholar] [CrossRef] [PubMed]
- Bona, A.D.; Anusavice, K.J. Microstructure, composition, and etching topography of dental ceramics. Int. J. Prosthodont. 2002, 15, 159–167. [Google Scholar] [PubMed]
- Junpoom, P.; Kukiattrakoon, B.; Hengtrakool, C. Flexural strength of fluorapatite-leucite and fluorapatite porcelains exposed to erosive agents in cyclic immersion. J. Appl. Oral. Sci. 2011, 19, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Zogheib, L.V.; Bona, A.D.; Kimpara, E.T.; McCabe, J.F. Effect of hydrofluoric acid etching duration on the roughness and flexural strength of a lithium disilicate-based glass ceramic. Braz. Dent. J. 2011, 22, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukiattrakoon, B.; Junpoom, P.; Hengtrakool, C. Vicker’s microhardness and energy dispersive x-ray analysis of fluorapatite-leucite and fluorapatite ceramics cyclically immersed in acidic agents. J. Oral. Sci. 2009, 51, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Mobilio, N.; Fasiol, A.; Catapano, S. Survival Rates of Lithium Disilicate Single Restorations: A Retrospective Study. Int. J. Prosthodont. 2018, 31, 283–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ccahuana, V.Z.; Ozcan, M.; Mesquita, A.M.; Nishioka, R.S.; Kimpara, E.T.; Bottino, M.A. Surface degradation of glass ceramics after exposure to acidulated phosphate fluoride. J. Appl. Oral. Sci. 2010, 18, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anusavice, K.J.; Kakar, K.; Ferree, N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin. Oral Implants Res. 2007, 18, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Colucci, V.; Dos Santos, C.D.; Do Amaral, F.L.; Corona, S.A.; Catirse, A.B. Influence of NaHCO3 powder on translucency of microfilled composite resin immersed in different mouthrinses. J. Esthet. Restor. Dent. 2009, 21, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Gurgan, S.; Onen, A.; Koprulu, H. In vitro effects of alcohol-containing and alcohol-free mouthrinses on microhardness of some restorative materials. J. Oral. Rehabil. 1997, 24, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Vechiato-Filho, A.J.; Dos Santos, D.M.; Goiato, M.C.; Moreno, A.; De Medeiros, R.A.; Kina, S.; Rangel, E.C.; Cruz, N.C. Surface degradation of lithium disilicate ceramic after immersion in acid and fluoride solutions. Am. J. Dent. 2015, 28, 174–180. [Google Scholar] [PubMed]
- Fontes, S.T.; Fernandez, M.R.; de Moura, C.M.; Meireles, S.S. Color stability of a nanofill composite: Effect of different immersion media. J. Appl. Oral Sci. 2009, 17, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A.; Billington, R.W.; Pearson, G.J. A long term study of fluoride release from metal-containing conventional and resin-modified glass ionomer cements. J. Oral Rehabil. 2001, 28, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Muguruma, T.; Iijima, M.; Brantley, W.A.; Yuasa, T.; Kyung, H.M.; Mizoguchi, I. Effects of sodium fluoride mouth rinses on the torsional properties of miniscrew implants. Am. J. Orthod. Dentofacial. Orthop. 2011, 139, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Kandanuru, V.; Madhusudhana, K.; Ramachandruni, V.K.; Vitta, H.M.; Babu, L. Comparative evaluation of microhardness of dentin treated with 4% titanium tetrafluoride and 1.23% acidic phosphate fluoride gel before and after exposure to acidic pH: An ex vivo study. J. Conserv. Dent. 2016, 19, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Vichi, A.; Louca, C.; Corciolani, G.; Ferrari, M. Color related to ceramic and zirconia restorations: A review. Dent. Mater. 2011, 27, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Belardinelli, P.A.; Morelatto, R.A.; Benavidez, T.E.; Baruzzi, A.M.; López de Blanc, S.A. Effect of two mouthwashes on salivary ph. Acta Odontol. Latinoam. 2014, 27, 66–71. [Google Scholar] [PubMed]
- Correa, C.B.; Pires, J.R.; Fernandes-Filho, R.B.; Sartori, R.; Vaz, L.G. Fatigue and fluoride corrosion on Streptococcus mutans adherence to titanium-based implant/component surfaces. J. Prosthodont. 2009, 18, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, E.S.; Matos, A.O.; Beline, T.; Marques, I.S.; Sukotjo, C.; Mathew, M.T.; Rangel, E.C.; Cruz, N.C.; Mesquita, M.F.; Consani, R.X.; et al. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 65, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.M.; De Paula, A.M.; Bonatto, L.R.; Da Silva, E.V.; Vechiato Filho, A.J.; Moreno, A.; Goiato, M.C. Influence of colorant solutions in properties of indirect resin composites. Am. J. Dent. 2015, 28, 219–223. [Google Scholar] [PubMed]
- Lee, S.H. Antagonistic effect of peptidoglycan of Streptococcus sanguinis on lipopolysaccharide of major periodontal pathogens. J. Microbiol. 2015, 53, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Barao, V.A.; Ricomini-Filho, A.P.; Faverani, L.P.; Del Bel Cury, A.A.; Sukotjo, C.; Monteiro, D.R.; Yuan, J.C.; Mathew, M.T.; Amaral, R.C.; Mesquita, M.F.; et al. The role of nicotine, cotinine and caffeine on the electrochemical behavior and bacterial colonization to cp-Ti. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 56, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Sridhar, S.; Aghyarian, S.; Watkins-Curry, P.; Chan, J.Y.; Pozzi, A.; Chan, J.Y.; Pozzi, A.; Rodrigues, D.C. Corrosion behavior of zirconia in acidulated phosphate fluoride. J. Appl. Oral Sci. 2016, 24, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schropp, L.; Isidor, F.; Kostopoulos, L.; Wenzel, A. Interproximal papilla levels following early versus delayed placement of single-tooth implants: A controlled clinical trial. Int. J. Oral Maxillofac. Implants 2005, 20, 753–761. [Google Scholar] [CrossRef] [PubMed]
- De Bruyn, H.; Raes, F.; Cooper, L.F.; Reside, G.; Garriga, J.S.; Tarrida, L.G.; Wiltfang, J.; Kern, M. Three-years clinical outcome of immediate provisionalization of single OsseospeedTM implants in extraction sockets and healed ridges. Clin. Oral Implants Res. 2013, 24, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Koutayas, S.O.; Vagkopoulou, T.; Pelekanos, S.; Koidis, P.; Strub, J.R. Zirconia in dentistry: Part 2. Evidence-based clinical breakthrough. Eur. J. Esthet. Dent. 2009, 4, 348–380. [Google Scholar] [PubMed]
- Peto, D. Periodontal considerations in veneer cases. J. Calif. Dent. Assoc. 2015, 43, 193–198. [Google Scholar] [PubMed]
- Hauser-Gerspach, I.; Kulik, E.M.; Weiger, R.; Decker, E.M.; Von Ohle, C.; Meyer, J. Adhesion of Streptococcus sanguinis to dental implant and restorative materials in vitro. Dent. Mater. J. 2007, 26, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Winkler, C.; Schafer, L.; Felthaus, O.; Allerdings, J.; Hahnel, S.; Behr, M.; Bürgers, R. The bacterial adhesion on and the cytotoxicity of various dental cements used for implant-supported fixed restorations. Acta Odontol. Scand. 2014, 72, 241–250. [Google Scholar] [CrossRef] [PubMed]
- American Dental Association Council on Scientific Affairs: Professionally applied topical fluoride: evidence-based clinical recommendations. J. Dent. Educ. 2007, 71, 393–402.
- Masson, N.; Domingues, R.R.; Cury, J.A.; Paes Leme, A.F. Acidulated phosphate fluoride application changes the protein composition of human acquired enamel pellicle. Caries Res. 2013, 47, 251–258. [Google Scholar] [CrossRef] [PubMed]
Groups | Composition | pH | Immersion Period |
---|---|---|---|
Group AS (artificial saliva) | [KCl (0.4 g L−1), NaCl (0.4 g L−1), CaCl2-2H2O (0.906 g L−1), NaH2PO4-2H2O (0.690 g L−1), Na2S-9H2O (0.005 g L−1)] | 5.5 [15] | 21 days in a bacteriological incubator (37 ± 1 °C) |
Group NaF | 0.2% NaF | 5.14 [16] | 73 h (simulating 3 daily brushings with fluoride toothpaste of 2 min each for a period of 2 years) [13] |
Group APF | 1.23% APF gel (fluoride-containing of 12,300 parts per million (ppm) with 0.34% hydrofluoric acid (HF), 2% NaF, and 0.98% phosphoric acid) | 3 to 3.5 [17] | 48 h (simulating 4 min of daily use over a period of 2 years) [13,18] |
Group MW (mouthwash) | Thymol, eucalyptol, methyl salicylate, menthol, water, sorbitol solution, alcohol (30%), poloxamer 407, benzoic acid, mint and mint essences, sodium saccharin, sodium benzoate, green dye 3. | 4.35 [19] | 12 h (simulating 1 min of daily use over a period of 2 years) [13,20] |
SS | df | MS | F | p | |
---|---|---|---|---|---|
Immersion solution | 3.442 | 3 | 1.147 | 7.198 | 0.001 * |
Period | 0.468 | 1 | 0.468 | 2.773 | 0.106 |
Period x Immersion solution | 5.411 | 3 | 1.804 | 10.676 | <0.001 * |
Error | 5.406 | 32 | 0.169 |
Groups | Initial Rt (µm) | Final Rt (µm) |
---|---|---|
Group AS | 2.2 (0.4) Ba | 2.1 (0.4) Ba |
Group NaF | 2.4 (0.3) ABa | 2.3 (0.3) Ba |
Group APF | 2.2 (0.2) Bb | 3.3 (0.6) Aa |
Group MW | 2.5 (0.5) Aa | 2.3 (0.4) Ba |
SS | df | MS | F | p | |
---|---|---|---|---|---|
Immersion solution | 7.712 | 3 | 2.571 | 11.392 | <0.001 * |
Error | 7.221 | 32 | 0.226 | ||
Total | 946.855 | 36 |
Groups | Bacterial Adhesion (log CFU/mL) |
---|---|
Group AS | 4.5 (0.5) B |
Group NaF | 4.5 (0.5) B |
Group APF | 5.9 (0.6) A |
Group MW | 4.6 (0.3) B |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, D.M.d.; Silva, E.V.F.d.; Matos, A.O.; Monteiro, B.C.Z.; Medeiros, R.A.d.; Bitencourt, S.B.; Barão, V.A.R.; Rangel, E.C.; Goiato, M.C. Bacterial Adhesion on Lithium Disilicate Ceramic Surface Exposed to Different Hydrofluoric Solutions. Ceramics 2018, 1, 145-152. https://doi.org/10.3390/ceramics1010013
Santos DMd, Silva EVFd, Matos AO, Monteiro BCZ, Medeiros RAd, Bitencourt SB, Barão VAR, Rangel EC, Goiato MC. Bacterial Adhesion on Lithium Disilicate Ceramic Surface Exposed to Different Hydrofluoric Solutions. Ceramics. 2018; 1(1):145-152. https://doi.org/10.3390/ceramics1010013
Chicago/Turabian StyleSantos, Daniela Micheline dos, Emily Vivianne Freitas da Silva, Adaias Oliveira Matos, Beatriz Cristiane Zuin Monteiro, Rodrigo Antonio de Medeiros, Sandro Basso Bitencourt, Valentim Adelino Ricardo Barão, Elidiane Cipriano Rangel, and Marcelo Coelho Goiato. 2018. "Bacterial Adhesion on Lithium Disilicate Ceramic Surface Exposed to Different Hydrofluoric Solutions" Ceramics 1, no. 1: 145-152. https://doi.org/10.3390/ceramics1010013
APA StyleSantos, D. M. d., Silva, E. V. F. d., Matos, A. O., Monteiro, B. C. Z., Medeiros, R. A. d., Bitencourt, S. B., Barão, V. A. R., Rangel, E. C., & Goiato, M. C. (2018). Bacterial Adhesion on Lithium Disilicate Ceramic Surface Exposed to Different Hydrofluoric Solutions. Ceramics, 1(1), 145-152. https://doi.org/10.3390/ceramics1010013